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Abstract

We give a concrete description of a controlled quantum stochastic dynamical model corresponding to a quantum

system (a cavity mode) under going continual quadrature measurements, with a PID controller acting on the filtered

estimate for the mode operator. Central use is made of the input and output pictures when constructing the model:

these unitarily equivalent pictures are presented in the paper, and used to transfer concepts relating to the controlled

internal dynamics to those relating to measurement output, and vice versa. The approach shows the general principle

for investigating mathematically and physically consistent models in which standard control theoretic methods are to

be extended to the quantum setting.

1 Introduction

There has been considerable interest in the last decade in applying measurement-based feedback to quantum systems,

especially after recognition of the Laboratoire Kastler Brossel (LKB) photon box experiments resulting in the 2012 joint

Nobel Prize for Physics to Serge Haroche [1, 2]. It is reasonable to believe that classical feedback concepts will find their

way into quantum systems if quantum technologies are ever to be realized. In this paper we will focus on PID controller

implementations. There are a number of motivations for this. First, PID controllers are widely used in practice and so a

large body of knowledge exists about the underlying theory and about their applications. Secondly, they would be simple

devices to include in design problems as they have only three gain parameters to adjust. A third reason, and to a large

extent the one pursued in this paper, is that we like to be able to export standard control techniques to the quantum

domain and, to this end, need to know that the underlying modelling framework is both mathematically and physically

correct.

In the quantum domain, we have to worry that our dynamical model does not violate physical requirements such as the

Heisenberg uncertainty relations, complete positivity, etc. If we wish to take the measured output of a quantum system

and perform classical manipulations such a information processing and feedback, we need to be concerned that we have

a hybrid classical-quantum description. In the quantum world, information cannot be copy and so the jump off points

in classical block diagrams cannot be applied to quantum information. In this paper, we will give a description of a

quantum PID controller which feeds back (classical) information arising from measurement - and to this end we need a

quantum Kalman filer. Just as valuable as the specific structure of the model, is the fact that it qualifies as a consistent

controlled quantum dynamical system. In principle, this shows the way to more detailed model building and opens up

the programme of realizing standard feedback techniques in the quantum domain.

The approach adopted here relies on the notion of a controlled quantum stochastic evolution described by Luc Bouten

and Ramon van Handel [4, 3], see also [5], and brings to the fore the distinction between the input and the output

pictures which is already implicit in their work.

The layout of the paper is as follows: in Section 2 we recall the basic concepts of classical and quantum filtering. In

Section 3, we develop the concept of input and output pictures, and emphasize the importance of working between these

pictures in order to build up a consistent model. Finally, in Section 4 we show how to construct the PI controllers as

instances of feedback to the Hamiltonian. Here we have mechanisms to reduce two distinct notions of error: the Kalman

filter seeks to reduce the error between our estimate and the unknown state while the controller aims to minimize the

error between the estimated state and a given reference signal. The D component of the controller is more problematic

as typically it will amplify noise, which is an issue here as the filtered state is stochastic. Normally one smooths out
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the signal using a low-pass filter and this effectively restores a PI controller model, however, we treat the general PID

problem here for completeness. The situation was addressed in the pioneering work of Howard Wiseman [6] and in our

classification this equates with a D filter component: the photo-current y fed back in in [6] being the singular process

obtained as derivative of the measured process Y . The treatment of this involves a modification of the coupling operator

coefficients of the system to the input noise fields in addition to a Hamiltonian correction. We build on the description

in [7] of a PID filter to construct the appropriate model for a PID controller.

1.1 Classical Feedback

In practical applications one may take the control to be some function of the state, or, in the case where that is not

accessible, an estimate for the state. The latter will involve a filter, and we will describe this in the next section, so let

us look at the former problem first. For simplicity, we will assume that our system of interest - the plant in engineering

parlance - and that the relationship between the control input u and the (partial) observations y of the state is linear with

transfer function G. In Figure 1 we have a reference signal r input at the start. From this we subtract the observation y

and the error e = r−y is passed through a controller which we assume to be another linear system with transfer function

K. We have used double lines to emphasis that all the signals are classical and so can in principle be copied, combined,

and manipulated without restriction. N.B. We use double-lined arrows to denote classical signals in feedback block

diagrams. Later we will use single line arrows for quantum (i.e., operator-valued) signals.

Figure 1: A plant G in a feedback loop with a controller K.

We have y = Gu ≡ GK (r − y) from which we obtain

y =
GK

1 + GK
r. (1)

The closed loop transfer function is H = GK
1+GK and we can consider design problems centering around our choice of the

controller K.

1.2 PID Controllers

By far the most widely used control algorithm in classical feedback applications are the PID controllers - with PI action

being the most common form. For this class, we have the input-output relations

u(t) = kP e(t) + kI

∫ t

0

e(t′)dt′ + kD ė(t), (2)

where the constants kP , kI , kD are the proportional, integral and derivative gains, respectively. The associated transfer

function is K(s) = kP + s−1kI + skD, see Figure 2.

2 Quantum Filtering

2.1 Classical Filtering & its Quantum Version

The goal of filtering theory is to make an optimal estimate of the state of a system under conditions where the system

may have a noisy dynamics, and where we may have only partial information which itself is subject to observation noise.



Figure 2: In a PID filter, the input e(t) is transformed into an output kP e(t) + kI
∫ t

0
e(t′)dt′ + kD ė(t). The proportional

term is the present error, the integral term is the accumulated past error, while the differential term makes account of

what may happen in the future.

2.1.1 The Kalman Filter (Discrete Time)

Consider a system whose state belongs to some configuration space Γ - say equal to Rm for some m. The state at time

k is xk ∈ Γ and this is supposed to taken to evolve according to a linear but noisy dynamics of the form

xk = Axk−1 +B uk + wk; (one-step state update rule with noise). (3)

Here, the uk are controls and the wk are errors. Furthermore, our knowledge is based on measurements that reveal

only partial information about the state and the measurement process may also be corrupted by noise: specifically, we

measure yk at time k where

yk = H xk + vk; (partial observations with noise). (4)

The random variables (wk, vk)k are the dynamical noise and measurement noise, and are modelled as independent with

variables with wk ∼ N (0, Q) and vk ∼ N (0, 1). If the matrix H may be invertible, then we can fully determine the state

from the measurements, at least up to measurement disturbance error, but in general this need not be the case.

Figure 3: The system has state xk (unknown) in the configuration space Γ at time k. Our knowledge of the system

is based on observations yk made at time k containing partial information of the state. Based on our observations we

estimate what the trajectory might have be.

Our aim is to determine the optimal estimate f̂(xk) for any function f of the state variable xk conditional on the

observations y1, · · · , yk up to time k, that is

f̂(xk) = E[f(xk) | Yk]] (5)



where Yk] is the sigma -algebra generated by y1, · · · , yk. Let us introduce the optimal estimate of xk given y1, · · · , yk,

x̂k = E[xk | Yk]], (optimal estimate) (6)

and also the optimal prediction of xk one time step earlier x̃k = E[xk | Yk−1]]. The estimation error is Pk = V ar(xk− x̂k),

and the prediction error is P̃k = V ar(xk − x̃k).

The Kalman filter is a recursive estimation scheme valid for linear Gaussian models. Immediately after time k − 1, we

will have recorded the observations y1, · · · , yk−1. Suppose that we have the best estimate x̂k−1 at that point, then we

would predict x̃k = A x̂k−1 + B uk. From this, we find the predicted state to be x̃k = A x̂k−1 + B uk. Therefore, we

predict what the next observation should be ỹk = H x̃k. At this stage we wait for the next measured value, yk, to be

made at time k. What will be of interest is the residual error which is the difference between the observed value of yk
and the expected value, ỹk = H x̃k, we would have predicted a priori. This is quantified as the innovations process

Ik = yk − ỹk = yk −H x̃k, (innovations). (7)

If this error is zero, then our prediction is spot on, and we just take our predicted x̃k to be our estimate for state at time

k. Otherwise, we apply an adjustment based on the discrepancy, and the Kalman filter sets x̂k = x̃k +HP̃k Ik with the

associated estimation error Pk =
(

1−H2P̃k

)
P̃k.

The Kalman filter is therefore a recursive procedure requiring minimal storage of information - effectively only the

previous estimate x̂k−1 - and updated on the next available measurement yk. It is optimal in the sense that the

conditional expectation (uniquely!) provides the least squares estimator for f(xk) for any bounded measurable f .

