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Explicit construction of optimal witnesses for

input–output correlations attainable by quantum

channels
Michele Dall’Arno, Sarah Brandsen, and Francesco Buscemi

Abstract—Given a quantum channel—that is, a completely
positive trace-preserving linear map—as the only communication
resource available between two parties, we consider the problem
of characterizing the set of classical noisy channels that can
be obtained from it by means of suitable classical-quantum
encodings and quantum-classical decodings, respectively, on the
sender’s and the receiver’s side. We consider various classes of
linear witnesses and compute their optimum values in closed form
for several classes of quantum channels. The witnesses that we
consider here are formulated as communication games, in which
Alice’s aim is to exploit a single use of a given quantum channel
to help Bob guess some information she has received from an
external referee.

I. INTRODUCTION

Suppose Alice and Bob play a two-party, quantum–

enhanced version of the popular game charades. In each run,

Alice’s aim is to help Bob guess some piece of information that

she has received from a referee. As in the traditional charades

game, there is a bottleneck in the communication channel, in

this case created by a given noisy quantum channel. After each

round, the referee provides a payoff that depends on both the

information Alice was provided and Bob’s guess. The parties’

aim is to maximize the average payoff, which depends only

on the channel and the game, by optimizing Alice’s encoding

and Bob’s decoding.

Here, we introduce the communication utility of any given

quantum channel for any given communication game as the

average payoff after asymptotically many runs. Communica-

tion games are linear functionals (i.e., witnesses) on the set of

classical noisy channels (i.e., quantum signaling correlations)

that can be obtained from the given quantum channel, and the

corresponding communication utility constitutes the optimal

value for any such a witness.

M. D. acknowledges support from MEXT Quantum Leap Flagship Program
(MEXT Q-LEAP) Grant No. JPMXS0118067285, JSPS KAKENHI Grant
Number JP20K03774, and the International Research Unit of Quantum
Information, Kyoto University. F. B. acknowledges support from MEXT
Quantum Leap Flagship Program (MEXT Q-LEAP), Grant Number JP-
MXS0120319794, and from the Japan Society for the Promotion of Science
(JSPS) KAKENHI, Grants Number 19H04066 and Number 20K03746.

M. Dall’Arno is with the Yukawa Institute for Theoretical Physics, Kyoto
University, Kitashirakawa Oiwakecho, Sakyoku, Kyoto 606-8502, Japan,
and with the Faculty of Education and Integrated Arts and Sciences,
Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
(dallarno.michele@yukawa.kyoto-u.ac.jp)

S. Brandsen is with the Department of Physics, Duke University, Durham,
North Carolina 27708, USA (sarah.brandsen@duke.edu)

F. Buscemi is with the Graduate School of Informatics, Nagoya University,
Chikusa-ku, Nagoya, 464-8601, Japan (buscemi@i.nagoya-u.ac.jp)

Report number: YITP-20-110

For any given channel and game, the problem of computing

the communication utility, as well as the encoding-decoding

achieving it, can be generally framed as a semi-definite pro-

gramming problem. However, here we are interested in those

cases where a closed-form solution is possible. To this aim,

we restrict to the following classes of games:

• Unbiased games, where any of Bob’s possible outcomes

generates the same average payoff;

• Discrimination games where the payoff is a diagonal

matrix;

• Binary-output games where Bob has two possible out-

comes;

• Binary-input-output games where Alice has two possible

inputs and Bob has two possible outcomes.

For any arbitrary game, we derive the communication

utility of any unitary, trace-class, erasure, dephasing, and

quantum-classical channel, generalizing a result by Frenkel

and Weiner [1] that applies to the identity channel. For any

unbiased game, we derive the communication utility of any

depolarizing channel. We apply our result for unitary channels

to the case of discrimination games, providing a simplified

proof of a result by Elron and Eldar [2]. We show that any

binary-output game is either trivial, or equivalent to a binary-

input-output discrimination game. For any such game, we

show that the optimal encoding consists of two orthogonal

pure states, regardless of whether the channel is commu-

tativity preserving. Using these facts, we extend previous

results [3], [4] to derive the communication utility of any

Pauli, amplitude-damping, optimal 1-to-2 universal cloning,

and shifted-depolarizing channel for any binary-output game.

The paper is structured as follows. In Section II we for-

malize the problem of evaluating the communication utility of

quantum channels. We address such a problem for arbitrary

games in Section III. We specialize our results to the cases

of unbiased, discrimination, and binary-output games in Sec-

tions IV, V, and VI, respectively. Finally, we summarize our

results and discuss some outlooks in Section VII.

II. UTILITY OF QUANTUM CHANNELS

We recall some standard facts from quantum information

theory [5]. Any quantum system is associated with a Hilbert

space H, and we denote with L(H) the space of linear

operators on H. Any quantum state in H is represented by

a density matrix ρ ∈ L(H), namely a positive semidefinite

unit-trace operator. Any quantum transformation from H to

http://arxiv.org/abs/2009.00866v2


2

K is represented by a quantum channel C : L(H) → L(K),
namely a completely-positive trace-preserving linear map. Any

quantum measurement on H is represented by a positive-

operator valued measure (POVM) {πy ∈ L(H)}, namely a

family of positive-semidefinite operators such that
∑

y πy = 1,

where 1 denotes the identity operator.

