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Basic properties of a mean field laser equation

F. Fagnola ∗ C.M. Mora †‡

Abstract

We study the non-linear quantum master equation describing a laser under the
mean field approximation. The quantum system is formed by a single mode optical
cavity and two level atoms, which interact with reservoirs. Namely, we establish the
existence and uniqueness of the regular solution to the non-linear operator equation
under consideration, as well as we get a probabilistic representation for this solution
in terms of a mean field stochastic Schröndiger equation. To this end, we find a
regular solution for the non-autonomous linear quantum master equation in Gorini-
Kossakowski-Sudarshan-Lindblad form, and we prove the uniqueness of the solution to
the non-autonomous linear adjoint quantum master equation in Gorini-Kossakowski-
Sudarshan-Lindblad form. Moreover, we obtain rigorously the Maxwell-Bloch equa-
tions from the mean field laser equation.
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1 Introduction

This paper provides the mathematical foundation for the nonlinear laser equation

d

dt
ρt = −i

ω

2

[
2 a†a+ σ3, ρt

]
(1)

+g
[(

tr
(
σ−ρt

)
a† − tr

(
σ+ρt

)
a
)
+
(
tr
(
a†ρt

)
σ− − tr (a ρt) σ

+
)
, ρt

]

+κ−

(
σ−ρt σ

+ − 1

2
σ+σ−ρt −

1

2
ρt σ

+σ−
)

+κ+

(
σ+ρt σ

− − 1

2
σ−σ+ρt −

1

2
ρt σ

−σ+
)

+2κ

(
a ρta

† − 1

2
a†aρt −

1

2
ρta

†a

)
,

where ω ∈ R, g is a non-zero real number, κ, κ+, κ− > 0 and ρt is an unknown non-
negative trace-class operator on ℓ2 (Z+)⊗C

2. As usual, [·, ·] stands for the commutator
of two operators,

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σ3 =

(
1 0
0 −1

)
,

and a, a† are the closed operators on ℓ2 (Z+) given by

aen =

{ √
n en−1 if n ∈ N

0 if n = 0

and a†en =
√
n+ 1 en+1 for all n ∈ Z+. Here and subsequently, (en)n≥0 denotes the

canonical orthonormal basis of ℓ2(Z+).
Under the mean field approximation, (1) describes the dynamics of a laser consisting

of a radiation field coupled to a set of identical non-interacting two-level systems (see,
e.g., Section 3.7.3 of [8] and [27, 32, 40, 47] for more details on mean field quantum
master equations). The first term of the right-hand side of (1) is determined by the free
Hamiltonians of the field mode and the atoms, the second term governs the atom-field
interaction, and the last three terms, i.e., the Gorini-Kossakowski-Sudarshan-Lindblad
superoperators [24, 31], represent decay/pumping in the atoms and radiation losses.
We are interested in establishing rigorously the well-posedness of (1), the equations of
motion of the observables a+ a†, σ− + σ+ and σ3, and a probabilistic representation
of ρt. This gives the mathematical basis to study, for instance, dynamical properties
of (1) and the numerical solution of (1).

Our approach to the non-linear quantum master equation (1) involves the study of
non-autonomous linear quantummaster equations in the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) form [1, 8, 24, 31]. In the time-homogeneous setup, E. B. Davies and
A. M. Chebotarev [12, 17] constructed the minimal solution of GKSL linear master
equations with unbounded coefficients (see, e.g., [13, 18]). Using semigroup methods,
[11, 14, 15, 18] prove that these equations have a unique solution under a quantum
version of the Lyapunov condition for nonexplosion of classical Markov processes. Ap-
plying probabilistic techniques, one deduces that the GKSL quantum master equation
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preserves the regularity of the initial state (see, e.g., [37] ), and one also obtains the
well-posedness of the GKSL adjoint quantum master equation with an initial condition
given by an unbounded operator (see, e.g., [36]). Using a limit procedure, one gets a
conservative solution to a linear adjoint quantum master equation with time-dependent
coefficients (see, e.g, [10]). In this article, we address a class of time-local linear mas-
ter equations, which describes relevant physical systems (see, e.g., [7, 9, 16, 26, 46]).
Namely, by extending some results given by [36, 37], we construct a regular solution
for the non-autonomous linear quantum master equation

d

dt
ρt = G (t) ρt + ρtG (t)∗ +

∞∑

k=1

Lk (t) ρtLk (t)
∗ t ≥ 0, (2)

where ρt is a density operator in h, the initial datum ρ0 is regular, and G (t) , L1 (t),
L2 (t) , . . . are linear operators in h satisfying (on appropriate domain)

G (t) = −iH (t)− 1

2

∞∑

ℓ=1

Lℓ (t)
∗ Lℓ (t)

with H (t) self-adjoint operator in h. Furthermore, we prove the uniqueness of the
solution to the adjoint version of (2), which models the evolution of the quantum
observables in the Heisenberg picture. This leads to prove the well-posedness of the
GKSL quantum master equation resulting from replacing in (1) the unknown values
of tr (σ−ρt) and tr (a ρt) by known functions α (t) and β (t).

Our main objective is to develop the mathematical theory for the non-linear equa-
tion (1). First, we establish the existence and uniqueness of the regular solution to (1).
In this direction, Belavkin [5, 6] treated a general class of non-linear quantum master
equations with bounded coefficients, and Kolokoltsov [30] obtained the well-posedness
of nonlinear quantum dynamic semigroups having non-linear Hamiltonians that are
bounded perturbations of unbounded linear self-adjoint operators, together with non-
linear bounded Gorini-Kossakowski-Sudarshan-Lindblad superoperators. Arnold and
Sparber [2] showed the existence and uniqueness of global solution to a non-linear
quantum master equation involving Hartree potential by means of semigroup tech-
niques.

Moreover, we deal with the equations of motion for the mean values of a, σ− and
σ3. It is well known that the following first-order differential equations is formally
obtained from (1):





d
dttr (a ρt) = − (κ+ iω) tr (a ρt) + g tr (σ−ρt)
d
dttr (σ

−ρt) = − (γ + iω) tr (σ−ρt) + g tr (a ρt) tr
(
σ3ρt

)

d
dttr

(
σ3ρt

)
= −4g ℜ

(
tr (a ρt) tr (σ−ρt)

)
− 2γ

(
tr
(
σ3ρt

)
− d
) , (3)

where ≥ 0, γ = (κ+ + κ−) /2 and d = (κ+ − κ−) / (κ+ + κ−) (see, e.g., [8]). In the
semiclassical laser theory, the Maxwell-Bloch equations (3) describe the evolution of
the field (i.e., tr (a ρt)), the polarization (i.e., tr (σ−ρt)) and the population inversion
(i.e., tr

(
σ3ρt

)
) of ring lasers like far-infrared NH3 lasers (see, e.g., [25, 42, 48]). The

system (3) has received much attention in the physical literature due to its important
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role in the description of laser dynamics (see, e.g., [8, 21, 41]). In this paper, we prove
rigorously the validity of (3) whenever the initial state is regular enough, and thus we
get an Ehrenfest theorem for (1) (see, e.g., [19, 22, 23]).

Finally, we obtain a probabilistic representation of (1). The solution of the linear
quantum master equations in GKSL form is characterized as the mean value of random
pure states given by the linear and non-linear stochastic Schrödinger equations (see,
e.g., [3, 4, 8, 37, 49]). This representation plays an important tool in the numerical
simulation of open quantum systems (see, e.g., [8, 35, 33, 43, 45]), and it has also
been used for proving theoretical properties of the GKSL quantum master equations
(see, e.g., [20, 36, 37]). In this paper, we get a probabilistic representation of (1) in
terms of a mean field version of the linear stochastic Schrödinger equation. To the best
of our knowledge this is the first rigorously established result, at the level of infinite
dimensional density matrices, with an unbounded nonlinear evolution operator, in the
study of nonlinear mean field laser evolution equations

This paper is organized as follows. Section 2 presents the main results. Section 3
is devoted to general linear master equations. In Section 4 we study a linear quantum
master equation associated with (1), moreover, for the sake of completeness, we recall
the basic properties of the complex Lorenz equations. All proofs are deferred to Section
5.

1.1 Notation

In this paper, (h, 〈·, ·〉) is a separable complex Hilbert space, where the scalar product
〈·, ·〉 is linear in the second variable and anti-linear in the first one. The standard basis

of C2 is denoted by e+ =

(
1
0

)
and e− =

(
0
1

)
. If A,B are linear operators in h, then

[A,B] = AB − BA and D (A) stands for the domain of A. We take N = a†a. In
case X, Z are normed spaces, we denote by L (X,Z) the set of all bounded operators
from X to Z and we choose L (X) = L (X,X). We write L1 (h) for the set of all
trace-class operators on h equipped with the trace norm. For simplicity of notation,
generic no-negative constants are denoted by K, as well as K (·) stands for different
non-decreasing non-negative functions on [0,∞[.