2.1.2 Nonlinear Continuous-time Kalman Filter

There is a straightforward generalization of the Kalman filter to continuous time, known as the Kalman-Bucy filter. We

will derive it shortly. It is again recursive, but attempts to move away from Gaussian noise or linear dynamics result in

filters that are difficult to implement. A popular saying in the field was (and arguably still is) If we can put a man on

the moon, why can’t we find a nonlinear filter?

Let us begin by considering a continuous-time nonlinear-dynamical extension of the estimation problem where the state

undergoes a diffusion. For simplicity we take Γ = R, and the continuous time equations are taken as

dXt = v (Xt) dt+ σ (Xt) dWt, (dynamics);

dYt = h (Xt) dt+ dVt, (observations);

with independent Wiener processes Wt (dynamical noise) and Vt (observational noise). If we set ft ≡ f (Xt), then from

the Itō calculus dft = L ft dt+ σtf
′
t dWt, where the generator of the diffusion process is L f = vf ′ + 1

2σ
2f ′′.

The optimal estimate of ft, given the observations up to time t, will be the conditional; expectation f̂t = E [f (Xt) |Yt],
and this will satisfy the Kushner-Stratonovich equation

df̂t = L̂ f t dt+
{
f̂ht − f̂tĥt

}
dIt (8)

where the innovations process is

dIt = dYt − ĥt dt. (9)

The filter enjoys the least squares property that

E
[
|f̂t − ft|2

]
≤ E

[
|M − ft|2

]
, (∀M Yt] −measurable). (10)

Statistically, the innovations process will be a Wiener process. This fact underscores the property that the filter is so

efficient at extracting information from the measurement process, that afterwards we are just left with white noise! We

now give a quick derivation of the Kushner-Stratonovich equation.

Demonstration 1 (The Kushner-Stratonovich equation) We use the characteristic function method. Let α(·) be

an arbitrary function of time, and define a stochastic process C by the stochastic differential equation

dCt = α (t)CtdYt (11)



with C0 = 1. We now make an ansatz that f̂t satisfies a stochastic differential equation of the form

df̂t = βtdt+ γtdYt (12)

where β and γ are stochastic processes adapted to the measurement process Y .

The least squares property (10) now implies the identity

E
[(
ft − f̂t

)
Ct

]
= 0

and differentiating wrt. time gives I + II + III = 0 where

I = E
[(
dft − df̂t

)
Ct

]
= E [(L ft − βt − γtht)Ct] dt,

II = E
[(
ft − f̂t

)
dCt

]
= E

[(
ft − f̂t

)
α (t)htCt

]
dt,

III = E
[(
dft − df̂t

)
dCt

]
= E [−γtα (t)Ct] dt.

As α was arbitrary, we deduce that I ≡ 0 and II + III ≡ 0. The first of these implies that E [(L ft − βt − γtht)Ct] = 0,

and by taking conditional expectation under the expectation, and noting that β, γ and C are adapted, we get βt =

L̂ ft − γtĥt.
Similarly we have E

[(
ft − f̂t

)
α (t)htCt

]
−E [γtα (t)Ct] = 0, and by the same procedure we deduce that γt = f̂tht− f̂tĥt.

2.1.3 The Conditional Density Form

The filtering problem admits a conditional density ρt if we have

f̂t(ω) =

∫
f(x)ρt(x, ω) dx,

in which case the Kushner-Stratonovich equation becomes

dρt(x, ω) = L ′ρt(x, ω) dt+

{
h(x)−

∫
h(x′)ρt(x

′, ω)dx′
}
ρt(x, ω) dIt. (13)

We remark that ρt is a probability density function valued stochastic process, and that (13) is in nonlinear in ρ! If we

average over all outputs we get an average density ρ̄t which satisfies the Fokker-Planck (Kolmogorov forward) equation

d

dt
ρ̄t = L ?ρ̄t, (14)

where the dual of the diffusion generator is L ?g = (vg)′ + 1
2 (σ2g)′′.

An equivalent formulation is the Zakai equation for an unnormalized stochastic density function ξt, and is the linear

equation

dξt = L ′ξt dt+ (σξt)
′
dYt. (15)

We then have ρt(x, ω) = ξt(x, ω)/
∫
ξt(x

′, ω)dx′.

2.1.4 The Kalman-Bucy Filter

As a special case, take

dXt = AXt dt+Bu(t) dt+ dWt

dYt = HXt dt+ dVt

so that dIt = dYt −HX̂tdt. We have

dX̂t = AX̂t dt+Bu(t) dt+H
(
X̂2
t − X̂tX̂t

)
dIt,

dX̂2
t = (2AX̂2

t + 2Bu(t)x̂t +Q)dt+H
(
X̂3
t − X̂2

t X̂t

)
dIt.



From Gaussianity, we have
̂(

Xt − X̂t

)3
= X̂3

t − 3X̂tX̂2
t + 2X̂t

2
= 0, and this allows us to reduce the order of the problem

so that we only have to contend with moments and variances of the conditional distribution.

Let Pt = X̂2
t − X̂t

2
, then we are lead to the Kalman-Bucy filter

dX̂t = AX̂t dt+Bu(t) dt+HPt dIt

≡ (A−H2Pt)X̂t dt+Bu(t) dt+HPt dYt,

d

dt
Pt = 2APt +Q−H2P 2

t .

2.2 Physical Motivation Of Quantum Filters

The theory of quantum filtering was developed by V.P. Belavkin [8], and represents the continuation of the work of

Kalman, Stratonovich, Kushner, Zakai, etc. Partial information about the state of high Q cavity modes is obtained by

measuring Rydberg atoms that are passed one-by-one through the cavity, see Figure 4.

Figure 4: A schematic of the LKB photon box experiment: qubits (Rydberg atoms) are passed through a cavity one by

one. At any one time there will be at most one qubit inside the cavity, and we measure the outgoing qubits one-by-one.

The measurement bit yk is sent into a filter which estimates the state of the cavity mode, and then an instruction is sent

to the actuator so as to control the mode.

The measurement results can be used to apply a feedback action on the cavity mode. We consider a quantum mechanical

system which is probed by a two-level atom (qubit). The qubit is in input state | ↓〉 initially. The unitary interaction

between the cavity mode and the probe qubit leads to a change of state in the Schrödinger picture:

|ψ〉 ⊗ | ↓〉 −→ U |ψ〉 ⊗ | ↓〉. (16)

We take the interaction time τ to be very small and assume that the unitary has the form

U = exp
{√

τL⊗ σ∗ −
√
τL∗ ⊗ σ − iτH ⊗ I2

}
' 1 +

√
τL⊗ σ∗ −

√
τL∗ ⊗ σ − τ(

1

2
L∗L+ iH)⊗ I2 + · · · .

We now measure the spin σx of the qubit and record the eigenvalues η = ±1 corresponding to eigenvectors

|+〉 =
1√
2
| ↓〉+

1√
2
| ↑〉, |−〉 =

1√
2
| ↓〉 − 1√

2
| ↑〉.



The probabilities for detecting η = ±1 are

p± =
1

2
± 1

2

√
τ〈ψ|L+ L∗|ψ〉+ · · · .

After measurement, the system state becomes (up to normalisation!)

|ψη〉 ∝ |ψ〉+
√
τL|ψ〉 η − τ(

1

2
L∗L+ iH)|ψ〉+ · · · .

For more details on how this is interpreted as a discrete-time quantum Kalman filter, see [2].

We may now proceed to take a continuous time limit where we have (due to a central limit effect)

τ ↪→ dt
√
τη ↪→ dY (t)

where Y (t), the continuous time measurement readout, will be a diffusion process. The limit equation is

d|χt〉 = L|χt〉 dYt − (
1

2
L∗L+ iH)|χt〉 dt, (17)

and we refer to this as the Belavkin-Zakai equation as it plays the same role as the Zakai equation in Belavkin’s theory

of quantum filtering. In general |χt〉 is not normalized, but it is easy to obtain the equation for the normalized state

|ψt〉 = |χt〉/ ‖χt‖, we find the Stochastic Schrödinger equation

d|ψt〉 = iH|ψt〉 dt−
1

2
(L− λt)∗(L− λt)|ψt〉 dt+ (L− λt)|ψt〉 dI(t). (18)

where

λt , 〈ψt|L+ L∗|ψt〉, dI(t) , dYt − λtdt. (19)

Mathematically I(t) has the statistics of a Wiener process, and its increment dI(t) is the difference between what we

observe, dY (t), and what we would expect to get 〈ψt|L+ L∗|ψt〉 dt.
It is convenient to frame this in the Heisenberg picture. Let |ψ0〉 be the initial state, then setting 〈ψ0|X̂t|ψ0〉 , 〈ψt|X|ψt〉,
we have

dX̂t = L̂Xt dt+
{
X̂Lt − X̂tL̂t

}
dI(t) +

{
L̂∗Xt − L̂∗tX̂t

}
dI(t)

= L̂Xt dt+
{

̂XL+ L∗Xt − X̂t(L̂+ L∗t)
}
dI(t),

where the dynamical part involves the GKS-Lindblad generator

LX ,
1

2
[L∗, X]L+

1

2
L∗ [X,L]− i [X,H]

and the innovations may be written as

dIt = dYt − (L̂+ L∗t) dt.