The communication setup under consideration can be

framed as a quantum game played by two parties, Alice and

Bob, and an external referee. Prior to starting the game, the

parties are allowed to establish a common strategy. In each

run, the following occurs:

1) The referee gives as an input to Alice the value x ∈ [1, n]
of a random variable X with prior probability px, known

in advance to the parties;

2) Alice and Bob are allowed to perform one-way commu-

nication over a single use of a quantum channel C from

Alice to Bob;

3) Bob returns to the referee the value y ∈ [1,m] of a

random variable Y ;

4) The referee provides a payoff according to the function

ux,y ∈ R, known in advance to the parties.

In the absence of any previously shared resource, the most

general strategy allowed by quantum theory is for Alice to

encode her input x into a quantum state ρx, and for Bob

to decode his input C(ρx) by means of a POVM {πy}. The

resulting setup is as follows

x
[1, n]

 '!&ρx
H

C
K *-+,πy

[1,m]
y

Then the expected average payoff is given by

〈u〉{ρx},{πy} =
n
∑

x=1

m
∑

y=1

pxTr
[

C(ρx)πy
]

ux,y. (1)

From Eq. (1) it immediately follows that two games with the

same quantity

gx,y := pxux,y

have the same average payoff, hence g identifies a class of

equivalence among games. We can now introduce a measure

of how useful a channel C is in maximizing the average payoff

of a game g.

Definition 1 (Communication utility). The communication

utility U(C, g) of a quantum channel C for game g is the

maximum over any encoding {ρx} and decoding {πy} of the

average payoff 〈u〉{ρx},{πy}, namely

U(C, g) = max
{ρx},{πy}

〈u〉{ρx},{πy}.

In the remaining of this work we derive the utility of several

classes of quantum channels. For clarity, we provide a glossary

of the channels considered in this work in Tab. I. We also

provide a summary of our main results in Tab. II.

III. UTILITY FOR ARBITRARY GAMES

In this Section we consider arbitrary games. Let us begin

with some general results. The following Lemma provides a

Definition Name

U(ρ) := UρU† Unitary

Fλ(ρ) := λρ+ (1 − λ)
∑

k 〈k| ρ |k〉 |k〉〈k| Dephasing

T (ρ) := Tr[ρ]σ Trace-class

Eλ(ρ) := λρ⊕ (1 − λ) Tr[ρ] |φ〉〈φ| Erasure

M(ρ) :=
∑

y Tr
[

ρπy
]

|y〉〈y| QC

Dλ(ρ) := λρ+ (1− λ)Tr[ρ]1/d Depolarizinig

P~λ
(ρ) := λ0ρ+

∑3
k=1 λkσkρσk Pauli

Aη

(

1− β γ
γ∗ β

)

=

(

1− ηβ
√
ηγ√

ηγ∗ ηβ

)

Amplitude damping

Sλ(ρ) := λρ+ (1− λ)Tr[ρ]σ Shifted depolarizing

N (ρ) := 2
d+1

Ps(ρ ⊗ 1)Ps 1 → 2 Cloning

Table I
GLOSSARY OF QUANTUM CHANNELS CONSIDERED IN THIS WORK. ALL

CHANNELS ARE FORMALLY DEFINED IN THE TEXT. NOT OTHERWISE

SPECIFIED CHANNELS ARE DENOTED WITH C IN THE TEXT.

C Game g Utility U(C, g)
Fλ Any U(U , g)
T Any maxy

∑

x gx,y
Eλ Any λU(U , g) + (1− λ)maxy

∑

x gx,y
M Any

∑

x λx
Dλ Unbiased λU(U , g) + (1− λ)

∑

x gx,0
U Discrimination

∑d−1
x=0 gxΘ(gx)

P
λ̃

Binary max

(

g0,
1+maxk≥1 |2(λ0+λk)−1|

2

)

Aη Binary 1+
√

1−4p(1−η)+4p2(1−η)

2

Sλ Binary max

[

g0,
1+λ+(1−λ)(1−2sd−1)(2g0−1)

2

]

N Binary d+g0
d+1
Table II

SUMMARY OF OUR MAIN RESULTS, NAMELY THE UTILITIESU(C, g) OF

SEVERAL CHANNELS C FOR SEVERAL CLASSES OF GAMES.

simple, channel-independent upper bound to the utility for any

given game.

Lemma 1. For any channel C and any game g, the utility

U(C, g) is upper bounded by

U(C, g) ≤
∑

x

max
y
gx,y.

Proof. By replacing the conditional probability Tr
[

C(ρx)πy
]

with an arbitrary conditional probability py|x and taking the

supremum over such conditional probabilities, one clearly has

U(C, g) ≤ sup
py|x

n
∑

x=1

m
∑

y=1

py|xgx,y.

For any fixed x, the optimal probability distribution py|x is

given by py|x = δy,y∗ , where y∗ := supy gx,y, therefore one

has

sup
py|x

n
∑

x=1

m
∑

y=1

py|xgx,y =
∑

x

sup
y
gx,y,

from which the statement immediately follows.

The following Lemma characterizes a subclass of the linear

transformations of game g under which the utility U(C, g)
transforms linearly, for any channel C.
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Lemma 2. For any game g consider the game g′ such that

g′x,y := α(gx,y + βx), for any α ≥ 0 and some {βx}. Then

for any channel C we have

U(C, g′) = α

[

U(C, g) +
∑

x

βx

]

.

Moreover U(C, g) and U(C, g′) are attained by the same

encoding {ρx} and decoding {πy}.

Proof. By definition 1 one immediately has

U(C, g′) := α sup
{ρx},{πy}

∑

x,y

Tr
[

C(ρx)πy
]

(gx,y + βx).