Let C be a self-adjoint positive operator in h. Then, πC : h → h is defined by
πC(x) = x if x ∈ D (C) and πC(x) = 0 if x /∈ D (C), as well as ‖x‖C =

√
〈x, x〉C

with 〈x, y〉C = 〈x, y〉+ 〈Cx,Cy〉 for any x, y ∈ D (C). We write L2 (P, h) for the set of
all square integrable random variables from (Ω,F,P) to (h,B (h)), where B (Y) is the
collection of all Borel set of the topological space Y. Finally, L2

C (P, h) denotes the set

of all ξ ∈ L2 (P, h) satisfying ξ ∈ D (C) a.s. and E

(
‖ξ‖2C

)
<∞.

2 Basic properties of the mean field laser equa-

tion

This section presents the main results of the paper, which are summarized in Theorem
2.1 given below. We start by adapting the notion of regular weak solution —of a linear
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quantum master equation (see, e.g., [37] and Definition 3.2 given below)— to the mean
field laser equation (1). To this end, we recall that a density operator ̺ is C-regular
if, roughly speaking, C̺C is a trace-class operator, where C is a suitable reference
operator (see, e.g., [11, 37]).

Definition 2.1. Suppose that C is a self-adjoint positive operator in h. An operator
̺ ∈ L1 (h) is called density operator iff ̺ is a non-negative operator with unit trace.
The non-negative operator ̺ ∈ L (h) is said to be C-regular iff ̺ =

∑
n∈I λn |un〉〈un|

for some countable set I, summable non-negative real numbers (λn)n∈I and collection

(un)n∈I of elements of D (C), which together satisfy:
∑

n∈I λn ‖Cun‖2 < ∞. Let
L+
1,C (h) denote the set of all C-regular density operators in h.

Definition 2.2. Let C be a self-adjoint positive operator in h. A family (ρt)t≥0 of

operators belonging to L+
1,C (h) is called C-weak solution to (1) iff the function t 7→

tr (aρt) is continuous and for all t ≥ 0 we have

d

dt
tr (Aρt) = tr (AL⋆ (ρt) ρt) ∀A ∈ L (h) ,

where

L⋆ (˜̺) ̺ = − iω

2

[
2a†a+ σ3, ̺

]
+ 2κ

(
a ̺a† − 1

2
a†a̺− 1

2
̺a†a

)

+κ−

(
σ−̺ σ+ − 1

2
σ+σ−̺− 1

2
̺ σ+σ−

)

+κ+

(
σ+̺ σ− − 1

2
σ−σ+̺− 1

2
̺ σ−σ+

)

+g
[
tr
(
σ− ˜̺

)
a† − tr

(
σ+ ˜̺

)
a, ̺
]
+ g

[
tr
(
a† ˜̺
)
σ− − tr (a ˜̺)σ+, ̺

]
.

Similar to the linear case, (1) is strongly related with the following non-linear
stochastic evolution equation on ℓ2 (Z+)⊗C2:

Zt (ξ) = ξ +

∫ t

0

(
−iH (t, Zt (ξ))−

1

2

3∑

ℓ=1

L∗
ℓLℓ

)
Zs (ξ) ds (4)

+

3∑

ℓ=1

∫ t

0
Lℓ Zs (ξ) dW

ℓ
s ,

where L1 =
√
2κ a, L2 =

√
γ (1− d) σ−, L3 =

√
γ (1 + d) σ+,

H (t, Zt (ξ)) =
ω

2

(
2a†a+ σ3

)
(5)

+ig
(
E
〈
Zt (ξ) , σ

−Zt (ξ)
〉
a† − E

〈
Zt (ξ) , σ

+Zt (ξ)
〉
a
)

+ig
(
E

〈
Zt (ξ) , a

†Zt (ξ)
〉
σ− − E 〈Zt (ξ) , a Zt (ξ)〉 σ+

)
,

and W 1,W 2,W 3 are real valued independent Wiener processes on a filtered complete

probability space
(
Ω,F, (Ft)t≥0 ,P

)
. Next, we tailor the concept of regular weak solu-

tion —used in the framework of stochastic Schödinger equations (see, e.g., [19, 38, 39]
and Definition 3.1 given below)— to suit (4).
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Definition 2.3. Let p ∈ N. An ℓ2 (Z+) ⊗ C2-valued adapted process with continuous
sample paths (Zt (ξ))t∈I is called strong Np-solution of (4) if:

• For all t ≥ 0: E ‖Zt (ξ)‖2 ≤ K (t)E ‖ξ‖2, Zt (ξ) ∈ D (Np) a.s., and

sup
s∈[0,t]

E ‖NpXs (ξ)‖2 <∞.

• The functions t 7→ E 〈Zt (ξ) , σ
−Zt (ξ)〉 and t 7→ E 〈Zt (ξ) , a Zt (ξ)〉 are continu-

ous.

• a.s. for all t ≥ 0:

Zt (ξ) = ξ +

∫ t

0

(
−iH (t)− 1

2

3∑

ℓ=1

L∗
ℓLℓ

)
πNp (Zs (ξ)) ds

+
3∑

ℓ=1

∫ t

0
Lℓ πNp (Zs (ξ)) dW

ℓ
s

with H (t, Zt (ξ)) described by (5), and Lℓ, W
ℓ as in (4).

Now, we establish the existence and uniqueness of the regular solution to (1), a
Ehrenfest-type theorem describing the evolution of the mean values of the observables
a+ a†, σ− + σ+ and σ3, and the probabilistic representation of (1).

Theorem 2.1. Suppose that ̺ ∈ L+
1,Np

(
ℓ2 (Z+)⊗ C

2
)
, with p ∈ N. Then, there exists

a unique Np-weak solution (ρt)t≥0 to (1) with initial datum ̺. Moreover, the Maxwell-
Bloch equations (3) hold, and

ρt = E |Zt (ξ)〉 〈Zt (ξ)| ∀t ≥ 0, (6)

where ξ ∈ L2
Np (P, h) satisfies ̺ = E |ξ〉 〈ξ|, and Zt (ξ) ∈ ℓ2 (Z+) ⊗ C

2 is the strong
Np-solution of (4).

Proof. Deferred to Section 5.3.

Remark 2.1. If g2d < κγ, then (0, 0, d) is an asymptotically stable equilibrium point
of (3). In fact, from (23) and (24), given below, it follows that tr (a ρt), tr (σ

−ρt) and
tr
(
σ3ρt

)
− d converge exponentially fast to 0 as t goes to +∞.

3 General linear quantum master equations

3.1 Regular solution for the GKSL quantum master equa-

tion

This subsection provides a regular solution for the linear quantum master equation (2).
By generalizing [37] to the non-autonomous framework, we will describe a solution of
(2) with the help of the linear stochastic evolution equation in h:

Xt (ξ) = ξ +

∫ t

0
G (s)Xs (ξ) ds+

∞∑

ℓ=1

∫ t

0
Lℓ (s)Xs (ξ) dW

ℓ
s , (7)
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whereW 1,W 2, . . . are real valued independent Wiener processes on a filtered complete

probability space
(
Ω,F, (Ft)t≥0 ,P

)
.

Suppose that the density operator ρ0 is C-regular. According to Theorem 3.1 of
[37] we have ρ0 = E |ξ〉〈ξ| for certain ξ ∈ L2

C (P, h). We set

ρt := E |Xt (ξ)〉 〈Xt (ξ)| , (8)

where we use Dirac notation, Xt (ξ) is the unique strong C-solution of (7) (see Defini-
tion 3.1), and the mathematical expectation can be interpreted as a Bochner integral
in both L1 (h) and L (h). Then, ρt is a C-regular density operator (see [37] for details).

Hypothesis 1. There exists a self-adjoint positive operator C in h such that D (C) ⊂
D (G (t)) and D (C) ⊂ D (Lℓ (t)) for all t ≥ 0, and G (·) ◦ πC and Lℓ (·) ◦ πC are
measurable as functions from ([0,∞[× h,B ([0,∞[× h)) to (h,B (h)).

Definition 3.1. Assume Hypothesis 1. Let I be either [0,∞[ or [0, T ], with T ∈ R+.
By strong C-solution of (7) with initial condition ξ, on the interval I, we mean an h-
valued adapted process (Xt (ξ))t∈I with continuous sample paths such that for all t ∈ I:

E ‖Xt (ξ)‖2 ≤ K (t)E ‖ξ‖2, Xt (ξ) ∈ D (C) a.s., sups∈[0,t] E ‖CXs (ξ)‖2 <∞, and

Xt (ξ) = ξ +

∫ t

0
G (s) πC (Xs (ξ)) ds +

∞∑

ℓ=1

∫ t

0
Lℓ (s)πC (Xs (ξ)) dW

ℓ
s a.s.

The following theorem, which extends Theorem 4.4 of [37] to the non-autonomous
context, asserts that ρt given by (8) is a regular solution to (2).