We may set X̂t = tr{%tX} and obtain the Stochastic Master equation

d%t = L ′%t dt+ {L%t + %tL
∗ − tr{%t(L+ L∗)%t} dIt.

where we have the dual generator

L ′% = L%L∗ − 1

2
%L∗L− 1

2
L∗L%+ i[%,H].

This is the quantum version of the conditional probability density form of the Kushner-Stratonovich equation. Averaging

over the output yields the Master equation

d

dt
%̄t = L%̄tL

∗ − 1

2
%̄tL
∗L− 1

2
L∗L%̄t + i[%̄t, H].

This is the analogue of the Fokker-Planck equation.



2.3 Quantum Probability

We wish to present quantum filtering as a natural extension of the classical theory. To this end, it is extremely helpful to

extend the standard theory of probability (the Kolmogorov framework) to that of quantum probability. here we follow

closely the lucid exposition given by Maassen [9].

Definition 2 A Quantum Probability space, or QP space, is a pair (A,E) consisting of a von Neumann algebra A

with normal state E.

The use of the term normal here refers to continuity in the normal topology and has nothing to do with gaussianity.

The algebra of bounded functions L∞(Ω,F ,P) on a classical probability space is a commutative example, with E[f ] =∫
Ω
f(ω) P[dω]. At its heart, quantum probability amounts to dropping the commutativity assumption and this leads to

the situation in quantum theory where we now have a closed algebra of operators on a Hilbert space h, with the normal

states taking the form E[X] ≡ tr{%X}, for some density matrix %.

Definition 3 An observable in the QP space (A,E) is a self-adjoint operator X with A-valued spectral measure Π.

That is,

f(X) ≡
∫
R
f(x) Π[dx],

where Π[dx] is a projection-valued measure with Π[A] ∈ A the event that X takes a value in (Borel) set A.

• The probability distribution of X in the state E[·] ≡ tr{%·} is

K[dx] = tr{%Π[dx]}.

• Quantum probabilists would say that the observable is a CP embedding j of the commutative QP space A =

L∞(R,K) into A, that is : f 7→ j(f) , f(X).

• More generally we define a quantum random variable to be a CP embedding of a non-commutative QP space

B into A.

A quantum probability space for a qubit is therefore the algebra of 2 × 2 matrices with a suitable density matrix as

state.It is an important, though inconvenient, fact that the position and momentum operators in quantum mechanics

are unbounded operators. Technically they do not themselves belong to the von Neumann algebra they generate. The

standard approach to generating a von Neumann algebra from a set of observables is to take the closure of the algebra

generated by the corresponding projections: this is the analogue of generating a σ-algebra of subsets given a set of

random variables in classical probability (measure) theory.

In general, for von Neumann sub-algebras Bk of a von Neumann algebra A, we will write B1 ∨B2 for the smallest von

Neumann sub-algebra of A containing both algebras. For X1, · · · , Xn a collection of observables, we denote the von

Neumann algebra they generate by vN{X1, · · · , Xn}.

Definition 4 A conditional expectation is a CP map from a QP space (A,E) onto a sub-QP space (Y,E |Y) such

that E[X̂] = E[X] which is a projection, that is ̂̂
X = X̂. (20)

There is some good news and some bad news. The good news first.

Proposition 5 Suppose that we have a quantum conditional expectation, say X̂ = E[X | Y], generated by some quantum

random variable, then it will satisfy

1. E[Y1 X̂ Y2] = E [Y1X Y2], for all Y1 and Y2 be in Y;

2. Least squares property:

minY ∈Y E[(X − Y )∗(X − Y )] is given by

E[(X − X̂)∗(X − X̂)] = E[X̂∗X]− E[X̂∗X̂].

Now for the bad news: quantum conditional expectations do not always exist. See [9] for more discussion.



2.4 Non-Demolition Measurement and Estimation

Let (A,E) be the QP model of interest, and suppose Y be the von Neumann algebra generated by the observables we

measure in an experiment. We recall the definition of the commutant of an algebra.

Definition 6 The commutant of a von Neumann sub-algebra Y of a von Neumann algebra A is

Y′ , {A ∈ A : [A, Y ] = 0, ∀Y ∈ Y}. (21)

The Non-Demolition Principle states that all the measured observables in an experiment should be compatible.

That is, Y should be commutative, and that an observable X is jointly measurable (and estimable) with the measured

observables if and only if it commutes with them (X ∈ Y′).

A key point is that we can always define conditional expectation of operators in Y′ onto Y, see Figure 5. On the left we

have Y which is a commutative subalgebra of A. The commutant Y′ contains Y, but is generally noncommutative.

Figure 5: A “Venn Neumann”diagram!

The construction is actually straightforward. Suppose that X ∈ Y′ then we note that Y∨ vN{X} is a commutative von

Neumann algebra: this is shown on the right side of Figure 5 where we have stripped away the non-commuting parts of

the rest of the universe. However, conditional expectations always (uniquely!) exist in the classical world, and because

Y ∨ vN{X} is commutative and so the corresponding QP model is isomorphic to a classical probability model. The

argument in fact leads to a unique value for X̂.

It is however worth mentioning that, despite the simplicity of the above argument, the construction is non-trivial. For

instance, we could take a pair of observables X1 and X2 from the commutant Y′ and deduce the existence and values

of X̂1 and X̂2 - however the commutant is not required to be a commutative algebra, and so vN{X1, X2} need not be

commutative either.

2.5 Quantum Input-Output Models

This is sometimes referred to as the SLH formalism and is a synthesis of the quantum stochastic calculus developed

by Hudson-Parthasarathy in 1984, [10, 11] and the quantum input-output theory developed by Gardiner and Collett in

1985, [12, 13]. We work in the setting of a Hilbert space of the generic form

H = h0 ⊗ Γ
(
K⊗ L2[0,∞)

)
(22)

where h0 is a fixed Hilbert space, called the initial space, and K is a fixed Hilbert space called the internal space or

multiplicity space. In the case of n bosonic input processes we fix a label set k = {1, · · · , n} and take the multiplicity

space to be K = Ck ≡ Cn. For each t > 0 we have tensor product decomposition H ∼= H[0,t] ⊗ H(t,∞), where H[0,t] =



Figure 6: SLH block component: we have quantum inputs coming in from the left and quantum outputs going out on

the right, and these are described by arrows (they may generally carry a multiplicity) while the system is denoted by a

block and the SLH-coefficients are G ∼ (S,L,H).

h0⊗Γ
(
K⊗ L2[0, t)

)
and H(t,∞) = Γ

(
K⊗ L2(t,∞)

)
. We shall write At] for the von Neumann algebra of bounded operators

on H that act trivially on the future component H(t,∞), that is At] ≡ B(H[0,t]).

The general form of the constant operator-coefficient quantum stochastic differential equation for an adapted unitary

process U is

dU (t) =

{
−
(

1

2
L∗kLk + iH

)
dt+

∑
j∈k

LjdBj (t)
∗

−
∑
j,k∈k

L∗jSjkdBk (t) +
∑
j,k∈k

(Sjk − δjk)dΛjk (t)

}
U (t) (23)

where the Sjk, Lj and H are operators on the initial Hilbert space which we collect together as

Skk =

 S11 · · · S1n

...
. . .

...
Sn1 · · · Snn

 , Lk =

 L1

...
Ln

 . (24)

The necessary and sufficient conditions for the process U to be unitary are that Skk = [Sjk]j,k∈k is unitary (i.e.,∑
k S
∗
kjSkl =

∑
k SjkS

∗
lk = δjl I) and H self-adjoint. (We use the convention that Lk = [Lk]k∈k and that L∗kLk =∑

k∈k L
∗
kLk.) The triple G ∼ (S,L,H) are termed the Hudson-Parthasarathy parameters, or informally as just the

SLH-coefficients. For more details of the SLH formalism see [16, 17, 14].