Since POVMs are decompositions of the identity, namely
∑

y πy = 1, and channels are trace-preserving, namely

Tr
[

C(ρx)
]

= Tr[ρx] = 1, one has

U(C, g′) = α



 sup
ρx,πy

∑

x,y

Tr
[

C(ρx)πy
]

gx,y +
∑

x

βx



 ,

for any encoding {ρx} and POVM {πy}. Since only the

first term depends on the encoding {ρx} and decoding {πy},

one has that U(C, g) and U(C, g′) are attained by the same

encoding and decoding.

As an immediate consequence of a recent breakthrough by

Frenkel and Weiner [1], the utility of any identity quantum

channel, that we denote by id, is equal to the utility of any

identity classical channel in the same dimension. Accordingly,

the utility of any unitary and dephasing channel is also equal

to the utility of the identity classical channel in the same

dimension, as follows.

Definition 2 (Unitary channel). The action of any unitary

channel U : L(H) → L(H) on any state ρ ∈ L(H) is given

by U(ρ) = UρU †, for some unitary U .

Proposition 1 (Frenkel and Weiner [1]). The utility U(U , g)
of any unitary channel U for any game g is attained by an

orthonormal encoding {ρx} and a projective decoding {πy}
that are simultaneously diagonalizable.

Definition 3. The action of the dephasing channel Fλ :
L(H) → L(H) on any state ρ ∈ L(H) is given by

Fλ(ρ) := λρ+ (1 − λ)

d
∑

k=1

〈k| ρ |k〉 |k〉〈k| ,

where d := dimH is the dimension of Hilbert space H and

{|k〉} is some o.n.b.

Proposition 2 (Frenkel and Weiner [1]). The utility U(Fλ, g)
of any dephasing channel Fλ for any game g is attained by an

orthonormal encoding {ρx} and a projective decoding {πy}
along basis {|k〉}.

At the other side of the spectrum of channels there lie the

trace-class channels, that is those channel that cannot convey

any information. Hence, their utility corresponds to a trivial

guessing on Bob’s side, as follows.

Definition 4 (Trace-type channel). A channel T is trace-type

if and only if there exists a state σ such that T (ρ) = Tr[ρ]σ
for any state ρ.

Proposition 3. For any game g, the utility U(T , g) of any

trace-type channel T is given by

U(T , g) = max
y

∑

x

gx,y.

Any encoding is optimal, and the optimal decoding is πy =
δy,y∗1, where y∗ := argmaxy

∑

x gx,y.

Proof. The statement directly follows from Definition 4.

Between unitary and trace-class channels are erasure chan-

nels, that is, channels that probabilistically declare an error

while otherwise achieving noiseless communication. Accord-

ingly, their utility is the convex combination of the utility of

a noiseless channel and a trace-class channel, as follows.

Definition 5 (Erasure channel). The action of the erasure

channel Eλ(ρ) : L(H) → L(H ⊕ K) on any state ρ ∈ L(H)
is given by

Eλ(ρ) := λρ⊕ (1− λ)Tr[ρ] |φ〉〈φ| ,
where |φ〉 ∈ K.

Proposition 4. For any game g, the utility U(Eλ, g) of erasure

channel Eλ is given by

U(Eλ, g) = λU(id, g) + (1− λ)U(T , g).
By denoting with {ρ∗x} and {π∗

y} any encoding and decoding

attaining U(id, g), the encoding {ρ∗x} and the decoding {π∗
y⊕

δy,y∗1K} attain U(Eλ, g), where y∗ := argmaxy
∑

x gx,y.

Proof. By direct computation one has

U(Eλ, g)
= max

{ρx},{πy}

∑

x,y

[

λTr
[

ρxπy
]

+ (1− λ) 〈φ| πy |φ〉
]

gx,y

≤λ max
{ρx},{πy}

∑

x,y

Tr
[

ρxπy
]

gx,y

+ (1− λ)max
{πy}

∑

x,y

〈φ| πy |φ〉 gx,y,

where the maxima are over encodings {ρx ∈ L(H)}
and decodings {πy ∈ L(H ⊕ K)}. Since Tr

[

ρxπy
]

=
Tr

[

ρxPHπyPH

]

and 〈φ| πy |φ〉 = 〈φ|PKπyPK |φ〉, where

PH and PK are the projectors on Hilbert spaces H and

K respectively, w.l.o.g. the first and second maxima in the

last step can be taken over decodings {πy ∈ L(H)} and

{πy ∈ L(K)} respectively. Then by Def. 1 for the first

maximum one has

max
ρx,πy

∑

x,y

Tr
[

ρxπy
]

gx,y =: U(id, g),

and the second maximum is trivially achieved when πy =
δy,y∗1K, where y∗ := argmaxy

∑

x gx,y, namely

max
πy

∑

x,y

〈φ| πy |φ〉 gx,y = max
y

∑

x

gx,y.
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By explicit computation the encodings {ρ∗x} and decodings

{π∗
y ⊕ δy,y∗1K} saturate this upper bound.

We conclude our study of the utility of quantum channels

for arbitrary games by considering quantum-classical channels,

which are used to represent the most general demolishing

quantum measurement.

Definition 6 (Quantum-classical channel). The action of the

quantum-classical (QC) channel M : L(H) → L(K) over any

state ρ ∈ L(H) is given by

M(ρ) :=
∑

y

Tr
[

ρπy
]

|y〉〈y| ,

for some POVM {πy ∈ L(H)} and some o.n.b. {|y〉 ∈ K}.