Definition 3.2. Let C be a self-adjoint positive operator in h. A family (ρt)t≥0 of
C-regular density operators is called C-weak solution to (2) if and only if

d

dt
tr (Aρt) = tr

(
A

(
G (t) ρt + ρtG (t)∗ +

∞∑

ℓ=1

Lℓ (t) ρtLℓ (t)
∗

))
(9)

for all A ∈ L (h) and t ≥ 0.

Hypothesis 2. Suppose that C satisfies Hypothesis 1, together with:

(H2.1) For any t ≥ 0 and x ∈ D (C), ‖G (t)x‖2 ≤ K (t) ‖x‖2C .

(H2.2) For any t ≥ 0 and x ∈ D (C), 2ℜ 〈x,G (t) x〉+∑∞
ℓ=1 ‖Lℓ (t) x‖2 = 0.

(H2.3) For any initial datum ξ ∈ L2
C (P, h), (7) has a unique strong C-solution on any

bounded interval.

(H2.4) There exist functions fk : [0,∞[ × [0,∞[ → [0,∞[ such that: (i) fk is bounded
on bounded subintervals of [0,∞[ × [0,∞[; (ii) lims→t fk (s, t) = 0; and (iii) for
all s, t ≥ 0 and x ∈ D (C) we have ‖G (s)x−G (t) x‖2 ≤ f0 (s, t) ‖x‖2C and
‖Lℓ (s)x− Lℓ (t)x‖2 ≤ fℓ (s, t) ‖x‖2C .
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Theorem 3.1. Let Hypotheses 1 and 2 hold. Assume that ̺0 be C-regular, and that
G (t) , L1 (t), L2 (t), . . . are closable for all t ≥ 0. Then ρt given by (8) is a C-weak
solution to (2). Moreover, for all t ≥ 0 we have

ρt = ρ0 +

∫ t

0

(
G (s) ρs + ρsG (s)∗ +

∞∑

ℓ=1

Lℓ (s) ρsLℓ (s)
∗

)
ds, (10)

where we understand the above integral in the sense of Bochner integral in L1 (h).

Proof. Deferred to Section 5.1.1.

Remark 3.1. Sufficient conditions for the regularity of the solution to the linear
stochastic Schödinger equation (7) (i.e., Hypothesis 2.3) are given, for instance, in
[19, 34, 38].

3.2 Uniqueness of the solution to the adjoint quantum

master equation in the GKSL form

The next theorem introduces the operator Tt (A) that describes the evolution of the
observable A at time t in the Heisenberg picture. Roughly speaking, the maps A 7→
Tt (A) is the adjoint operator of the application ̺ 7→ ρt, where ρt is defined by (8).

Hypothesis 3. Let Hypothesis 1 hold, together with Conditions H2.1 and H2.3. Sup-
pose that

(H3.1) For all t ≥ 0 and x ∈ D (C),

2ℜ 〈x,G (t)x〉+
∞∑

ℓ=1

‖Lℓ (t)x‖2 ≤ K (t) ‖x‖2 .

Theorem 3.2. Assume that Hypothesis 1 and Conditions H2.1 and H2.3 holds. Con-
sider A ∈ L (h). Then, for every t ≥ 0 there exists a unique Tt (A) ∈ L (h) for which:

〈x,Tt (A) y〉 = E 〈Xt (x) , AXt (y)〉 ∀x, y ∈ D (C) . (11)

Moreover, supt∈[0,T ] ‖Tt (A)‖ <∞ for all T ≥ 0.

Proof. Deferred to Section 5.1.2.

Theorem 3.3 below shows that Tt (A) is the unique possible solution of the adjoint
quantum master equation

d

dt
Tt (A) = Tt (A)G (t) +G (t)∗ Tt (A) +

∞∑

k=1

Lk (t)
∗ Tt (A)Lk (t) . (12)

Thus, we generalize Theorem 2.2 of [37] to the non-autonomous framework.
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Theorem 3.3. Let Hypothesis 3 hold, and let Tt (A) be as in Theorem 3.2 with A ∈
L (h). Assume that (At)t≥0 is a family of operators belonging to L (h) such that A0 = A,
sups∈[0,t] ‖As‖L(h) <∞, and

d

dt
〈x,Aty〉 = 〈x,AtG (t) y〉+ 〈G (t) x,Aty〉+

∞∑

ℓ=1

〈Lℓ (t)x,AtLℓ (t) y〉 (13)

for all x, y ∈ D (C). Then At = Tt (A) for all t ≥ 0.

Proof. Deferred to Section 5.1.3.

Remark 3.2. In the autonomous case, [36, 37] obtain sufficient conditions for Tt (A)
defined by (11) to be solution of (12). Using semigroup methods, [11, 14, 15, 18] show
the existence and uniqueness of solutions to (2) and (12), in the semigroup sense.

In order to check Condition H2.3 we establish the following extension of Theorem
2.4 of [19].

Hypothesis 4. Suppose that C satisfies Hypothesis 1, together with:

(H4.1) For any t ≥ 0 and x ∈ D (C), ‖G (t)x‖2 ≤ K (t) ‖x‖2C .

(H4.2) For every ℓ ∈ N there exists a non-decreasing function Kℓ : [0,∞[ → [0,∞[
satisfying ‖Lℓ (t)x‖2 ≤ Kℓ (t) ‖x‖2C for all x ∈ D (C) and t ≥ 0.

(H4.3) There exists a non-decreasing function α : [0,∞[ → [0,∞[ and a core D1 of C2

such that for any x ∈ D1 we have

2ℜ
〈
C2x,G (t) x

〉
+

∞∑

ℓ=1

‖CLℓ (t) x‖2 ≤ α (t) ‖x‖2C ∀t ≥ 0.

(H4.4) There exists a non-decreasing function β : [0,∞[ → [0,∞[ and a core D2 of C
such that

2ℜ 〈x,G (t)x〉+
∞∑

ℓ=1

‖Lℓ (t)x‖2 ≤ β (t) ‖x‖2 ∀t ≥ 0 and ∀x ∈ D2.

Theorem 3.4. In addition to Hypothesis 4, we assume that ξ ∈ L2
C (P, h) is F0-mea-

surable. Then (7) has a unique strong C-solution (Xt (ξ))t≥0 with initial condition ξ.
Moreover,

E ‖CXt (ξ)‖2 ≤ K (t)
(
E ‖Cξ‖2 + E ‖ξ‖2

)
.

Proof. Our assertion can be be proved in much the same way as Theorem 2.4 of
[19].

Remark 3.3. Theorem 3.4 given above asserts that Theorem 2.4 of [19] still holds if
we replace the assumption H2.4 of [19] by Hypothesis H4.4. We will apply Theorem
3.3 to the case: L1 =

√
2κa†, L2 =

√
γ (1− d)σ+, L3 =

√
γ (1 + d)σ− and G (t) =

iH (t)− 1
2

∑3
ℓ=1 LℓL

∗
ℓ with

H (t) =
ω

2

(
2a†a+ σ3

)
+ ig

(
α (t) a† − α (t)a

)
+ ig

(
β (t)σ− − β (t) σ+

)
.

Since G (t)+G (t)∗+
∑3

ℓ=1 L
∗
ℓLℓ = 4κ2I+2γ2

(
1 + d2

)
σ3, Condition H2.4 of Theorem

2.4 of [19] does not apply to our situation.

9



4 Auxiliary equations

4.1 Auxiliary linear quantum master equation

This subsection deals with the linear evolution equation obtained by replacing in (1)
the unknown functions t 7→ g tr (σ−ρt) and t 7→ g tr (a ρt) by general functions α, β :
[0,∞[ → C. More precisely, we study the well-posedness of the linear quantum master
equation

d

dt
ρt = Lh

⋆ ρt +
[
α (t) a† − α (t)a+ β (t)σ− − β (t)σ+, ρt

]
, (14)

where ρt ∈ L+
1

(
ℓ2(Z+)⊗ C

2
)
,

Lh
⋆ ̺ =

[
− iω

2

(
2a†a+ σ3

)
, ̺

]
+ 2κ

(
a ̺a† − 1

2
a†a̺− 1

2
̺a†a

)
(15)

+γ(1− d)

(
σ−̺ σ+ − 1

2
σ+σ−̺− 1

2
̺ σ+σ−

)

+γ(1 + d)

(
σ+̺ σ− − 1

2
σ−σ+̺− 1

2
̺ σ−σ+

)
,

d ∈ ]−1, 1[, ω ∈ R and κ, γ > 0. Furthermore, we represent (14) by using

Xt (ξ) = ξ +

∫ t

0
G (s)Xs (ξ) ds+

3∑

ℓ=1

∫ t

0
Lℓ (s)Xs (ξ) dW

ℓ
s , (16)

where Xt (ξ) ∈ ℓ2(Z+) ⊗ C2, W 1,W 2,W 3 are real valued independent Wiener pro-
cesses, L1 =

√
2κa, L2 =

√
γ (1− d) σ− , L3 =

√
γ (1 + d) σ+ and G (t) = −iH (t) −

1
2

∑3
ℓ=1 L

∗
ℓLℓ with

H (t) =
ω

2

(
2a†a+ σ3

)
+ i
(
α (t) a† − α (t)a

)
+ i
(
β (t)σ− − β (t)σ+

)
.