We will sketch the situation where we have an open quantum system G ∼ (S,L,H) driven by boson fields as a block

component as in Figure 6. To complete our theory, we need to say how the outputs can be incorporated into the

framework. The output fields are, in fact, defined by

Bout
k (t) , U(t)∗ [I ⊗Bk(t)]U (t) , (25)

and a simple application of the quantum Itō calculus yields

dBout
j (t) =

∑
k

jt (Sjk) dBk (t) + jt (Lj) dt. (26)

The reasoning behind (25) is given by Gardiner and Collett [12], see also [13].

Let X be an initial space operator, then we consider its time evolution which we write as jt (X) , U (t)
∗

[X ⊗ I]U (t).

From the quantum Itō calculus, we obtain the Heisenberg-Langevin equation

djt (X) = jt (LX) dt+
∑
i

jt (Li0X) dB∗i (t)

+
∑
i

jt (L0iX) dBi (t) +
∑
j,k

jt (LjkX) dΛjk (t) ; (27)



where

LX =
1

2

∑
i

L∗i [X,Li] +
1

2

∑
i

[L∗i , X]Li − i [X,H] , (the Lindbladian!),

Li0X =
∑
j

S∗ji[X,Lj ],

L0iX =
∑
k

[L∗k, X]Ski,

LikX =
∑
j

S∗jiXSjk − δikX. (28)

We may write this as

djt (X) =

n∑
α=0

n∑
β=0

jt (LαβX) dΛαβ (t)

where L00 = L and Λ00 (t) = t, Λj0 (t) = Bj (t)
∗

and Λ0k (t) = Bk (t).

We now make a crucial observation. The unitary process U is responsible for coupling the system to the boson field

environment and does so in a causal way. In particular, the algebra At] consists of precisely the initial system together

with the component of the environment that has had a chance to interact with it up to time t. The unitary process is

also responsible for transferring us from the input picture to the output picture. At the moment, this distinction is fairly

straightforward but it will become more involved when we allow the SLH-coefficients to be adapted process rather than

just fixed operators on the initial space.

The output field may, of course, then be measured. In a homodyne measurement, we may measure the quadrature process

Yk(t) = Bout
k (t) +Bout∗

k (t). Note that in this case,

dYk(t) =
∑
k

jt (Sjk) dBk (t) +
∑
k

jt
(
S∗jk
)
dB∗k (t) + jt

(
Lj + L∗j

)
dt. (29)

We note that Yk(t) is obtained from Zk(t) = Bk(t)∗+Bk(t) by unitary conjugation by U(t). As the Zk is a self-commuting

process, we have that so too will Yk - an essential requirement for non-demolition measurement. the same would be true

if we wanted to count photons at the output: we would set Zk(t) = Λkk(t), which self-commuting for different t, and

take Yk to the equivalent process obtained by transferring from the input to the output picture.

Definition 7 (Measured Process) Let Zt be an adapted self-commuting process on the Fock space. The corresponding

measured process at output is

Yt , U∗t (1⊗ Zt)Ut,

and its measurement algebra is defined to be

Yt = vN{Ys : 0 ≤ s ≤ t},

In general, we could have several adapted processes Zk on the Fock space - all commuting with each other - and measure

the corresponding output picture processes Yk(t). We remark that Yt will then be a commutative von Neumann algebra

in accordance with the non-demolition principle. In fact, we have a filtration of von Neumann algebras {Yt : t ≥ 0}
with Yt ⊂ Ys whenever t < s.

We also have the following dynamical non-demolition principle: js(X) ∈ Y′t for each s ≥ t and for all operators, X, on

the initial space. To see this, note that, for s ≥ t, Yt = U∗t (1 ⊗ Zt)Ut = U∗s (1 ⊗ Zt)Us while js(X) = U∗s (X ⊗ 1)Us,

therefore [js(X), Yt] = U∗s [X⊗ 1, 1⊗Zt]Us. It follows that present Heisenberg picture value jt(X) is compatible with the

measurement algebra Yt, for each t. Therefore, we may estimate (filter) jt(X) based on the measurements up to current

time. The same is also true for future values js(X), s > t, which we may then predict using the measurements up to

current time.

As we have seen, the conditional expectation of an observable X in the Heisenberg picture onto the measurement output

algebra Yt then exists, and we call this the filtered estimate for X based on the measurements. We denote this as

πt(X) , E[jt(X) | Yt]. (30)



2.6 The Belavkin-Kushner-Stratonovich Equation

We now follow the notation of [3], see also [15] As a special example, let us take Z(t) = eiθ(t)B(t) + e−iθ(t)B(t)∗. The

phase θ may be time dependent, and in principle even an adapted process though we assume it to be deterministic for

the time being. The measured field is Y θ (t) where

dY θ (t) = eiθ(t)dBout (t) + e−iθ(t)dBout (t)
∗
.

We denote by Yθ
t] the von Neumann algebra generated by Y θ (s) for 0 ≤ s ≤ t.

The filter is the conditional expectation

πθt (X) = E
[
jt (X) |Yθ

t]

]
for the state which is a factor state with the field in the Fock vacuum.

Lemma 8 The filter satisfies the Belavkin-Kushner-Stratonovich equation.

dπθt (X) = πθt (LX) dt+ G θ
t (X) dI(t)θ (31)

where L is the Lindbladian 1
2L
∗ [·, L] + 1

2 [L∗, ·]L− i [·, H], and

G θ
t (X) = πθt

(
eiθ(t)XL+ e−iθ(t)L∗X

)
− πθt (X)πθt

(
eiθ(t)L+ e−iθ(t)L∗

)
(32)

and Iθ is the innovations process dIθ (t) = dY θ (t)− πθt
(
eiθ(t)L+ e−iθ(t)L∗

)
dt.

Remark: the filter obtained is precisely the same as for the problem of filtering the open systems dynamics with

L replaced by the time dependent coupling eiθ(t)L and a continuous measurement of the fixed quadrature Y 0 (t) =

Bout (t) +Bout (t)
∗
.

Proof.

(We drop the t and θ identifiers for simplicity.) The proof follows the same line of argument used to demonstrate

the Kushner-Stratonovich equation by extending the characteristic method and watching out for the noncommutative

elements. The ansatz is made that the filter satisfies dπ (X) = H (X)dt + G (X) dY where both H (X) and G (X) are

in Yθ
t]. We have that

E [(π (X)− j (X)) y] = 0

for all y ∈ Yθ
t]. In particular, we set y = yt where dyt = f (t) ytdY

θ (t) with f an arbitrary integrable function. Taking

the Itō differential of (33) we find I + II + III = 0 where

I = E [(dπ (X)− dj (X)) y]

= E
[(

H (X)dt+ G (X)
(
eiθ(t)L+ e−iθ(t)L∗

)
−LX

)
y
]
dt

II = E [(π (X)− j (X)) dy]

= f (t)E
[
(π (X)− j (X))

(
eiθ(t)L+ e−iθ(t)L∗

)
y
]
dt

and the Itō correction is

III = E [(dπ (X)− dj (X)) dy] = f (t)E
[(

G (X)− e−iθ(t)L∗
)
y
]
dt.

Taking the coefficient of f (t) dt leads to (32) while the remain coefficient leads to

H (X) = G (X)π
(
eiθ(t)L+ e−iθ(t)L∗

)
− π (LX) .

This gives the desired result.



2.6.1 Filtering a Cavity Mode

We wish to derive the filter for a cavity mode a with frequency ω and damped by a input field (the lossy cavity mode!)

to which is undergoing continuous indirect measurement of the output quadrature. Specifically, the unitary evolution of

thew mode+field satisfies the QSDE

dU (t) =

{
LdB (t)− L∗dB (t)− (

1

2
L∗L+ iH)dt

}
U (t)

with initial condition U (0) = 1 and

H = ωa∗a, L =
√
γa.

In this case the Heisenberg dynamics are linear for at , jt (a), and if we begin in a Gaussian state for system, then we

should have a linear Gaussian filtering problem.

Proposition 9 (Quantum Kalman Filter) Assuming a Gaussian initial state, the filtered estimate ât = πt (a) satis-

fies

dât = −
(γ

2
+ iω

)
âtdt+

√
γ
(
W (t) eiθ(t) + V (t) e−iθ(t)

)
dIθ(t) (33)

where W (t) and V (t) are deterministic function satisfying the coupled equations

dV

dt
= −γV − γ

∣∣∣V + e2iθ(t)W
∣∣∣2 , (34)

dW

dt
= − (γ + 2iω) V − γ

(
e−iθ(t)V + eiθ(t)W

)2

(35)

with V (0) = E [a∗a]− E [a∗]E [a] and W (0) = E
[
a2
]
− E [a]

2
. and W (0) = E

[
a2
]
− E [a]

2
.