Proposition 5. For any game g, the utility U(M, g) of QC

channel M is given by

U(M, g) = max
S

∑

x

λx,

where S is any deterministic stochastic matrix, that is, any

matrix with entries 0 or 1 such that
∑

z Sz,y = 1 for any y,

and λx is the largest eigenvalue of
∑

y,z gx,zSz,yπy . If |λx〉 is

the corresponding eigenvector, the optimal encoding is given

by ρx = |λx〉〈λx|.
Proof. Since classical decodings are represented by stochastic

matrices, due to the linearity of the figure of merit the optimal

decoding is a deterministic stochastic matrix. Hence, by Def. 1

one has

U(M, g) := max
{ρx},S

∑

x,y,z

gx,zSz,y Tr
[

ρxπy
]

≤max
S

∑

x

λx,

where the inequality is saturated if and only if encoding {ρx}
is as given in Proposition 5.

IV. UTILITY FOR UNBIASED GAMES

In this Section we consider unbiased games, which are

games where any of Bob’s possible outcomes generate the

same average payoff. Due to Lemma 2, without loss of

generality we can take such an average to be zero.

Definition 7 (Unbiased game). We call unbiased game any

game g such that
∑

x gx,y = 0.

Definition 8 (Depolarizing channel). The action of the depo-

larizing channel Dλ : L(H) → L(H) on any state ρ ∈ L(H)
is given by

Dλ(ρ) := λρ+ (1− λ)Tr[ρ]
1

d
,

where d := dimH is the dimension of Hilbert space H.

Proposition 6. For any unbiased game g, the utility U(Dλ, g)
of the depolarizing channel Dλ is given by

U(Dλ, g) = λU(id, g),

The encoding {ρx} and decoding {πy} attaining U(id, g) also

attain U(Dλ, g).

Proof. By Def. 1 one immediately has

U(Dλ, g)

:= max
{ρx},{πy}

∑

x,y

[

λTr
[

ρxπy
]

gx,y +
1− λ

d
Tr

[

πy
]

gx,y

]

.

Since any POVM is a decomposition of the identity, namely
∑

y πy = 1, and
∑

x gx,y = 0 for any y, one has

∑

x,y

[

λTr
[

ρxπy
]

gx,y +
1− λ

d
Tr

[

πy
]

gx,y

]

=λ
∑

x,y

Tr
[

ρxπy
]

gx,y,

for any encoding {ρx} and decoding {πy}. Then one has

max
ρx,πy

λ
∑

x,y

Tr
[

ρxπy
]

gx,y = λU (id, g) .

for any unitary channel U .

V. UTILITY FOR DISCRIMINATION GAMES

In this Section we consider discrimination games, that is

games where the payoff is a diagonal matrix and thus the

numbers of inputs and outputs are equal, that is m = n.

Definition 9 (Discrimination game). We call discrimination

game any game g such that gx,y = δx,ygx, for some gx.

According to Def. 9, the utility of any channel C for

discrimination game g is given by

U(C, g) = sup
{ρx},{πx}

∑

x

Tr
[

C(ρx)πx
]

gx.

We have shown in Proposition 1 that w.l.o.g. the optimiza-

tion of the utility for any unitary channel can be restricted to

a finite set of encodings and decodings. In the following we

specify such a result by deriving a closed form for the utility

U(U , g) of any unitary channel U for any discrimination game

g. This extends and simplifies the proof of a result by Elron

and Eldar [2].

Proposition 7. For any discrimination game g, the utility

U(U , g) of any unitary channel U is given by

U(U , g) =
d−1
∑

x=0

gxΘ(gx),

where w.l.o.g. we take g0 ≥ g1 ≥ · · · ≥ gn−1 and Θ(x) is the

Heaviside step function.

Proof. For a unitary channel U , the unitary operator can be

absorbed into the encoding and the decoding such that, without

loss of generality, we can consider only the case of the identity

channel U = id.

If gx ≤ 0 for any x then by Lemma 1 one has that

U(U , g) ≤ 0. This bound is attained by encoding {ρx} and

decoding {πy} given by

ρx =

{

|1〉〈1| , if x = 0,

|0〉〈0| , if x > 0,
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and

πx =

{

|0〉〈0| , if x = 0,
1

n−1 (1− |0〉〈0|), if x > 0.

Then let g0 > 0. For any {ρx} and {πx} one has

∑

x

Tr[ρxπx]gx ≤
∑

x

Tr
[

ρxπ
′
x

]

gx

where for any x ≥ 1 one has

π′
x :=

{

πx if gx ≥ 0,
0 if gx < 0

and π′
0 = 1−∑

x 6=0 π
′
x, therefore π′

0 ≥ π0.

Therefore the discrimination game g′x given by

g′x := gxΘ(g(x)),

is such that U(U , g′) = U(U , g). Moreover U(U , g) and

U(U , g′) are attained by the same encoding and decoding.

By denoting with ||·||∞ the largest singular value, By Def. 1

one has

U(U , g′) := max
{ρx},{πx}

∑

x

Tr[ρxπx]g
′
x

= max
{πx}

∑

x

g′x||πx||∞,

where the second equality represents an upper bound saturated

when ρx is the projector on the largest eigenvalue of πx, for

any x.

We relax the condition
∑

x πx = 1 to the weaker con-

dition
∑

x Tr[πx] = d, where d := dimH. Thus we have
∑

x ||πx||∞ ≤ d. Moreover, since πx ≤ 1 for any x, one has

||πx||∞ ≤ 1 for any x. Then one clearly has

max
{πx}

∑

x

g′x||πx||∞ =

d−1
∑

x=0

g′x,

where the equality represents an upper bound saturated when

πx = |x〉〈x| for any x = 0, . . . d− 1, so the statement remains

proved.