Though the open quantum system (14) deserves attention in its own right, our
main objective is to develop key tools for proving the results of Section 2. First,
combining Theorems 3.1, 3.3 and 3.4 we obtain the existence and uniqueness of the
regular solution to (14).

Theorem 4.1. Consider (14) with α, β : [0,∞[ → C continuous. Let ̺ be Np-regular,
where p ∈ N. Then, there exists a unique Np-weak solution (ρt)t≥0 to (14) with initial
datum ρ0 = ̺. Moreover, for any t ≥ 0 we have

ρt = ρ0 +

∫ t

0

(
Lh
⋆ ρs +

[
α (s) a† − α (s)a+ β (s)σ− − β (s)σ+, ρs

])
ds (17)

and
ρt = E |Xt (ξ)〉 〈Xt (ξ)| ∀t ≥ 0, (18)

where the integral appearing in (17) is understood in the sense of Bochner integral in
L1

(
ℓ2(Z+)⊗C2

)
, ξ ∈ L2

Np

(
P, ℓ2(Z+)⊗C2

)
satisfies ̺ = E |ξ〉〈ξ| and Xt (ξ) is the

unique strong Np-solution of (16).
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Proof. Deferred to Section 5.2.1.

Remark 4.1. Assume the framework of Theorem 4.1. From the proof of Theorem 4.1
it follows that E ‖Xt (ξ)‖2Np ≤ K (t)E ‖ξ‖2Np for all t ≥ 0. In the operator language
we have tr (Np ρtN

p) ≤ K (t) (1 + tr (Np ρ0N
p)) (see, e.g., [37]) since E ‖Xt (ξ)‖2 =

E ‖ξ‖2 = 1 (see, e.g., [19]).

Using the Ehrenfest-type theorem given in [19] we get a system of ordinary differ-
ential equations that describes the evolution of tr (ρt a), tr (ρt σ

−) and tr
(
ρt σ

3
)
.

Theorem 4.2. Under the assumptions and notation of Theorem 4.1,

d

dt
tr (ρt a) = − (κ+ iω) tr (ρt a) + α (t) , (19)

d

dt
tr
(
ρt σ

−
)

= − (γ + iω) tr
(
ρt σ

−
)
+ β (t) tr

(
ρt σ

3
)
, (20)

d

dt
tr
(
ρt σ

3
)

= −2
(
β (t)tr

(
ρtσ

−
)
+ β (t) tr (ρtσ−)

)
(21)

−2γ
(
tr
(
ρtσ

3
)
− d
)
.

Proof. Deferred to Section 5.2.2.

4.2 Complex Lorenz equations

Taking A (t) = tr (a ρt), S (t) = tr (σ−ρt) and D (t) = tr
(
σ3ρt

)
we rewrite (3) as





d
dtA (t) = − (κ+ iω)A (t) + g S (t)
d
dtS (t) = − (γ + iω)S (t) + g A (t)D (t)
d
dtD (t) = −4g ℜ

(
A (t)S (t)

)
− 2γ (D (t)− d)

, (22)

where t ≥ 0, D (t) ∈ R and A (t) , Y (t) ∈ C. The complex Lorenz equation (22)
has received much attention in the physical literature (see, e.g., [21, 41]) due to its
important role in the description of laser dynamics. Just for the sake of completeness,
we next present relevant properties of (22), together with their mathematical proofs.

Theorem 4.3. Suppose that d ∈ ]−1, 1[, ω ∈ R, g ∈ R r {0} and κ, γ > 0. Then, for
every initial condition A (0) ∈ C, S (0) ∈ C, D (0) ∈ R there exists a unique solution
defined on [0,+∞[ to the system (22). Moreover, we have:

• If d < 0, then for all t ≥ 0,

4 |d| |A (t)|2 + 4 |S (t)|2 + (D (t)− d)2 (23)

≤ e−2t min{κ,γ}
(
4 |d| |A (0)|2 + 4 |S (0)|2 + (D (0)− d)2

)
.

• If d ≥ 0, then for any t ≥ 0,

|A (t)|2 + g2

γκ
|S (t)|2 + g2

4γκ
(D (t)− d)2 (24)

≤ e
−tmin

{

κ− g2d
γ

,γ− g2d
κ

}(
|A (0)|2 + g2

γκ
|S (0)|2 + g2

4γκ
(D (0)− d)2

)
.

11



Proof. Deferred to Subection 5.2.3.

Remark 4.2. According to γ = (κ+ + κ−) /2, d = (κ+ − κ−) / (κ+ + κ−) we have
κ− = γ (1− d) and κ+ = γ (1 + d). Since κ+, κ− > 0, γ > 0 and d ∈ ]−1, 1[.

5 Proofs

5.1 Proofs of theorems from Section 3

5.1.1 Proof of Theorem 3.1

The proof of Theorem 3.1 follows from combining Lemma 5.2, given below, with the
arguments used in the proof of Theorem 4.4 of [37]. First, we get the weak continuity
of the map t 7→ AXt (ξ) in case A is relatively bounded by C.

Lemma 5.1. Let Condition H2.3 of Hypothesis 2 hold. Suppose that ξ ∈ L2
C (P, h)

and A ∈ L ((D (C) , ‖·‖C) , h). Then, for any ψ ∈ L2 (P, h) and t ≥ 0 we have

lim
s→t

E 〈ψ,AXs (ξ)〉 = E 〈ψ,AXt (ξ)〉 . (25)

Proof. Consider a sequence of non-negative real numbers (sn)n satisfying sn → t as
n→ +∞. Since ((Xsn (ξ) , AXsn (ξ) , CXsn (ξ)))n is a bounded sequence in L2

(
P, h3

)
,

where h3 = h× h× h, there exists a subsequence
(
sn(k)

)
k
such that

(
Xsn(k)

(ξ) , AXsn(k)
(ξ) , CXsn(k)

(ξ)
)
−→k→∞ (Y,U, V ) (26)

weakly in L2
(
P, h3

)
. Define M =

{
(η,Aη,Cη) : η ∈ L2

C (P, h)
}
. Thus,

(
Xsn(k)

(ξ) , AXsn(k)
(ξ) , CXsn(k)

(ξ)
)
∈ M ∀k ∈ N.

Since M is a linear manifold of L2
(
P, h3

)
closed with respect to the strong topology

(see, e.g., proof of Lemma 7.15 of [37]), (26) implies (Y,U, V ) ∈ M (see, e.g., Section

III.1.6 of [29]). Using E

(
sups∈[0,t+1] ‖Xs (ξ)‖2

)
< ∞, together with the dominated

convergence theorem we obtain that

E

∥∥∥Xsn(k)
(ξ)−Xt (ξ)

∥∥∥
2
→ 0 as k → +∞.

Hence Y = Xt (ξ), and so U = AXt (ξ). Therefore, AXsn(k)
(ξ) converges to AXt (ξ)

weakly in L2 (P, h).

Lemma 5.2. Assume Hypothesis 2, together with ξ ∈ L2
C (P, h) and A ∈ L (h). Then,

t 7→ Lk (t)Xt (ξ) is continuous as a map from [0,+∞[ to L2 (P, h). Moreover,

t 7→ E 〈G (t)Xt (ξ) , AXt (ξ)〉+ E 〈Xt (ξ) , AG (t)Xt (ξ)〉

+

∞∑

ℓ=1

E 〈Lℓ (t)Xt (ξ) , ALℓ (t)Xt (ξ)〉

is a continuous function.
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Proof. Suppose that (tn)n is a sequence of non-negative real numbers satisfying tn → t

as n→ +∞. By E

(
sups∈[0,t+1] ‖Xs (ξ)‖2

)
<∞ (see, e.g., Th. 4.2.5 of [44]), using the

dominated convergence theorem gives

E ‖Xtn (ξ)−Xt (ξ)‖2 −→n→+∞ 0,

and hence AXtn (ξ) −→n→∞ AXt (ξ) in L
2 (P, h). For any ψ ∈ L2 (P, h),

|E 〈ψ,G (s)Xs (ξ)〉 − E 〈ψ,G (t)Xt (ξ)〉|
≤ E ‖ψ‖ ‖G (s)Xs (ξ)−G (t)Xs (ξ)‖

+ |E 〈ψ,G (t)Xs (ξ)〉 − E 〈ψ,G (t)Xt (ξ)〉| ,

and so combining Lemma 5.1 with

E ‖G (s)Xs (ξ)−G (t)Xs (ξ)‖2 ≤ f0 (s, t)E ‖Xs (ξ)‖2C
yields

lim
s→t

E 〈ψ,G (s)Xs (ξ)〉 = E 〈ψ,G (t)Xt (ξ)〉 . (27)

Therefore

lim
n→∞

E 〈G (tn)Xtn (ξ) , AXtn (ξ)〉 = E 〈G (t)Xt (ξ) , AXt (ξ)〉 (28)

(see, e.g., Section III.1.7 of [29]). Analysis similar to that in (27) shows

lim
s→t

E 〈ψ,Lℓ (s)Xs (ξ)〉 = E 〈ψ,Lℓ (t)Xt (ξ)〉 ,

and hence

Lℓ (tn)Xtn (ξ) −→n→∞ Lℓ (t)Xt (ξ) weakly in L2 (P, h) . (29)

According to (28) with A replaced by A∗ we have the continuity of the func-
tion t 7→ E 〈A∗Xt (ξ) , G (t)Xt (ξ)〉, and so t 7→ E 〈Xt (ξ) , AG (t)Xt (ξ)〉 is continuous.
Moreover, taking A = I in (28) we deduce that

Eℜ 〈Xtn (ξ) , G (tn)Xtn (ξ)〉 →n→∞ Eℜ 〈Xt (ξ) , G (t)Xt (ξ)〉 .