Proof. Setting X = a in (31) yields (33) with

V (t) = πt (a∗a)− πt (a∗)πt (a) ,

W (t) = πt
(
a2
)
− πt (a)

2
.

We need however to determine the SDEs for V and W . Setting X = a2, leads to

dπ
(
a2
)

= −(γ + 2iω)π
(
a2
)
dt

+
√
γ
{
π
(
a3eiθ + a∗a2e−iθ

)
− π

(
a2
)
π
(
aeiθ + a∗e−iθ

)}
dIθ(t)

≡ −(γ + 2iω)π
(
a2
)
dt+ 2

√
γ
{
eiθW + e−iθV

}
π (a) dIθ(t).

Which now involves cubic terms. These however may be replaced by lower order moments using the Gaussianity property.

From the identities π
(

(a− π (a))
3
)

= 0 and π
(

(a− π (a))
∗

(a− π (a))
2
)

= 0, we obtain

π(a3) = 3π
(
a2
)
π (a)− 2π (a)

3
,

π (a∗a) = 2π (a∗a) + π (a∗)π
(
a2
)
− 2π (a∗)π (a)

2
.

In this way we may reduce the order.

From the fact that the innovations process is a Wiener process, we have

dπ (a)
2

= 2π (a) dπ (a) + (dπ (a))
2

= −2
(γ

2
+ iω

)
π (a)

2
dt+ γ

(
e−iθ(t)V + eiθ(t)W

)2

dt

+2
√
γ
{
eiθW + e−iθV

}
π (a) dI

and so

dW (t) = dπ
(
a2
)
− dπ (a)

2

= − (γ + 2iω) W dt− γ
(
e−iθ(t)V + eiθ(t)W

)2

dt



Similarly, we have

dπ (a∗a) = −γπ (a∗a) dt

+
√
γ

{
π
(
a∗a2eiθ + a∗2ae−iθ

)
− π (a∗a)π

(
aeiθ + a∗e−iθ

)}
dIθ(t)

≡ −γπ (a∗a) dt+

2
√
γ

{
eiθ[V π (a) + W π (a∗)] + e−iθ[V π (a∗) + W ∗π (a)]

}
dIθ(t),

while

d (π (a∗)π (a)) = dπ (a∗) π (a) + π (a∗) dπ (a) + dπ (a∗) dπ (a)

= −γπ (a∗a) dt

+2
√
γ
{
eiθ[V π (a) + W π (a∗)] + e−iθ[V π (a∗) + W ∗π (a)]

}
dIθ(t)

+γ
∣∣W eiθ + V e−iθ

∣∣2 dt
and therefore

dV (t) = dπ (a∗a)− d (π (a∗)π (a)) = −γV dt− γ
∣∣W eiθ + V e−iθ

∣∣2 dt.
So V and W obey deterministic ODEs.

We now note that

E
[
(at − ât)∗ (at − ât)

]
= E [πt (a∗a)− πt(a∗)πt (a)] ≡ V (t) .

If we wish to minimize E
[
(at − ât)∗ (at − ât)

]
over all quadrature measurements, then we basically minimize V (t) over

all choices of θ.

2.7 The Bouten-van Handel Formulation

Without great loss of generality, let us focus on the single input process example. We wish to compute the filter

πt(·) for homodyne quadrature measurement with Y (t) = Bout(t) + Bout∗(t). We revert to the input picture and set

Z(t) = B(t) +B(t)∗. Let us introduce Zt] = vN{Z(s) : 0 ≤ s ≤ t}. Then the adapted process F is defined by

dF (t) =
{
LdZ(t)− (

1

2
L∗L+ iH)dt

}
F (t), F (0) = I, (36)

has the property that F (t) ∈ F′t] and

E[jt(X)] ≡ E[F (t)∗XF (t)], (37)

for every system observable X. This is established as Lemma 6.2 in [4]. As a corollary, they obtain that

πt(X) =
σt(X)

σt(I)
, (38)

where

σt(X) , U∗t E
[
F (t)∗XF (t) | Zt]

]
U(t). (39)

The equation (38) may be referred to as the quantum Kallianpur-Striebel formula.

It is noteworthy that σt(X) is the output picture counterpart of the input picture condtional expectation ςt(X) ,
E
[
F (t)∗XF (t) | Zt]

]
, which involves a conditional expectation with respect to input picture process Z. In fact, from (36)

we readily obtain

dςt(X) = ςt(LX) dt+ ςt(XL+ L∗X) dZ(t). (40)



Setting $t(X) = ςt(X)/ςt(I), it is an easy application of stochastic calculus to show that

d$t(X) = $t(LX) dt

+

{
$t(XL+ L∗X)−$t(X)$t(L+ L∗)

}[
dZ(t)−$t(L+ L∗)dt

]
. (41)

Transferring back to the output picture, we then find that the analogues to (40) and (41) are

dσt(X) = σt(LX) dt+ σt(XL+ L∗X) dY (t). (42)

and

dπt(X) = πt(LX) dt

+

{
πt(XL+ L∗X)− πt(X)πt(L+ L∗)

}[
dY (t)− πt(L+ L∗)dt

]
, (43)

and these are just the general Belavkin-Zakai and Belavkin-Kushner-Stratonovich equations, respectively.

3 The Input & Output Pictures

In this section we develop some ideas of controlled flows and measurement-based feedback. To begin with, in classical

control theory one frequently meets the concept of a controlled dynamical system - that is, a system where the evolution is

governed by an external controlling process W (t). The controlling process may be deterministic, or even stochastic. The

situation of interest to engineers is when the controlling process is allowed to depend on the state (or, more generally,

past history) of the system itself. This is an example of feedback, and classically one may have partial observations

V of the state of the system - so one effectively wishes to take the controlling process W to be some function of the

observations V . W should depend causally on Y , and mathematically one would ask that W is adapted to the filtration

of sigma-algebras generated by V .

The quantum mechanical version is more involved due to the subtle and notorious issue of measurement. We have dis-

cussed how the Hudson-Parthasarathy theory leads to the output processes. Here we have, for the lack of a better termi-

nology, a pre-measurement process Z which is transformed into the measured output process Y via Y (t) = U(t)∗Z(t)U(t).

In a controlled unitary dynamics, we would allow the unitary process U to depend on the controlling process W in some

causal way - U ≡ U [W ]. This of course means that the measured output Y somehow is influenced by W . Making a

feedback loop would mean that W now becomes dependent of Y . Ultimately, this implies that the controlling process

W somehow is related to the pre-measurement process Z.

To try and cut through a logical Gordian knot, we take the simplifying step and identify Z as the controlling process at

the outset. While not the most general situation (we could have W include other exogenous processes), it does allow us

to focus on the feedback loop.

The next point of which we need to take account is that the processes Z and Y are incompatible! In fact, it is best to

view them as belonging to two different pictures which we may call the input picture and the output picture.

In the input picture, we describe the world through the controlling process Z - here the unitary U = U [Z] will be

influenced by Z. More specifically, we have the Hudson-Parthasarathy theory where the SLH-coefficients will no longer

be fixed system operators, but generally adapted processes commuting with Z. In the output picture, we describe the

world through the measured process Y . Just as with the Schrödinger and Heisenberg pictures, it is possible to transfer

from one to the other, but it is imperative to know which picture you’re working in at a particular time, see Figure 7.

We now introduce some notation. Let Z be an adapted commutative quantum stochastic process on the Fock space, and

let Zt] = vN {Z (s) : 0 ≥ s ≤ t}.

Definition 10 We say that an adapted process, F , is causally controlled by Z if, for each t, we have F (t) ∈ Z′t]. We

often write F [[Z]] for emphasis.

The definition can be expanded by replacing Z with a family W of commutative processes that is enlarged to include

exogenous processes.

Note that we will have F [[Z]] (t) ∈ Z′t] ∪ At] by the adaptedness requirement.



Figure 7: In the input picture, we may view the system as being controlled by some adapted process W which may

generally depend on the input: specifically W (t) ∈ Z′t]. In the output picture, we may be interested in some readout

process V which may generally depend on the measurements: V (t) ∈ Y′t].

Definition 11 A controlled quantum flow (controlled by Z) is the dynamics determined by the adapted unitary process,

U [Z], determined by SLH-coefficients G[[Z]] ∼
(
S[[Z]], L[[Z]], H [[Z]]

)
which are adapted processes causally controlled by Z.