VI. UTILITY FOR BINARY-OUTPUT GAMES

In this section we consider binary-output games, which

are games with n = 2 outputs (but an arbitrary number

m of inputs). It is perhaps surprising that any binary-output

game can be recast as a binary-input-output (binary for short)

discrimination game, that is a diagonal game with m = n = 2
inputs and outputs, parametrized by a single real parameter,

as shown by the following Lemma.

Lemma 3. For any binary-output game g, there exists a

binary-input-output discrimination game g′ such that

U(C, g) = a · U(C, g′) + b ,

for any channel C. In the above formula one has g′ =
diag(g0, 1− g0), where

a :=
∑

x

∣

∣gx,0 − gx,1
∣

∣ ,

b :=
∑

x

min
y
gx,y,

g0 :=
1

a

∑

x

(

gx,0 − gx,1
)

Θ
(

gx,0 − gx,1
)

,

where Θ(x) is the Heaviside step function. Moreover, the

same encoding and decoding achieving U(C, g′) also achieve

U(C, g).
Proof. For any binary-output game g, consider another binary-

output game g̃ defined as

g̃x,y :=
1

a

(

gx,y −min
z
gx,z

)

,

for any x and y. Hence, for any x one has that g̃x,y ≥ 0
for any y, with equality for at least one value of y. Due to

Lemma 2 one immediately has U(C, g) = a · U(C, g̃) + b and

the encodings and decodings attaining U(C, g) and U(C, g̃)
are the same.

For any encodings {ρx}, any decodings {πy}, and any x0
and x1 such that g̃x0,1 = g̃x1,1 = 0, let without loss of general-

ity Tr
[

C(ρx1
)π0

]

≥ Tr
[

C(ρx0
)π0

]

. Therefore, replacing state

ρx0
with state ρx1

increases the average payoff. Hence, the

utility is attained when states {ρx} coincide for any x such that

g̃x,1 = 0, and the same for any x such that g̃x,0 = 0. Hence,

the utility U(C, g̃) = U(C, g′), and the statement remains

proved.

Therefore, without loss of generality in the following we

consider binary discrimination games g, which are games with

m = 2 inputs and n = 2 outputs, such that the payoff g is

diagonal and constitutes a probability distribution.

For any such a game, as an immediate consequence of

Helstrom’s theorem [6] one has that

U(C, g) = max
{ρx}

1

2

(

1 + ‖H‖1
)

.

where || · ||1 := Tr
[

| · |
]

denotes the 1-Schatten norm, and

H := g0C(ρ0)− (1− g0)C(ρ1),

is the Helstrom matrix.

For any commutativity-preserving channel, that is any chan-

nel C such that [C(ρ), C(σ)] = 0 whenever [ρ, σ] = 0, and

any binary discrimination game g, it is straightforward that

the optimal encoding is also orthogonal, that is 〈φ0|φ1〉 = 0.

However, it is perhaps surprising that this fact holds true also

for non-commutativity-preserving channels, as stated by the

following Lemma.

Lemma 4. For any channel C and any binary discrimination

game g, the utility U(C, g) is attained by an orthonormal

encoding {φ∗x}, that is 〈φ∗x0
|φ∗x1

〉 = δx0,x1
.
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Proof. For any encoding {|φx〉}, let us define the matrix K
and a spectral decomposition as follows:

K := g0 |φ0〉〈φ0| − (1− g0) |φ1〉〈φ1| =:
∑

k

λk |k〉〈k| ,

and consider the dephasing channel P0(·) :=
∑

k 〈k|·|k〉 |k〉〈k|
on a basis of eigenvectors of K . One has that

K = P0(K) = g0σ0 − (1 − g0)σ1,

where σx := P0(|φx〉〈φx|) and therefore σx ≥ 0, Tr[σx] = 1,

and [σ0, σ1] = 0, namely σx are commuting states. Since

U(C, g) only depends on the encoding {φx} through the

Helstrom matrix H := C(K), encoding {σx} performs as well

as encoding {φx}, and therefore without loss of generality one

can maximize over commuting encodings only. By the con-

vexity of Tr
[

Pos(X − Y )
]

in X and Y , a pure orthonormal

encoding {φx} suffices.

Notice that Lemma 4 cannot be generalized to discrimina-

tion games with more than two alternatives. For example, let

M be the quantum-classical channel corresponding to the trine

POVM of a qubit, that is M(ρ) =
∑

y 〈πy | ρ |πy〉 |y〉〈y| with

|πy〉 := 2
3U

y |0〉 and U := e−i 2π
3
σY , and let g be the discrimi-

nation game gx,y := δx,y . Then one has U(M, g) = 2 and the

optimal encoding is the trine encoding, that is |φx〉 = Ux |0〉,
which is of course not pairwise commuting. For comparison,

the best pairwise commuting encoding is |φ0〉 = |0〉 and

|φ1〉 = |φ2〉 = |1〉, and in this case the average payoff is

given by
∑

x,y | 〈φx|πy〉 |2 = 5/3 < 2.

The Pauli channel is an example of a qubit channel which

is commutativity preserving.

Definition 10 (Pauli channel). The action of the Pauli channel

P~λ
: L(H) → L(H) with dim(H) = 2 on any state ρ is given

by

P~λ
(ρ) = λ0ρ+

3
∑

k=1

λkσkρσk,

where σ1 = σX , σ2 = σY , and σ3 = σZ are the Pauli

matrices.