Applying Condition H2.2 we now get

∞∑

ℓ=1

E ‖Lℓ (tn)Xtn (ξ)‖2 −→n→∞

∞∑

ℓ=1

E ‖Lℓ (t)Xt (ξ)‖2 . (30)

Combining (29) and (30) yields

lim sup
n→∞

E ‖Lℓ (tn)Xtn (ξ)‖2 ≤ E ‖Lℓ (t)Xt (ξ)‖2

(see, e.g., proof of Lemma 7.16 of [37] for details) which, together with (29), implies
that Lℓ (tn)Xtn (ξ) converges strongly in L2 (P, h) to Lℓ (t)Xt (ξ) as n→ ∞. Therefore,
t 7→ Lℓ (t)Xt (ξ) is continuous as a function from [0,+∞[ to L2 (P, h).
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Using Condition H2.2 we obtain that
∑n

ℓ=1 E 〈Lℓ (t)Xt (ξ) , ALℓ (t)Xt (ξ)〉 con-
verges to

∑∞
ℓ=1 E 〈Lℓ (t)Xt (ξ) , ALℓ (t)Xt (ξ)〉 as n → ∞ uniformly on any finite in-

terval. Since

E 〈Lℓ (tn)Xtn (ξ) , ALℓ (tn)Xtn (ξ)〉 −→n→∞ E 〈Lℓ (t)Xt (ξ) , ALℓ (t)Xt (ξ)〉 ,

the map t 7→∑∞
ℓ=1 E 〈Lℓ (t)Xt (ξ) , ALℓ (t)Xt (ξ)〉 is continuous.

Lemma 5.3. Let Hypothesis 2 hold, except Condition H2.4. For any ξ ∈ L2
C (P, h),

we define

L∗ (ξ, t) = E |G (t)Xt (ξ)〉〈Xt (ξ)|+ E |Xt (ξ)〉〈G (t)Xt (ξ)|

+

∞∑

ℓ=1

E |Lℓ (t)Xt (ξ)〉〈Lℓ (t)Xt (ξ)| .

Then L∗ (ξ, t) is a trace-class operator on h whose trace-norm is uniformly bounded
with respect to t on bounded time intervals; the series involved in the definition of L∗

converges in L1 (h).

Proof. By Condition H2.2, using ‖|x〉〈y|‖1 = ‖x‖ ‖y‖ and Lemma 7.3 of [37] we get

‖E |G (t)Xt (ξ)〉〈Xt (ξ)|‖1 + ‖E |Xt (ξ)〉〈G (t)Xt (ξ)|‖1

+
∞∑

ℓ=1

‖E |Lℓ (t)Xt (ξ)〉〈Lℓ (t)Xt (ξ)|‖1

≤ 4E (‖Xt (ξ)‖ ‖G (t)Xt (ξ)‖) ≤ K (t)

√
E ‖ξ‖2

√
E ‖Xt (ξ)‖2C ,

where the last inequality follows from Condition H2.1.

Applying Lemma 7.3 of [37] and Lemma 5.2 we easily obtain Lemma 5.4.

Lemma 5.4. Suppose that Hypothesis 2 hold, ξ ∈ L2
C (P, h), and A ∈ L (h). Then,

t 7→ tr (AL∗ (ξ, t)) is continuous as a function from [0,∞[ to C, and

tr (AL∗ (ξ, t)) = E 〈Xt (ξ) , AG (t)Xt (ξ)〉+ E 〈G (t)Xt (ξ) , AXt (ξ)〉

+

∞∑

ℓ=1

E 〈Lℓ (t)Xt (ξ) , ALℓ (t)Xt (ξ)〉 .

Here, L∗ (ξ, t) is as in Lemma 5.3.

Lemma 5.5. Adopt Hypothesis 2, together with ξ ∈ L2
C (P, h). Then

ρt = E |ξ〉〈ξ|+
∫ t

0
L∗ (ξ, s) ds, (31)

where t ≥ 0 and L∗ (ξ, s) is as in Lemma 5.3; we understand the above integral in the
sense of Bochner integral in L1 (h).

14



Proof. Fix x ∈ h, and choose τn = inf {s ≥ 0 : ‖Xs (ξ)‖ > n}, with n ∈ N. Applying
the complex Itô formula we obtain that

〈Xt∧τn (ξ) , x〉Xt∧τn (ξ) = 〈ξ, x〉 ξ + E

∫ t∧τn

0
Lx (Xs (ξ) , s) ds+Mt, (32)

where

Mt =
∞∑

ℓ=1

∫ t∧τn

0
(〈Xs (ξ) , x〉Lℓ (s)Xs (ξ) + 〈Lℓ (s)Xs (ξ) , x〉Xs (ξ)) dW

ℓ
s

and for any z ∈ D (C),

Lx (z, s) = 〈z, x〉G (s) z + 〈G (s) z, x〉 z +
∞∑

k=1

〈Lk (s) z, x〉Lk (s) z.

According to Condition H2.2 we have

E

∞∑

ℓ=1

∫ t∧τn

0
‖〈Xs (ξ) , x〉Lℓ (s)Xs (ξ) + 〈Lℓ (s)Xs (ξ) , x〉Xs (ξ)‖2 ds

≤ 4n3 ‖x‖2 E
∫ t∧τn

0
‖G (s)Xs‖ ds.

Therefore EMt = 0 by Condition H2.1, and so (32) yields

E 〈Xt∧τn (ξ) , x〉Xt∧τn (ξ) = E 〈ξ, x〉 ξ + E

∫ t∧τn

0
Lx (Xs (ξ) , s) ds. (33)

We will take the limit as n→ ∞ in (33). Since X (ξ) has continuous sample paths,
τn րn→∞ ∞. By H2.1 and H2.2, applying the dominated convergence yields

lim
n→∞

E

∫ t∧τn

0
Lx (Xs (ξ) , s) ds = E

∫ t

0
Lx (Xs (ξ) , s) ds.

Combining E

(
sups∈[0,t+1] ‖Xs (ξ)‖2

)
< ∞ with the dominated convergence theorem

gives limn→∞ E 〈Xt∧τn (ξ) , x〉Xt∧τn (ξ) = E 〈Xt (ξ) , x〉Xt (ξ) . Then, letting first n →
∞ in (33) and then using Fubini’s theorem we get

E 〈Xt (ξ) , x〉Xt (ξ) = E 〈ξ, x〉 ξ +
∫ t

0
ELx (Xs (ξ) , s) . (34)

By Condition H2.2, the dominated convergence theorem leads to

E

∞∑

k=1

〈Lk (s)Xs (ξ) , x〉Lk (s)Xs (ξ) =
∞∑

k=1

E 〈Lk (s)Xs (ξ) , x〉Lk (s)Xs (ξ) ,

and so Lemma 7.3 of [37] yields ELx (Xs (ξ) , s) = L∗ (ξ, s) x, hence

∫ t

0
ELx (Xs (ξ) , s) =

∫ t

0
L∗ (ξ, s)xds. (35)
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Since the dual of L1 (h) consists in all linear maps ̺ 7→ tr (A̺) with A ∈ L (h),
Lemma 5.4 implies that t 7→ L∗ (ξ, t) is measurable as a function from [0,∞[ to L1 (h).
Furthermore, using Lemma 5.3 we get that t 7→ L∗ (ξ, t) is a Bochner integrable L1 (h)-
valued function on bounded intervals. Then (34), together with (35), gives (31).

Proof. (of Theorem 3.1) According to Theorem 3.2 of [37] we have

AG (t) ρt = E |AG (t)Xt (ξ)〉〈Xt (ξ)| .

Since G (t) , L1 (t) , L2 (t) , . . . are closable, G (t)∗ , L1 (t)
∗ , L2 (t)

∗ , . . . are densely de-
fined and G (t)∗∗, L1 (t)

∗∗ , . . . coincide with the closures of G (t) , L1 (t) , . . . respec-
tively (see, e.g., Theorem III.5.29 of [29]). Now, Theorem 3.2 of [37] yields AρtG (t)∗ =
E |AXt (ξ)〉〈G (t)Xt (ξ)| and

ALk (t) ρtLk (t)
∗ = E |ALk (t)Xt (ξ)〉〈Lk (t)Xt (ξ)| .