We remark that it is necessary and sufficient that the SLH-coefficients satisfy the previous algebraic conditions - S[[Z]] (t)

an n× n unitary array, and H [[Z]] (t) self-adjoint - in order that U [Z] (t) is unitary. For n = 1, we have

dU [Z] (t) =

{(
S[[Z]](t)− I

)
⊗ dΛ (t) + L[[Z]] (t)⊗ dB (t)

∗

−L[[Z]] (t)
∗
S[[Z]] (t)⊗ dB (t)

−
(1

2
L[[Z]] (t)

∗
L[[Z]] (t) + iH [[Z]] (t)

)
⊗ dt

}
U [Z] (t) , (44)

with U [Z] (0) = I. The tensor product in (44) is wrt. At] ⊗ A[t,∞). The unitary U [Z] (t) would only belong to Z′t] in

completely trivial situations. Typically it does not commute with controlling process Z. For this reason, we write it as

U [Z] so to show that it depends on the controlling process (it does through its SLH-coefficients), rather than as U [[Z]]

since it is not itself a process controlled by Z.

The concept of a controlled flow is developed in the input picture. Let us look at what happens in the output picture.

We obtain a second process Y (t) = U [Z] (t)
∗
Z (t)U [Z] (t) which corresponds to a possible measurement process, namely

the one obtained from Z using a component controlled by Z. The process Y is then commutative. We may additionally

set Yt] = U [Z] (t)
∗
Zt]U

[Z] (t)
∗
.

Proposition 12 Given an adapted process F [[Z]] controlled by Z, the process F̃ [[Y ]] defined by

F̃ [[Y ]] (t) = U [Z] (t)
∗
F [[Z]] (t)U [Z] (t)

is an adapted process controlled by Y (that is, F̃ [[Y ]] (t) ∈ Y′t] ∪ At] for each t).

Proof. This is relatively straightforward to see. Let K̃ (t) ∈ Yt], then we should have K̃ (t) = U [Z] (t)
∗
K (t)U [Z] (t) for

some K (t) ∈ Zt]. Therefore [
F̃ [[Y ]] (t) , K̃ (t)

]
= U [Z] (t)

∗
[
F [[Z]] (t) ,K (t)

]
U [Z] (t) ≡ 0

since F [[Z]] (t) is in the commutant of Zt]. Therefore F̃ [[Y ]] (t) ∈ Y′t], and it is clearly adapted.



The key correspondences between the two pictures are tabulated below:

Input Picture Output Picture

adapted process F [[Z]] (t) F̃ [[Y ]] (t)
basic process Z (control) Y (measured)

system observables X j
[[Y ]]
t (X)

noise B (t) B[[Y ]]out (t)

filter $
[[Z]]
t (X) π

[[Y ]]
t (X)

filter (Zakai) ς
[[Z]]
t σ

[[Y ]]
t

conditional state %
[[Z]]
t ρ

[[Y ]]
t

.

To run through these briefly, we have that j
[[Y ]]
t (X) is defined to be F̃ [[Y ]] (t) when we take F [[Z]] (t) = X. Likewise,

B[[Y ]]out (t) is defined to be F̃ [[Y ]] (t) when we take F [[Z]] (t) = B (t). The filter estimate for system observable X at time

t - more exactly, for j
[[Y ]]
t (X) - based on measurements Yt] is π

[[Y ]]
t (X). This may be transferred back to the input

picture to give $
[[Z]]
t (X):

π
[[Y ]]
t (X) = U [Z] (t)

∗
$

[[Z]]
t (X)U [Z] (t) .

We may write

π
[[Y ]]
t (X) = tr

{
ρ

[[Y ]]
t X

}
, or $

[[Z]]
t (X) = tr

{
%

[[Z]]
t X

}
.

We remark that the conditioned state is logically understood as being conditioned with respect to measurement process

- in other words, it is ρ
[[Y ]]
t . The Bouten-van Handel formulation allows a simple derivation of the filter equations by

computing the input picture %
[[Z]]
t and transferring over to the output picture. Of course, the measurements are made in

the output picture though we can use the circumlocution that we are measuring the process that corresponds to Z in the

input picture. While serviceable, we have to be careful when jumping between the pictures. In the n = 2 case, we could

include a beam-splitter - S non-diagonal - in which case the first output quadrature Y1 = Bout
1 +Bout*

1 is mathematically

a linear combination of Z1 = B1 +B∗1 and Z2 = B2 +B∗2 even though it is output picture form of just Z1.

We also remark that the Heisenberg equations now take the form

dj
[[Y ]]
t (X) =

n∑
α=0

n∑
β=0

L
[[Y ]]
αβ,t

(
j

[[Y ]]
t (X)

)
dΛαβ (t) (45)

where L
[[Y ]]
αβ,t (·) are the super-operators obtained by replacing the previously constant SLH-coefficients in Lαβ with their

counterpart
(
S̃[[Y ]](t), L̃[[Y ]](t), H̃ [[Y ]](t)

)
.

The output fields satisfy

dBout (t) = S̃[[Y ]] (t) dB (t) + L̃[[Y ]] (t) dt+

n∑
α=0

n∑
β=0

L
[[Y ]]
αβ,t

(
B (t)

)
dΛαβ (t) . (46)

The final part here is not present in the constant SLH-coefficient case. Despite the complications in (46) it is worth

recalling that Y (t) ≡ U [Z] (t)
∗
Z(t)U [Z] (t) no matter how complicated Z is in terms of the input field processes.

Definition 13 A conditional-state controlled system is one where the SLH-coefficients are functions of the current state

%
[[Z]]
t .

The basic idea is presented in Figure 8. We first describe the open loop model in the traditional output picture - here

the system is driven by a input noise and a controlling process, and the output field travels to a detector where a feature

is measured (this will be the Y process), then a filter computes the conditional state ρ
[[Y ]]
t . Below that we consider the

equivalent description of the open loop model in the input picture where everything is written in terms of the controlling

process Z, and in this picture the filter computes %
[[Z]]
t . Finally, we make the feedback loop which corresponds to taking

the controlling process to depend on %
[[Z]]
t . Note that we may make further modifications such as applying a classical

input function r(t) in the return loop.



Figure 8: Before feedback, we may present the open loop model in either the input or output picture. The closed loop

model is depicted underneath.

In principle, if we are observing Y then filter will compute ρ
[[Y ]]
t for us and that this will be available for feedback. We

do not need to use full details of the ρ
[[Y ]]
t , and instead might be content to use the conditional averages of a fixed set,

{X1, · · · , Xn}, of system observables. Returning to the input picture, this would mean that the SLH-coefficients are

functions of the $
[[Z]]
t (Xk) = tr

{
%

[[Z]]
t Xk

}
(note that these are averages and so are commuting scalar processes adapted

to the pre-measurement process Z.

All of this avoids the discussion on how physically the SLH-coefficients are made to depend on %
[[Z]]
t , and this ultimately

comes down to the ingenuity of the experimentalists in the laboratory.

4 Quantum PID Controller

In this section we outline a specific model based around the traditional Kalman filter where we continuously monitor a

cavity mode.

As in Subsection 2.6.1, we denote the mode by a but now take SLH-coefficients to be

G
[[Z]]
t ∼

(
I,
√
γa, ωa∗a+ iβ[[Z]](t)a∗ − iβ[[Z]]∗(t)a∗

)
, (47)

where β[[Z]](t) is some as yet unspecified complex-valued adapted process controlled by Z.

The Heisenberg-Langevin equation satisfied by at = j
[[Y ]]
t (a) is now

dat = −
(γ

2
+ iω

)
at dt+ β̃[[Y ]](t) dt−√γ dB(t). (48)

Note that this is in the output picture and involves β̃[[Y ]](t) ≡ U [Z](t)∗β[[Z]](t)U [Z](t) the output picture form of the

control process.

If we wish to measure the θ = 0 quadrature, then the corresponding Belavkin-Kalman filter for ât = π
[[Y ]]
t (a) will be

dât = −
(γ

2
+ iω

)
ât dt+ β̃[[Y ]](t) dt+

√
γ (W (t) + V (t)) dI(t), (49)

with innovations dI(t) = dY (t)−√γ
(
ât + â∗t

)
dt. Fortunately, the covariances V and W will be the same deterministic

functions encountered before but with θ ≡ 0: that is, they solve

dV

dt
= −γV − γ |V + W |2 , (50)

dW

dt
= − (γ + 2iω) V − γ (V + W )

2
(51)



with initial conditions W (0) = E
[
a2
]
− E [a]

2
.