Proposition 8. For any binary discrimination game g, the

utility U(P~λ
, g) of the Pauli channel P~λ

is given by

U(P~λ
, g) = max

(

g0,
1 + maxk≥1 |2(λ0 + λk)− 1|

2

)

.

Proof. By Lemma 4 it suffices to consider a pure orthonormal

encoding {φ±}. Upon decomposition over Pauli matrices one

has

φ± =
1

2
±

3
∑

i=1

αi

σi
2
,

3
∑

i=1

α2
i = 1.

By direct computation one has

P~λ
(φ±) =

1

2
±

3
∑

i=

αi(2(λ0 + λi)− 1)
σi
2

Since the eigenvalues of the state 1+xσx+yσy+zσz are 1±
√

x2 + y2 + z2, one has that the eigenvalues of the Helstrom

matrix H = g0P~λ
(φ+)− (1− g0)P~λ

(φ−) are

2g0 − 1±
√

∑3
i=1 α

2
i [2(λ0 + λi)− 1]2

2
,

and thus

U(P~λ
, g)

=max






g0, max

~α∑
i
α2

i=1

1 +
√

∑3
i=1 α

2
i [2(λ0 + λi)− 1]2

2






.

By making the substitution βi := α2
i , one has that ~β is a

probability distribution and therefore the maximum over ~α
can be explicitly computed as

max
~β∑

i βi=1
~β≥0

√

√

√

√

3
∑

i=1

βi[2(λ0 + λi)− 1]2 = max
i≥1

|2(λ0 + λi)− 1|,

and the statement immediately follows.

The amplitude-damping channel is an example of a qubit

channel which is not commutativity preserving.

Definition 11 (Amplitude damping channel). The action of

the amplitude damping channel Aη : L(H) → L(H) with

dim(H) = 2 on any state ρ :=

(

1− β γ
γ∗ β

)

is given by

Aη(ρ) =

(

1− ηβ
√
ηγ√

ηγ∗ ηβ

)

.

Proposition 9. The utility U(Aη, g) of any amplitude damping

channel Aη for any binary discrimination game g is given by

U(Aη, g) =
1 +

√

1− 4g0(1 − η) + 4g20(1− η)

2
,

and an optimal encoding is given by

|ψ∗
0〉 =

√
g0 |0〉+

√

1− g0 |1〉 ,
|ψ∗

1〉 =
√

1− g0 |0〉 −
√
g0 |1〉 .

Proof. Due to Lemma 4 the optimal encoding is pure and

orthonormal. W.l.o.g. we consider

|ψ0〉 =
√

1− γ2 |0〉+ γ |1〉 ,
|ψ1〉 = γ |0〉 −

√

1− γ2 |1〉 .
The eigenvalues λ± of the Helstrom matrix H :=
g0Aη(|ψ0〉〈ψ0|)− (1− g0)Aη(|ψ1〉〈ψ1|) are given by

λ± =
2g0 − 1±

√

aγ4 + bγ2 + c

2
,

where

a =4η(η − 1),

b =8η
[

(η − 1)g0 − η + 1
]

,

c =4(η − 1)2g20 − 4(2η2 − 3η + 1)g0 + 4η(η − 1) + 1.
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W.l.o.g., we take g0 ≥ 1
2 . Hence, the discrimination utility

U(Aη, g) is given by

U(Aη, g) = max
γ

1 + λ+ + |λ−|
2

.

If the utility is achieved for γ such that λ− ≥ 0, by direct

inspection one has

1 + λ+ + |λ−|
2

= g0,

for any η, namely

U(Aη, g) = g0.

However, this is absurd, because upon setting γ = 0 (i.e.

|ψx〉 = |x〉) it immediately follows that

1 + λ+ + |λ−|
2

= g0 + (1− g0)η,

namely

U(Aη, g) ≥ g0 + (1− g0)η.

Therefore U(Aη, g) > g0 for any 0 < η ≤ 1 and γ and g0 < 1,

which is absurd. Then one can conclude λ− < 0 and

U(Aη, g) = max
γ

1 + λ+ − λ−
2

.

By direct inspection, the zeros of the first derivative of (1+
λ+ − λ−)/2 are attained when γ = ±√

1− g0 and γ = 0.

The zeros of the second derivative are attained when γ =
±
√

(1− g0)/3 and the second derivative is positive when γ =
0. Therefore the maximum is attained when γ = ±√

1− g0,

and the statement follows by direct computation.

Let us consider the two extremal cases g0 = 1/2 (balanced)

and g0 = 1 (maximally unbalanced). For g0 = 1/2 the

optimal encoding given by Prop. 9 becomes |ψ±〉 = |±〉,
and the corresponding binary discrimination utility becomes

U(Aη, g) = (1 +
√
η)/2. For g0 = 1, the optimal encoding

given by Proposition 9 becomes |ψi〉 = |i〉, and the corre-

sponding binary discrimination utility becomes U(Aη, g) = 1.

This situation is depicted in Fig. 1.

An example of arbitrary dimensional, non commutativity-

preserving channel is the shifted-depolarizing channel. Follow-

ing Refs. [7], [8], [9], [10], we define the shifted-depolarizing

channel as follows.

Definition 12 (Shifted-depolarizing channel). The action of

the shifted-depolarizing channel Sλ : L(H) → L(H) on any

state ρ ∈ L(H) is given by

Sλ(ρ) := λρ+ (1 − λ)Tr[ρ]σ,

where σ ∈ L(H) is a state.