Therefore

L∗ (ξ, t) = G (t) ρt + ρtG (t)∗ +
∞∑

k=1

Lk (t) ρtLk (t)
∗ , (36)

where L∗ (ξ, t) is as in Lemma 5.3. Combining (36) with Lemma 5.5 we get (10), and
so tr (Aρt) = tr (A̺)+

∫ t
0 tr (AL∗ (ξ, s)) ds for all t ≥ 0. Using the continuity of L∗ (ξ, ·)

we obtain (9).

5.1.2 Proof of Theorem 3.2

Proof. For any x, y ∈ D (C) we set [x, y] = E 〈Xt (x) , AXt (y)〉. According to Defini-
tion 3.1 we have

|[x, y]| = |E 〈Xt (x) , AXt (y)〉| ≤ K (t) ‖A‖ ‖x‖ ‖y‖ ∀x, y ∈ D (C) .

Since D (C) is dense in h, [·, ·] can be extended uniquely to a sesquilinear form [·, ·]
over h× h satisfying |[x, y]| ≤ K (t) ‖A‖ ‖x‖ ‖y‖ for any x, y ∈ h. Hence, there exists a
unique bounded operator Tt (A) on h such that |[x, y]| = 〈x,Tt (A) y〉 for all x, y in h.
Moreover, ‖Tt (A)‖ ≤ K (t) ‖A‖.

5.1.3 Proof of Theorem 3.3

Proof. Using Itô’s formula we will prove that for all x, y ∈ D (C),

E 〈Xt (x) , AXt (y)〉 = 〈x,Aty〉 . (37)

This, together with Theorem 3.2, implies At = Tt (A).
Motivated by At is only a weak solution, we fix an orthonormal basis (en)n∈N of h

and consider the function Fn : [0, t]× h× h → C defined by

Fn (s, u, v) = 〈Rnu,At−sRnv〉 ,
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where Rn = n (n+ C)−1 and ū =
∑

n∈N 〈en, u〉en. Since the range of Rn is contained
in D (C),

d

ds
Fn (s, u, v) = −g (s,Rnu,Rnv) , (38)

with g (s, x, y) = 〈x,At−sGy〉 + 〈Gx,At−sy〉 +
∑∞

k=1 〈Lkx,At−sLky〉. We have that
t 7−→ 〈u,Atv〉 is continuous for all u, v ∈ h, and so combining CRn ∈ L (h) with Hy-
pothesis 3 we get the uniformly continuity of (s, u, v) 7−→ g (s,Rnu,Rnv) on bounded

subsets of [0, t]×h×h. Then, we can apply Itô’s formula to Fn

(
s ∧ τj,Xτj

s (x),X
τj
s (y)

)
,

with
τj = inf {t ≥ 0 : ‖Xt (x)‖+ ‖Xt (y)‖ > j}.

Fix x, y ∈ D (C). Combining Itô’s formula with (38) we deduce that

Fn

(
t ∧ τj ,Xτj

t (x),X
τj
t (y)

)
= Fn

(
0,X0 (x),X0 (y)

)
+ Int∧τj +Mt,

where for s ∈ [0, t]:

Ms =

∞∑

k=1

∫ s∧τj

0

〈
RnX

τj
r (x) ,At−rRnLkX

τj
r (y)

〉
dW k

r

+

∞∑

k=1

∫ s∧τj

0

〈
RnLkX

τj
r (x) ,At−rRnX

τj
r (y)

〉
dW k

r

and Ins =
∫ s
0 (−g (r,RnXr (x) , RnXr (y)) + gn (r,Xr (x) ,Xr (y))) dr with

gn (r, u, v) = 〈Rnu,At−rRnGv〉+ 〈RnGu,At−rRnv〉+
∞∑

k=1

〈RnLku,At−rRnLkv〉 .

We next establish the martingale property of Ms. For all r ∈ [0, t] we have

∥∥RnX
τj
r (x)

∥∥2 ‖At−r‖2
∥∥RnLkX

τj
r (y)

∥∥2 ≤ j2 sup
s∈[0,t]

‖As‖2
∥∥LkX

τj
r (y)

∥∥2 .

By H2.1 and H3.1, E
∫ t∧τj
0

∑∞
k=1

∣∣〈RnX
τj
r (x) ,At−rRnLkX

τj
r (y)

〉∣∣2 ds <∞. Thus

(
∞∑

k=1

∫ s∧τj

0

〈
RnX

τj
r (x) ,At−rRnLkX

τj
r (y)

〉
dW k

r

)

s∈[0,t]

is a martingale. The same conclusion can be draw for

∞∑

k=1

∫ s∧τj

0

〈
RnLkX

τj
r (x) ,At−rRnX

τj
r (y)

〉
dW k

r ,

and so (Ms)s∈[0,t] is a martingale. Hence

E
〈
RnX

τj
t (x) ,At−t∧τjRnX

τj
t (y)

〉
= 〈Rnx,AtRny〉+ EInt∧τj . (39)
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We will take the limit as j → ∞ in (39). Since E

(
sups∈[0,t] ‖Xs (ξ)‖2

)
< ∞

for ξ = x, y (see, e.g., Th. 4.2.5 of [44]), using the dominated convergence theorem,
together with the continuity of t 7−→ 〈u,Atv〉, we get

E
〈
RnX

τj
t (x) ,At−t∧τjRnX

τj
t (y)

〉
→j→∞ E 〈RnXt (x) , ARnXt (y)〉 .

Applying again the dominated convergence theorem yields EInt∧τj −→j→∞ EInt , and
hence letting j → ∞ in (39) we deduce that

E 〈RnXt (x) , ARnXt (y)〉 − 〈Rnx,AtRny〉 (40)

= E

∫ t

0
(−g (s,RnXs (x) , RnXs (y)) + gn (s,Xs (x) ,Xs (y))) ds.

Finally, we take the limit as n→ ∞ in (40). Since ‖Rn‖ ≤ 1 and Rn tends pointwise
to I as n→ ∞, the dominated convergence theorem yields

lim
n→∞

E

∫ t

0
gn (s,Xs (x) ,Xs (y)) ds = E

∫ t

0
g (s,Xs (x) ,Xs (y)) ds.

For any x ∈ D (C), limn→∞CRnx = Cx. By ‖CRnx‖ ≤ ‖Cx‖, using the dominated
convergence theorem gives

lim
n→∞

E

∫ t

0
g (s,RnXs (x) , RnXs (y)) ds = E

∫ t

0
g (s,Xs (x) ,Xs (y)) ds.

Thus, letting n→ ∞ in (40) we obtain (37).

5.2 Proofs of theorems from Section 4

5.2.1 Proof of Theorem 4.1

Proof. First, we show that ρt given by (18) is a Np-weak solution to (14). To this
end, we will verify that C = Np satisfies Hypothesis 2, where, here and subsequently,
H (t), G (t), L1, L2, L3 are defined as in Theorem 4.1. Since L2, L3 ∈ L

(
ℓ2(Z+)⊗ C

2
)
,

L1, L
∗
1L1 are relatively bounded with respect to N and

‖H (t) x‖2 ≤ Kmax (|α (t)| , |β (t)|) ‖x‖N ∀x ∈ D (N) ,

C fulfills Condition H2.1 of Hypothesis 2. By definition of G (t) and Lℓ,

2ℜ 〈x,G (t) x〉+
3∑

ℓ=1

‖Lℓ x‖2 = 0 ∀x ∈ D (N) ,

and hence Condition H2.2 holds. Condition H2.4 follows from the continuity of α and
β.

In order to check Condition H2.3, we denote by D the set of all x ∈ ℓ2(Z+) ⊗ C
2

such that x (n, η) := 〈en ⊗ eη , x〉 is equal to 0 for all combinations of n ∈ Z+ and η = ±

18



except a finite number. Consider x ∈ D. A careful computation yields

2ℜ
〈
N2px,G (t) x

〉
+

3∑

ℓ=1

‖NpLℓx‖2 (41)

=
∑

k∈Z+,η=±

2ℜ
(
α (t) x (k, η) x (k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)

+
∑

k∈Z+,η=±

2κ |x (k, η)|2 k
(
(k − 1)2p − k2p

)
.

Since
∑

k∈Z+,η=±

2ℜ
(
α (t) x (k, η) x (k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)

≤ 2 |α (t)|
∑

k∈Z+,η=±

|x (k, η)| |x (k + 1, η)|φ (k)

≤ 2 |α (t)|
∑

k∈Z+,η=±

|x (k, η)|2 φ (k)

with φ (k) =
√
k + 1

(
(k + 1)2p − k2p

)
=

√
k + 1

∑2p−1
j=0

(
2p
j

)
kj,

∑

k∈Z+,η=±

2ℜ
(
α (t)x (k, η) x (k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)
(42)

≤ |α (t)|K
∑

k∈Z+,η=±

|x (k, η)|2
(
1 + k2p−1/2

)
.