We now revert back to the input picture where (49) becomes

d$
[[Z]]
t (a) = −

(γ
2

+ iω
)
$

[[Z]]
t (a) dt+ β[[Z]](t) dt+

√
γ (W (t) + V (t)) dJ(t), (52)

where dJ(t) = dZ(t)−√γ
(
$

[[Z]]
t (a) +$

[[Z]]
t (a)∗

)
dt.

4.1 Proportional Controllers

In Figure 9, we close the feedback loop and effectively take

β
[[Z]]
t = k

(
r(t)−$[[Z]]

t (a)
)
. (53)

Here we have included a reference signal r(t), and have computed the error e(t) = r(t)−$[[Z]]
t (a). This is then multiplied

by a gain constant k before being fed back in as the controlling process β
[[Z]]
t .

Returning once more to the output picture, we have

dât = −
(γ

2
+ iω

)
ât dt+ k (r(t)− ât) dt+

√
γ (W (t) + V (t)) dI(t). (54)

Figure 9: Cavity mode in a feedback loop.

In the large gain limit (k →∞) we may expect the cavity mode to track the reference signal r(t).

The controlled Hamiltonian for the proportional controller model presented here takes the formH [[Z]](t) = ωa∗a+H
[[Z]]
P (t)

where

H
[[Z]]
P (t) = ikP

(
r(t)−$[[Z]]

t (a)

)
+H.c. (55)

4.2 Proportional-Integral Controllers

The situation depicted in Figure 9 is that of proportional feedback. The controller acts simply by multiplying the error

e(t) by a constant gain k. More generally, we may consider a PI (proportional-integral) controller for which the output

is

β(t) = kP e(t) + kI

∫ t

0

e(t′)dt′, (56)

where kP and kI are constants known as the proportional and integral gains respectively. We shall denote the Laplace

transform of a function f = f(t) by f [s] =
∫∞

0
e−stf(t)dt - that is, with square brackets for the transform parameter.

We see that β[s] = K(s) e[s] where the controller transfer function is K(s) = kP + kI
1
s .

It is easy to see that the analogue of (54) will be

â[s] = H(s) r[s] +
G(s)

1 + G(s)K(s)

{
N(s)− E0[a]

}
, (57)



where the open loop transfer function for the system mode is G(s) = (s+ γ
2 + iω)−1 and the closed loop transfer function

is again H = GK/(1 +GK). Note that we have introduce the noise term N(s) ,
√
γ
∫∞

0
(W (t′) + V (t′)) dI(t′) due to the

innovations.

For the PI problem, the closed-loop transfer function is

HPI(s) =
skP + kI

s2 + (kP + γ
2 + iω) + kI

. (58)

and it the special case of a proportional controller (kI = 0) we have just

HP (s) =
kP

s+ (kP + γ
2 + iω)

. (59)

From the perspective of the input picture, we have the controlled dynamics with fixed S = I, L =
√
γa and controlled

Hamiltonian H
[[Z]]
t = ωa∗a+H

[[Z]]
P (t) +H

[[Z]]
I (t) where

H
[[Z]]
I (t) = ikI

∫ t

0

(
r(t′)−$[[Z]]

t′ (a)
)
dt′ a∗ +H.c. (60)

4.3 PID Controllers

A widely used controller in classical problem is the PID controller which generalizes the PI controller by allowing and

additional derivative term:

β(t) = kP e(t) + kI

∫ t

0

e(t′)dt′ + kD ė(t). (61)

At the level of the transfer function this seems at first sight like a simple extension to K(s) = kP + kI
1
s + kD s. This

would correspond to the closed loop transfer function

HPID(s) =
kDs

2 + skP + kI
(1 + kD)s2 + (kP + γ

2 + iω) + kI
. (62)

However, there is the consistency problem here that the error is now the difference of the reference signal and the filtered

estimate $
[[Z]]
t (a) but the latter is a stochastic process and not differentiable. While we could formally write down a

Hamiltonian H
[[Z]]
t corresponding to (60), the new terms would involve the formal derivatives of $

[[Z]]
t (a) and lie outside

the class of model G
[[Z]]
t ∼

(
I,
√
γa,H [[Z]](t)

)
considered in (47).

For convenience, we drop the P and I elements of the controller, and focus on realizing the D term. Here the feedback

law (in the input picture) reads as

β[[Z]] (t) = kD ė
[[Z]] (t) ≡ kD

(
ṙ (t)−$[[Z]]

t (a)
)

(63)

in which case we have formally

“− iH [[Z]]
t dt” = −iωa∗a dt+ kD (ṙ (t) a∗ −H.c.) dt− kD

(
d$

[[Z]]
t (a) a∗ −H.c.

)
.

We now make the ansatz that the dynamics is based on a specific controlled flow G
[[Z]]
t ∼

(
I, L

[[Z]]
t , H

[[Z]]
t

)
whose form

is to be deduced. The input picture form of the filter will then take the form

d$
[[Z]]
t (a) =

{
$

[[Z]]
t

(
L

[[Z]]
t a

)
− λ[[Z]]

t Ξ
[[Z]]
t

}
dt+ Ξ

[[Z]]
t dZ (t) (64)

where Ξ
[[Z]]
t is the covariance part of the filter equation,

Ξ
[[Z]]
t , $

[[Z]]
t

(
aL

[[Z]]
t + L

[[Z]]∗
t a

)
−$[[Z]]

t (a)$
[[Z]]
t

(
L

[[Z]]
t + L

[[Z]]∗
t

)
, (65)



and where λ
[[Z]]
t = $

[[Z]]
t

(
L

[[Z]]
t + L

[[Z]]∗
t

)
. We therefore have that

“− iH [[Z]]
t dt” = −iωa∗adt

+kD

(
ṙ (t) a∗ −

{
$

[[Z]]
t

(
L

[[Z]]
t a

)
− λ[[Z]]

t Ξ
[[Z]]
t

}
a∗ −H.c.

)
dt

−kD
(

Ξ
[[Z]]
t a∗ − Ξ

[[Z]]∗
t a

) (
dB (t) + dB (t)

∗)
where we now use the fact that dZ = dB + dB∗.

The fluctuating parts should now be looked upon as arising from modifications to the L coefficient. Indeed we should

now set

L
[[Z]]
t =

√
γa− iF [[Z]]

D (t) (66)

where F
[[Z]]
D (t) is the self-adjoint process

F
[[Z]]
D (t) , ikD

(
Ξ

[[Z]]∗
t a− Ξ

[[Z]]
t a∗

)
. (67)

For the Hamiltonian we shall take H [[Z]](t) = ωa∗a+H
[[Z]]
D (t) where

H
[[Z]]
D (t) = ikD

(
ṙ (t) a∗ −

{
$

[[Z]]
t

(
L

[[Z]]
t a

)
+ λ

[[Z]]
t Ξ

[[Z]]
t

}
a∗ −H.c.

)
+

1

2

√
γ
(
F

[[Z]]
D (t) a+ a∗ F

[[Z]]
D (t)

)
. (68)

The final term in (68) requires some explanation. Ultimately, this goes back to Wiseman’s analysis of direct feedback [6]

and deals with the issue of feeding back an observed photo-current y (t) to a plant by means of an additional Hamiltonian

term F y (t) for F a self-adjoint system operator. This resulted in a shift L0 → L0 − iF of the coupling operator,

L0 =
√
γa, but also a shift of the H0 → H0 + 1

2 (FL0 + L∗0F ) of the bare Hamiltonian, H0 = ωa∗a. The description of

this is given in [17] in terms of the series product where the interpretation of the signal being given a second pass through

the system (a system in series with itself!) is derived.

We have now imposed a structural form on the controlled SLH-coefficients. They involve the input-picture filter and so

depend on these coefficients in an intimate manner. However, as the model is still fundamentally linear and Gaussian,

we can deduce explicit expressions. To begin with, the GKS-Lindbladian generator L
[[Z]]
t is structurally determined by

(66) and (68), so we deduce that

L
[[Z]]
t a = −

(
1

2
γ + iω

)
a−√γkDΞ

[[Z]]
t (a+ a∗)

+kD

(
ṙ (t)−$[[Z]]

t

(
L

[[Z]]
t a

)
+ λ

[[Z]]
t Ξ

[[Z]]
t

)
, (69)

and so, by taking conditional expectations and using λ
[[Z]]
t =

√
γ
(
$

[[Z]]
t (a) +

[[Z]]
t (a∗)

)
,

$
[[Z]]
t

(
L

[[Z]]
t a

)
≡ − 1

1 + kD

(
1

2
γ + iω

)
$

[[Z]]
t (a) +

kD
1 + kD

ṙ (t) .