Proposition 10. For any binary game g, the utility U(Sλ, g)
of the shifted-depolarizing channel Sλ is given by

U(Sλ, g)

=max

[

g0,
1 + λ+ (1− λ)(1 − 2sd−1)(2g0 − 1)

2

]

, (2)

where sd−1 is the smallest eigenvalue of σ.

U
(A

, g
)

g0

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5  0.6  0.7  0.8  0.9  1

Figure 1. (Color online) Binary utility U(Aη , g) (upper black line) of
the amplitude damping channel Aη for a binary discrimination game g =
diag(g0, 1−g0) as a function of g0 for fixed η = 1

2
. The average payoff with

encodings |ψi〉 = |±〉 (blue curved line) and |ψi〉 = |i〉 (red straight line)

are optimal for the balanced case g0 = 1
2

and for the maximally unbalanced
case g0 = 1, respectively. The trivial guess (dotted black line) is optimal only
in the maximally unbalanced case.

Proof. Due to Lemma 4 w.l.o.g. we take the encoding {ρx}
to be pure and orthogonal. Denote the eigenvalues of σ with

{s0, s1, ..., sd−1} where w.l.o.g. we take s0 ≥ s1 ≥ .... ≥
sd−1. The Helstrom matrix becomes

H = g0Sλ(ρ0)− (1− g0)Sλ(ρ1)

= −λ(1− g0)ρ1 + λg0ρ0 + (1− λ)(2g0 − 1)σ.

Let us set R := −λ(1−g0)ρ1 and C := λg0ρ0+(1−λ)(2g0−
1)σ, so that H = R+C, where the only non-null eigenvalue

of R is rd−1 := −λ(1− g0) ≤ 0 and the eigenvalues of C are

{c0, ...., cd−1} where cj ≥ cj+1 ≥ 0.

Then we can label the eigenvalues of H as {h0, ..., hd−1}
where hj ≥ hj+1, and applying Weyl’s inequality immediately

results in the system:
{

ri + cd−1 ≤ hi ≤ ri + c0,

rd−1 + ci ≤ hi ≤ r0 + ci.

Since ri = 0 for any i < d− 1, this becomes
{

cd−1 ≤ hi ≤ ci ∀i < d− 1,

rd−1 + cd−1 ≤ hd−1 ≤ rd−1 + c0.

If hd−1 ≥ 0, then ‖H‖1 = 2g0 − 1, which corresponds

to the strategy of trivial guessing. However, if hd−1 ≤ 0,

then ‖H‖1 ≤ ∑d−2
i=0 ci − (rd−1 + cd−1). This upper bound

can be obtained by selecting R to have its single non-zero

eigenvalue rd−1 corresponding to the eigenvector for which C
has the eigenvalue cd−1. Making use of the identity

∑d−2
i ci =

Tr[C] − cd−1 = [λg0 + (1 − λ)(2g0 − 1)] − cd−1, one has

‖H‖1 = Tr[C]− rd−1 − 2cd−1, and thus ‖H‖1 is maximized

when cd−1 is minimized.

Let us set A = λg0ρ0 with only non-null eigenvalue a0 ≥ 0
and B = (1 − λ)(2g0 − 1)σ with eigenvalues {b0, ..., bd−1}
where bj ≥ bj+1, so that C = A+B. Then another application

of Weyl’s inequality yields bd−1 ≤ cd−1, with equality
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saturated if and only if ρ0 is orthogonal to the eigenvector of

σ corresponding to eigenvalue sd−1 (w.l.o.g. we take here σ 6=
1/d, as the case of the depolarizing channel has already been

discussed in Prop. 6), and thus cd−1 = (1−λ)(2g0 − 1)sd−1.

Finally, ‖H‖1 = λ+(1−λ)(1−2sd−1)(2g0−1), from which

the statement immediately follows.

Further results can be derived for the utility of group-

covariant quantum channels.

Definition 13 (Covariant channel). A channel C : L(H) →
L(K) is G-covariant if group G admits unitary representations

Uk ∈ L(H) and Vk ∈ L(K) such that

C(UkρU
†
k) = VkC(ρ)V †

k (3)

for any ρ ∈ L(H) and any k ∈ G.

Lemma 5. For any G-covariant channel C and any binary

game g, if an encoding {ρx} attains the utility U(C, g), then

also any encodings {σx := UkρxU
†
k}, where k is any element

of G, attains the same utility U(C, g).
Proof. The statement follows by direct inspection, namely

||g0C(σ0)− (1− g0)C(σ1)||1
=||g0C(Ukρ0U

†
k)− (1 − g0)C(Ukρ1U

†
k)||1

=||g0VkC(ρ0)V †
k − (1− g0)VkC(ρ1)V †

k ||1,
=||Vk

(

g0C(ρ0)− (1− g0)C(ρ1)
)

V †
k ||1,

=||g0C(ρ0)− (1 − g0)C(ρ1)||1,

where the second equality follows from Eq. (3), and the

fourth from the invariance of trace distance under unitary

transformations.

Then, the utility of universally covariant channels follows.

As an example, let us consider the 1 to 2 optimal universally

covariant quantum cloning channel [11].

Definition 14 (Universal optimal cloning). The action of the

universal optimal cloning channel N : L(H⊗N ) → L(H⊗M )
on any state ρ ∈ L(H) is given by

N (ρ) :=
f(N)

f(M)
Ps(ρ

⊗N ⊗ 1
⊗(M−N))Ps

where d = dimH, Ps is the projector on the symmetric

subspace of H⊗M , and f(x) :=
(

d+x−1
x

)

.