Combining (41) with (42) we get

2ℜ
〈
N2px,G (t)x

〉
+

3∑

ℓ=1

‖NpLℓx‖2 ≤ K |α (t)| ‖x‖2Np ,

and so Condition H4.3 of Hypothesis 4 holds becauseD is a core of Np. Then, applying
Theorem 2.4 of [19] (see also Theorem 3.4) we obtain that for any initial condition
ξ ∈ L2

Np

(
P, ℓ2(Z+)⊗ C

2
)
there exists a unique strong Np-solution of (16), together

with
E ‖Xt (ξ)‖2Np ≤ K (t)E ‖ξ‖2Np . (43)

Therefore, Condition H2.3 holds, and so we have checked Hypothesis 2 with C = Np.
Applying Theorem 3.1 of [37] yields ̺ = E |ξ〉〈ξ| for certain

ξ ∈ L2
Np

(
P, ℓ2(Z+)⊗ C

2
)
.

Using Theorem 3.1 we obtain that ρt := E |Xt (ξ)〉 〈Xt (ξ)| satisfies the relation (17)
and {

d
dttr (Aρt) = tr

(
A
(
G (t) ρt + ρtG (t)∗ +

∑3
ℓ=1 LℓρtL

∗
ℓ

))

ρ0 = ̺
(44)
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for all A ∈ L
(
ℓ2(Z+)⊗ C2

)
.

Second, we will prove that (14) has at most one Np-weak solution provided that
the initial condition is Np-regular. Suppose that (44) holds. Taking A = |y〉〈x| in (44)
we get

d

dt
〈x, ρty〉 = 〈G (t)∗ x, ρty〉+ 〈x, ρtG (t)∗ y〉+

3∑

ℓ=1

〈L∗
ℓx, ρtL

∗
ℓy〉 (45)

for all x, y ∈ D (Np). Relation (45) coincides with (13) with At, G (t), L1, L2 and L3

replaced by ρt, G (t)∗, L∗
1, L

∗
2 and L∗

3. This suggests us to apply Theorem 3.3 to (45)
in order to prove the uniqueness of the solution of (44). To this end, we next deduce
that the linear stochastic Schrödinger equation

Yt (ξ) = ξ +

∫ t

0
G (s)∗ Ys (ξ) ds+

3∑

ℓ=1

∫ t

0
L∗
ℓ Ys (ξ) dW

ℓ
s (46)

satisfies Hypothesis 4 with C = Np.
Now, we check Hypothesis 4 with G (t), L1, L2 and L3 replaced by G (t)∗, L∗

1, L
∗
2

and L∗
3. Take C = Np. Since a† is relatively bounded with respect to N , using analysis

similar to that in the second paragraph we can check that G (t)∗ = iH (t)− 1
2

∑3
ℓ=1 L

∗
ℓLℓ

satisfies Condition H4.1 of Hypothesis 4 with G (t) substituted by G (t)∗, as well as
Condition H4.2 holds with Lℓ (t) replaced by L

∗

1 =
√
2κa†, L∗

2 =
√
γ (1− d)σ+, L∗

3 =√
γ (1 + d)σ−. On D we have

G (t)∗ + (G (t)∗)
∗
+

3∑

ℓ=1

(L∗
ℓ)

∗ L∗
ℓ =

3∑

ℓ=1

(LℓL
∗
ℓ − L∗

ℓLℓ)

= 4κ2I + 2γ2
(
1 + d2

)
σ3,

which gives Condition H4.4. For any x ∈ D,

2ℜ
〈
N2px, iH (t) x

〉
(47)

=
∑

k∈Z+,η=±

2ℜ
(
α (t) x (k, η) x (k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)

and
〈
x,

(
L1N

2pL∗
1 −

1

2
L∗
1L1N

2p − 1

2
N2pL∗

1L1

)
x

〉
(48)

=
∑

k∈Z+,η=±

2κ |x (k, η)|2
(
(k + 1)2p+1 − k2p+1

)
.

Since L2, L3 are bounded operators with conmute with N2p, using (47) and (48) yields

2ℜ
〈
N2px,G (t)∗ x

〉
+

3∑

ℓ=1

‖NpL∗
ℓx‖2 ≤ K (t) ‖Npx‖2

and hence Condition H4.3 holds. By Theorem 3.4, (46) has a unique strong Np-
solution whenever ξ ∈ L2

C

(
P, ℓ2(Z+)⊗ C

2
)
. It follows from Theorem 3.3 that (45) has

at most one solution ̺t ∈ L
(
ℓ2(Z+)⊗ C2

)
satisfying ̺0 = ̺. Thus, (14) has a unique

Np-regular solution, which is equal to ρt := E |Xt (ξ)〉 〈Xt (ξ)|.
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5.2.2 Proof of Theorem 4.2

Proof. From Theorem 4.1 it follows that (16) has a unique strong Np-solution Xt (ξ)
for any initial datum ξ ∈ L2

Np

(
P, ℓ2(Z+)⊗ C2

)
. In order to establish (19) we apply

Theorem 4.1 of [19] to obtain

tr (aρt) = tr (aρ0) +

3∑

ℓ=1

∫ t

0
E 〈LℓXs (ξ) , aLℓXs (ξ)〉 ds (49)

+

∫ t

0

(
E

〈
a†Xs (ξ) , G (s)Xs (ξ)

〉
+ E 〈G (s)Xs (ξ) , aXs (ξ)〉

)
ds,

where, throughout the proof, G (t), H (t), L1, L2, L3 are as in Theorem 4.1. Therefore,
t 7→ tr (aρt) is a continuous function.

Suppose that x ∈ D, whereD is the set of all x ∈ ℓ2(Z+)⊗C
2 satisfying 〈en ⊗ eη, x〉 =

0 for all combinations of n ∈ Z+ and η = ± except a finite number. Since a conmutes
with σ3 and σ±, using

[
a, a†

]
= I we deduce that

〈
a†x,−iH (s) x

〉
+ 〈−iH (s)x, ax〉 = 〈x, i [H (s) , a]x〉

=
〈
x,
[
iω a†a− α (t) a† + α (t)a, a

]
x
〉

= 〈x, (−iω a+ α (t))x〉

and

3∑

ℓ=1

〈
x,

(
L⋆
ℓaLℓ −

1

2
aL⋆

ℓLℓ −
1

2
L⋆
ℓLℓa

)
x

〉

=

〈
x,

(
L⋆
1aL1 −

1

2
aL⋆

1L1 −
1

2
L⋆
1L1a

)
x

〉
= −κ 〈x, ax〉 .

Because D is a core for N , we obtain that for all x ∈ D (N),

〈
a†x,G (s)x

〉
+ 〈G (s)x, ax〉+

3∑

ℓ=1

〈Lℓx, aLℓx〉 = 〈x,− (κ+ iω) ax+ α (t)x〉 .

Then, from (49) it follows that

tr (aρt) = tr (aρ0) +

∫ t

0
(− (κ+ iω) tr (aρs) + α (s)) ds,

which leads to (19).
Fix η = − or η = 3. According to (44) we have

d

dt
tr (ρtσ

η) = tr

(
ση

(
G (t) ρt + ρtG (t)∗ +

3∑

ℓ=1

LℓρtL
∗
ℓ

))
,
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and so applying Theorem 3.2 of [37] we deduce that

d

dt
tr (ρtσ

η) = tr

(
ρt

(
σηG (t) +G (t)∗ ση +

3∑

ℓ=1

L∗
ℓσ

ηLℓ

))

= tr

(
ρt

(
−i [ση,H (t)] +

3∑

ℓ=1

(
L∗
ℓσ

ηLℓ −
1

2
σηL∗

ℓLℓ −
1

2
L∗
ℓLℓσ

η

)))

= tr
(
−iρt

[
ση,

ω

2
σ3 + i

(
β (t)σ− − β (t)σ+

)])

+
3∑

ℓ=2

tr

(
ρt

((
L∗
ℓσ

ηLℓ −
1

2
σηL∗

ℓLℓ −
1

2
L∗
ℓLℓσ

η

)))
.

Now, we use the commutation relations

[
σ+, σ−

]
= σ3,

[
σ3, σ+

]
= 2σ+,

[
σ−, σ3

]
= 2σ−

to derive (20) and (21).

5.2.3 Proof of Theorem 4.3

Proof. Fix A (0) ∈ C, S (0) ∈ C and D (0) ∈ R. Since (22) is an ordinary differential
equation with locally Lipschitz coefficients, (22) has a unique solution defined on a
maximal interval [0, T [ (see, e.g., [28]).