Substituting this into the input-picture filter equation yields

d$
[[Z]]
t (a) =

1

1 + kD

{
−
(

1

2
γ + iω

)
$

[[Z]]
t (a)dt+ kD ṙ (t)

}
dt+ Ξ

[[Z]]
t

[
dZ (t)− λ[[Z]]

t dt
]
.

We also note that the covariance may be computed in terms of the functions V (t) and W (t) encountered earlier, and

indeed

Ξ
[[Z]]
t =

√
γ$

[[Z]]
t

(
a2 + a∗a

)
−√γ$[[Z]]

t (a)$
[[Z]]
t (a+ a∗)− i$[[Z]]

t

([
a, F

[[Z]]
t

])
≡ √

γ [V (t) + W (t)]− kDΞ
[[Z]]
t ,



from which we deduce that

Ξ
[[Z]]
t =

1

1 + kD

√
γ [V (t) + W (t)] . (70)

Transferring to the output picture then gives

dπ
[[Y ]]
t (a) =

1

1 + kD

{
−
(1

2
γ + iω

)
π

[[Y ]]
t (a)dt+ kD ṙ (t) dt+

√
γ
[
V (t) + W (t)

]
dI (t)

}
. (71)

We note that as kD →∞, we obtain dπ
[[Y ]]
t (a) ≈ ṙ(t)dt as required.

4.4 The Quantum PID Controller

We may now collect the various elements together, and summarize our results as follows.

Theorem 14 The PID controller for a quantum Kalman filter (with gains kP , kI and kD respectively) for a cavity mode

with natural SLH-coefficients G0 ∼ (S0 = I, L0 =
√
γ,H0 = ωa∗a) corresponds in the controlled SLH model given in

the input picture by G
[[Z]]
t = (I, L[[Z]](t), H [[Z]](t)) with L[[Z]](t) given by (66),

L[[Z]](t) = L0

√
γkD

1 + kD

(
[V (t) + W (t)] a∗ −H.c.

)
, (72)

and

H [[Z]](t) = H0 +H
[[Z]]
P (t) +H

[[Z]]
I (t) +H

[[Z]]
D (t), (73)

with

H
[[Z]]
P (t) = ikP

[
r(t)−$[[Z]]

t (a)

]
a∗ + H.c.;

H
[[Z]]
I (t) = ikI

[ ∫ t

0

(
r(t′)−$[[Z]]

t′ (a)
)
dt′
]
a∗ + H.c.;

H
[[Z]]
D (t) = ikI

[
ṙ(t)−$[[Z]]

t (L
[[Z]]
t a)

]
a∗ + H.c. (74)

where (the input picture filter equations)

d$
[[Z]]
t (a) = $

[[Z]]
t (L

[[Z]]
t a) dt+

√
γ

1 + kD

[
V (t) + W (t)

]
dJ(t), (75)

and we note the supplementary identity

$
[[Z]]
t (L

[[Z]]
t a) = − 1

1 + kD

(1

2
γ + iω

)
$

[[Z]]
t (a)

+
kP

1 + kD

[
r(t)−$[[Z]]

t (a)
]

+
kI

1 + kD

[ ∫ t

0

(
r(t′)−$[[Z]]

t′ (a)
)
dt′
]

+
kD

1 + kD
ṙ(t). (76)

As before dJ(t) = dZ(t)−√γ
(
$

[[Z]]
t (a)+$

[[Z]]
t (a)∗

)
dt is the input picture version of the innovations, and the covariances

V (t) and W (t) are the solutions to (50) and (51).

Proof. We note that L[[Z]](t) corresponds to what we have already seen as the correct coupling in (66) to take account

of the D term. Here the operator F [[Z]](t) will be as in (66) and Ξ[[Z]](t) will be as in (70). Including the P and I

Hamiltonians now changes (69) to

L
[[Z]]
t a = −

(
1

2
γ + iω

)
a−√γkDΞ

[[Z]]
t (a+ a∗)

+kP
[
r(t)−$[[Z]]

t (a)
]

+ kI

∫ t

0

[
r(t′)−$t′(a)

]
dt′

+kD

(
ṙ (t)−$[[Z]]

t

(
L

[[Z]]
t a

)
+ kDλ

[[Z]]
t Ξ

[[Z]]
t

)
,



and so, by taking conditional expectations, we arrive at (76).

Finally the output picture filter equation (that is, the one we really want as external observers) is readily obtained from

(75) and (76):

dπ
[[Y ]]
t (a) = − 1

1 + kD

(1

2
γ + iω

)
π

[[Y ]]
t (a)

+
kP

1 + kD

[
r(t)− π[[Y ]]

t (a)
]

+
kI

1 + kD

[ ∫ t

0

(
r(t′)− π[[Z]]

t′ (a)
)
dt′
]

+
kD

1 + kD
ṙ(t)

+

√
γ

1 + kD

[
V (t) + W (t)

]
dI(t). (77)

Taking the Laplace transform of (77), we see that we obtain precisely (57) - recall the notation â(t) ≡ π[[Y ]]
t (a) - with K(s)

being the PID transfer function KPID(s) = kP + kI
1
s + kD s, and HPID(s) the closed loop transfer function appearing

in (62).

As the model is described unequivocally in terms of a controlled SLH-model, there can be no doubt that we have a

genuine, physically and mathematically well-defined quantum model.

4.5 Quantum Tuning & Loop Shaping

As PID controllers play such a dominant role in practical feedback loop implementations, there are well-developed

methods for modeling and tuning them [19, 20].

For instance, it is standard to mitigate against large transient behavior by modifying the feedback law to

β = kP (µr − â) + kI

∫ t

0

[r − â] + kD[νṙ − d

dt
â], (78)

where µ and ν are real numbers called set point weightings. If we take ω ≡ 0, and drop the D action, then we arrive at

the closed-loop transfer function

H(s) =
µkP s+ kI

s2 + s( 1
2γ + iω + kP ) + kI

, (79)

and the denominator may be made equal to some desired 2nd order system, say s2 + 2ζω0s + ω2
0 , by selecting kP =

2ζω0− 1
2γ, and kI =

√
ω0. This is a basic example of tuning the PID controller. More sophisticated applications, such as

loop shaping, exist and there are a variety of techniques (Ziegler-Nichols, Cohen-Coon, etc., as well as several PID tuning

software products) available. The illustrative model consider in this paper has been a single cavity mode, and this has

a simple 1st order transfer function G(s). However, it is clear that our analysis extends to multi-mode systems since the

main requirement for the theory to work is linear gaussian one, and so we expect that the standard techniques of classical

PID control may be readily adapted to linear quantum optical systems, for example. This opens up the possibility of

extensions to non-linear models, as well as realistic

4.6 Feedback to the Detector

An alternative strategy is adaptive quantum feedback [22, 23] where, instead of a controlled flow, we consider the

situation where the feedback is to the detector. This is depicted in Figure 10. Here we would make the measured

quadrature - the θ̃[[Y ]](t) parameter - now dependent on the output. This has been treated in [3]. We note that despite

the different architecture here and the fact that we are controlling the homodyne measurement scheme rather than the

system dynamics, the same principle of being able to transfer between the input picture and the output picture applies.

5 Conclusion

We have shown that PID controllers can be constructed for quantum systems. At the outset, we had the nagging doubt

that the various manipulations of the measured data that can be performed classical by an observer may somehow be

incompatible with a consistent quantum model. However, we have shown that this is not the case. At the heart of our



Figure 10: Adaptive control scheme where the quadrature measured, θ[[Z]](t) in the input picture, is taken to depend on

the filter output.

discussions is the distinction between the input picture (where we may describe the system as a controlled dynamics

and look at the output downline) and the output picture (where we may describe the system in terms of the measured

output and filter back upstream). In reality both are necessary, and indeed both are equivalent. To justify the PID

controller as a consistent model, we had to set up the feedback law in the output picture, then work back to find the

corresponding controlled process description in the input picture. The general PID case is quoted in Theorem 14, and

we may obtain the special cases of P, PI, etc., as simple corollaries. The key point is that the Theorem shows that a

controlled SLH-dynamical model exists which underpins the feedback model, including the “classical” actions done by

the controller. As we have mention, classical PID filters are versatile, well-studied feedback controllers and in principle

may be applied to quantum feedback systems. The effect of nonlinearities is an interesting further topic - for instance

one might be interested in an anti-wind up scheme - but the SLH theory can be readily extended to nonlinear dynamical

models and this will be the subject of further work.
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