Proposition 11. For any binary discrimination game g, the

utility U(N , g) of the 1 → 2 universal optimal cloning channel

N : L(H) → L(H⊗2) is given by

U(N , g) =
d+ g0
d+ 1

,

and any orthonormal pure encoding is optimal.

Proof. By Lemmas 4 and 5 any orthonormal pure encoding

is optimal. W.l.o.g. let us fix a computational basis and set

ρx = |x〉〈x| for x = 0, 1. Then we have

Ps =
∑

n,m

(|n,m〉+ |m,n〉)(〈n,m|+ 〈m,n|)
4

,

and thus

N (|0〉〈0|) = 2

d+ 1

∑

i

(|0, i〉+ |i, 0〉)(〈0, i|+ 〈i, 0|)
4

,

and analogously for N (|1〉〈1|) upon replacing |0〉 with |1〉.
Therefore we have

N (|0〉〈0|)N (|1〉〈1|)

=
1

(d+ 1)2
(|0, 1〉+ |1, 0〉)(〈0, 1|+ 〈1, 0|)

2

=N (|1〉〈1|)N (|0〉〈0|),
and thus [N (|0〉〈0|),N (|1〉〈1|)] = 0. Therefore N (|0〉〈0|) and

N (|1〉〈1|) admit a basis of common eigenvectors, namely

N (|x〉〈x|) =
∑

k

λk|x |k〉〈k| .

The only common eigenvector such that λk|x 6= 0 for any

x is (|0, 1〉 + |1, 0〉)(〈0, 1| + 〈1, 0|)/2 and its corresponding

eigenvalue is (d+1)−1. Then the trace norm of the Helstrom

matrix is given by

‖g0N (|0〉〈0|)− (1 − g0)N (|1〉〈1|)‖1 =
d+ 2g0 − 1

d+ 1
,

from which the statement immediately follows.

Notice that the partial trace of the 1 → 2 cloning channel

N is a depolarizing channel given by

Tr2[N (ρ)] =
1

2(d+ 1)

(

(d+ 2)ρ+Tr[ρ]
1

d

)

= Dλ(ρ),

with λ = (d+2)/[2(d+1)]. Its utility is given by Eq. (2), i.e.

U(Tr2[N (ρ)], g) = max

(

g0,
(d− 2)g0 + d+ 3

2(d+ 1)

)

.

This situation is depicted in Fig. 2.

VII. CONCLUSION AND OUTLOOK

In this work we considered quantum communication games,

where Alice’s task is to communicate some information re-

ceived by a referee to Bob through a quantum channel, in

order to maximize a payoff that depends on both the received

information and Bob’s output. The maximum average payoff

defines the communication utility of the channel for that partic-

ular game. Hence, communication games act as witnesses on

the set of classical noisy channels that can be obtained from the

given quantum channel, and the corresponding communication

utility constitutes the optimal value for any such a witness. We

derived general results and closed-form, analytic solutions for

the utility of several classes of quantum channels and several

classes of games.

A natural extension of our setup consists of allowing Alice

and Bob to share some entangled state, thus generalizing su-

perdense coding [12] to cases involving noisy communication

channels. In such a case, the object being considered is not

the channel C alone, but an extension C⊗ id. For the noiseless

channel, clearly the entangled assisted utility of the identity

channel in dimension d is equivalent to the utility of the

identity channel in dimension d2. Based on this example, it
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Figure 2. (Color online) Binary utility U(N , g) (upper red lines) and binary
utility U(Dλ, g) (lower blue lines) of the covariant cloning channel N and
depolarizing channel Dλ(ρ) := Tr2[N (ρ)] with λ = (d + 2)/[2(d + 1)],
respectively, as a function of g0, for fixed dimension d = 2, 3, and 4. The
trivial guess (dotted line) is also depicted. Notice that, perhaps surprisingly,
for d = 2 and g0 = 1

2
the utilities U(N , g) and U(Dλ, g) coincide. This

can be regarded as an entangled analogy of the readily verifiable fact that, for
any λ, the success probabilities in the discrimination of equiprobable qubit
states Dλ(|0〉〈0|) and Dλ(|1〉〈1|) are the same when one or two copies of
the unknown state are available.

is clear that in at least some cases entanglement can increase

the utility of quantum channels.

Our results shed new light on the problem of creating

quantum correlations. It is a known result [13], [14] that

classically correlated bipartite states can be transformed by

a local channel in a state exhibiting quantum correlations,

if and only if the channel is not commutativity preserving.

However, not much is known about the problem of character-

izing commutativity preserving channels in the general case

where the dimensions of the input and output Hilbert spaces

differ. Notice that from the proof of Thm. 11, it immediately

follows that universal optimal 1 to 2 cloning is a commutativity

preserving channel.

Our results have important applications in the quantification

of non-markovianity of quantum channels. In Theorem (3)

of Ref. [15], it was shown that the supremum of non-

Markovianity over the encoding and the binary discrimination

game is attained by an orthogonal encoding. From the proof

of our Lemma 4, it immediately follows that this is actually

the case for any binary discrimination game.

Finally, our results generalize to the quantum case the partial

ordering among classical channels derived by Shannon [16].

Therein, it is shown that if one classical channel C0 can be

reproduced by another C1 upon classical (possibly correlated)

pre- and post-processes, then C1 has larger Shannon capacity

than C0. However, the validity of the converse remains an open

problem.
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