For all t ∈ [0, T [, we set X (t) = exp (iωt)A (t), Y (t) = exp (iωt)S (t) and Z (t) =
D (t)− d. Thus, (22) becomes





X ′ (t) = −κX (t) + g Y (t)
Y ′ (t) = dg X (t)− γ Y (t) + gX (t)Z (t)

Z ′ (t) = −4gℜ
(
X (t) Y (t)

)
− 2γ Z (t)

.

Therefore,

d

dt
|X (t)|2 = 2ℜ

(
X ′ (t)X (t)

)
= −2κ |X (t)|2 + 2gℜ

(
Y (t)X (t)

)

and




d
dt |Y (t)|2 = 2dgℜ

(
X (t)Y (t)

)
− 2γ |Y (t)|2 + 2g Z (t)ℜ

(
X (t)Y (t)

)

d
dtZ (t)2 = −4γZ (t)2 − 8g Z (t)ℜ

(
X (t)Y (t)

) .

Hence,

4
d

dt
|Y (t)|2 + d

dt
Z (t)2 = 8dg ℜ

(
X (t)Y (t)

)
− 8γ |Y (t)|2 − 4γZ (t)2 . (50)

Suppose, for a moment, that d < 0. Then

−4d
d

dt
|X (t)|2 + 4

d

dt
|Y (t)|2 + d

dt
Z (t)2 = 8dκ |X (t)|2 − 8γ |Y (t)|2 − 4γZ (t)2 .
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This gives

d

dt

(
−4d |X (t)|2 + 4 |Y (t)|2 + (Z (t))2

)

≤ −min {2κ, 2γ}
(
−4d |X (t)|2 + 4 |Y (t)|2 + Z (t)2

)
,

which implies

4 |d| |X (t)|2 + 4 |Y (t)|2 + Z (t)2 (51)

≤ exp (−2t min {κ, γ})
(
4 |d| |X (0)|2 + 4 |Y (0)|2 + Z (0)2

)

for any t ∈ [0, T [.
On the other hand, assume that d ≥ 0. Combining

d

dt
|X (t)|2 + g2

4γκ

(
4
d

dt
|Y (t)|2 + d

dt
Z (t)2

)

= 2g

(
1 +

g2d

γκ

)
ℜ
(
X (t)Y (t)

)
− 2κ |X (t)|2 − 2

g2

κ
|Y (t)|2 − g2

κ
Z (t)2

with 2ℜ
(
X (t) g

κY (t)
)
≤ |X (t)|2 + g2

κ2 |Y (t)|2 we obtain

d

dt

(
|X (t)|2 + g2

γκ
|Y (t)|2 + g2

4γκ
Z (t)2

)

≤
(
−κ+

g2d

γ

)
|X (t)|2 +

(
−γ +

g2d

κ

)
g2

γκ
|Y (t)|2 − 4γ

g2

4γκ
Z (t)2 .

Therefore, for all t ∈ [0, T [ we have

d

dt

(
|X (t)|2 + g2

γκ
|Y (t)|2 + g2

4γκ
Z (t)2

)

≤ −min

{
κ− g2d

γ
, γ − g2d

κ

}(
|X (t)|2 + g2

γκ
|Y (t)|2 + g2

4γκ
Z (t)2

)
.

This yields

|X (t)|2 + g2

γκ
|Y (t)|2 + g2

4γκ
Z (t)2 (52)

≤ e
−tmin

{

κ− g2d
γ

,γ− g2d
κ

} (
|X (0)|2 + g2

γκ
|Y (0)|2 + g2

4γκ
Z (0)2

)
.

Suppose that T < +∞. According to (51) and (52) we have that

‖(A (t) , S (t) ,D (t))‖ < K,

where K > 0 and t ∈ [0, T [. This contradicts the property

lim
t→T

‖(A (t) , S (t) ,D (t))‖ = ∞.

Therefore, T = +∞. Moreover, (51) and (52) lead to (23) and (24), respectively.
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5.3 Proof of Theorem 2.1

Proof. Let (A (t) , S (t) ,D (t)) be the unique global solution of (22) with A (0) =
tr (a̺), S (0) = tr (σ−̺) and D (0) = tr

(
σ3̺
)
. According to Theorem 4.1 we have

that there exists a unique Np-weak solution (ρt)t≥0 to (14) with α (t) = g S (t),
β (t) = g A (t) and initial datum ρ0 = ̺. Moreover, Theorem 4.1 ensures that ρt =
E |Zt (ξ)〉 〈Zt (ξ)|, where Zt (ξ) is the strong Np-solution of (16) with α (t) = g S (t),
β (t) = g A (t) and initial condition ξ ∈ L2

Np

(
P, ℓ2(Z+)⊗ C

2
)
such that ̺ = E |ξ〉 〈ξ|.

Applying Theorem 4.2 we deduce that the evolutions of tr (a ρt), tr (σ
−ρt) and tr

(
σ3ρt

)

are governed by





d
dttr (a ρt) = − (κ+ iω) tr (a ρt) + g S (t)
d
dttr (σ

−ρt) = − (γ + iω) tr (σ−ρt) + g A (t) tr
(
σ3ρt

)

d
dttr

(
σ3ρt

)
= −4g ℜ

(
A (t) tr (σ−ρt)

)
− 2γ

(
tr
(
σ3ρt

)
− d
) . (53)

From the uniqueness of solution to (53) we find tr (a ρt) = A (t), tr (σ−ρt) = S (t) and
tr
(
σ3ρt

)
= D (t). Hence

{
d
dttr (Aρt) = tr (AL⋆ (ρt) ρt) ∀A ∈ L

(
ℓ2(Z+)⊗ C

2
)

ρ0 = ̺
, (54)

as well as α (t) = g E 〈Zt (ξ) , σ
−Zt (ξ)〉 and β (t) = g E 〈Zt (ξ) , a Zt (ξ)〉 (see, e.g., [37]).

Therefore, Zt (ξ) is a strong Np-solution of (4).
Let Zt (ξ) and Z̃t (ξ) be strong Np-solutions of (4) with initial datum ξ belong-

ing to L2
Np

(
P, ℓ2(Z+)⊗ C

2
)
. Then, Zt (ξ) is the strong Np-solution of (16) with

initial datum ξ ∈ L2
Np

(
P, ℓ2(Z+)⊗ C2

)
, α (t) = g E 〈Zt (ξ) , σ

−Zt (ξ)〉 and β (t) =
g E 〈Zt (ξ) , a Zt (ξ)〉. Since t 7→ E 〈Zt (ξ) , σ

−Zt (ξ)〉 and t 7→ E 〈Zt (ξ) , a Zt (ξ)〉 are
continuous functions, applying Theorems 4.1 and 4.2, together with Theorem 3.2 of
[37], we deduce that

E
〈
Zt (ξ) , σ

−Zt (ξ)
〉
, E 〈Zt (ξ) , a Zt (ξ)〉 , E

〈
Zt (ξ) , σ

3Zt (ξ)
〉

is a solution of (22) with initial condition A (0) = tr (a ̺), S (0) = tr (σ−̺) and D (0) =
tr
(
σ3̺
)
. The same is true for Z̃t (ξ) in place of Zt (ξ), and so Theorem 4.3 leads to

E 〈Zt (ξ) , σ
−Zt (ξ)〉 = E

〈
Z̃t (ξ) , σ

−Z̃t (ξ)
〉
and

E 〈Zt (ξ) , a Zt (ξ)〉 = E

〈
Z̃t (ξ) , a Z̃t (ξ)

〉

for all t ≥ 0. Now, the uniqueness of the strong Np-solution of (16) implies Z = Z̃.
On the other hand, suppose that (ρt)t≥0 and (ρ̃t)t≥0 are families of Np-regular

operators satisfying (54) such that ρ0 = ρ̃0 = ̺ and t 7→ tr (a ρt), t 7→ tr (a ρ̃t) are con-
tinuous. Then, (ρt)t≥0 is aN

p-weak solution to (14) with α (t) = g tr (σ−ρt) and β (t) =
g tr (a ρt), as well as (ρ̃t)t≥0 is a Np-weak solution to (14) with α (t) = g tr (σ−ρ̃t) and

β (t) = g tr (aρ̃t). Using Theorem 4.2 we get that
(
tr (a ρt) , tr (σ

−ρt) , tr
(
σ3ρt

))
and

(
tr (a ρ̃t) , tr

(
σ−ρ̃t

)
, tr
(
σ3ρ̃t

))
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are solutions of (22) with initial condition A (0) = tr (a ̺), S (0) = tr (σ−̺) andD (0) =
tr
(
σ3̺
)
. Since the solution of (22) is unique (see, e.g., Theorem 4.3), tr (a ρt) =

tr (a ρ̃t), tr (σ
−ρt) = tr (σ−ρ̃t) and tr

(
σ3ρt

)
= tr

(
σ3ρ̃t

)
. Therefore, (ρt)t≥0 and (ρ̃t)t≥0

are Np-weak solution to (14) with the same α (t) and β (t), and hence using Theorem
4.1 yields ρt = ρ̃t for all t ≥ 0.
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