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A RIGIDITY PROPERTY OF COMPLETE SYSTEMS

OF MUTUALLY UNBIASED BASES

MÁTÉ MATOLCSI AND MIHÁLY WEINER

Abstract. Suppose that for some unit vectors b1, . . .bn in Cd

we have that for any j 6= k bj is either orthogonal to bk or
|〈bj ,bk〉|2 = 1/d (i.e. bj and bk are unbiased). We prove that
if n = d(d+1), then these vectors necessarily form a complete sys-
tem of mutually unbiased bases, that is, they can be arranged into
d+1 orthonormal bases, all being mutually unbiased with respect
to each other.

1. Introduction

The concept of mutually unbiased bases (MUBs) originates from
quantum state tomography ([8]), and appears also in several protocols
in quantum information theory ([12]). As such, the existence and ex-
plicit constructions of MUBs have been active areas of research in the
past decades (see e.g. [7] for a recent comprehensive survey article).

Recall that two orthonormal bases in Cd, A = {e1, . . . , ed} and B =

{f1, . . . , fd} are called unbiased if for every 1 ≤ j, k ≤ d, |〈ej, fk〉| =
1√
d
.

A collection B1, . . .Bm of orthonormal bases is said to be (pairwise)
mutually unbiased if any two of them are unbiased. If the dimension
d is a prime-power, then the maximal number of MUBs is well-known
to be d + 1 (see e.g. [8, 13, 1, 10]). It is also well-known that in any
dimension d the maximal number of MUBs is at most d + 1 (see e.g.
[13, 2, 11, 7]). For this reason, a set of d + 1 mutually unbiased bases
is commonly called a complete system of MUBs. However, for any d
which is not a prime-power, it is not known whether a complete system
of MUBs exists (even for d = 6, despite considerable efforts [3, 4, 5, 9]).
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In [2, Theorem 8] it is proved that unit vectors forming a complete
system of MUBs, if they exist, must satisfy some extra algebraic rela-
tions. Furthermore, in [11, Theorem 2.2] the following result is proved:
a collection of unit vectors in Cd, all of which are orthogonal or unbi-
ased to a fixed orthonormal basis, can consist of at most d2 vectors.
These two results raise the following very general and natural question:
given a set of d(d + 1) unit vectors in Cd such that any two of them
are either orthogonal or unbiased to each other, is it true that they
necessarily form a complete system of MUBs? In this paper we answer
this question in the affirmative, which can be viewed as a certain rigid-
ity property of complete systems of MUB’s. This result is somewhat
surprising, considering that as many as (d− 1)2 unit vectors in C

d can
be given such that they are pairwise unbiased to each other. Indeed,
consider a SIC-POVM (which conjecturally exists in any dimension) in
Cd−1, i.e. a collection of (d − 1)2 unit vectors in Cd−1 such that any
pair has inner product with absolute value 1√

d
. Append each vector

with a coordinate 0 in the dth coordinate, and you obtain a collection
of (d−1)2 unit vectors in Cd which are pairwise unbiased to each other.
One might expect that similar special constructions may yield d(d+1)
unit vectors in several different ways, such that they are all orthogonal
or unbiased to each other, but Theorem 2.4 tells us that this is not the
case.

2. From a set of vectors to a complete system of MUBs

Suppose that n = d(d+ 1) and b1, . . .bn ∈ Cd is a collection of unit
vectors such that any two of them is either orthogonal or unbiased to
each other, that is |〈bj,bk〉| = 0 or 1√

d
for any j 6= k. We will prove

below (Theorem 2.4) that these vectors necessarily form a complete
system of MUBs.

Consider the simple graphG = (V,E) with vertex set V = {b1, . . .bn}
and edge set E containing all (unordered) pairs of orthogonal vectors
in V . In other words, we imagine that vectors bj and bk are connected
by an edge if they are orthogonal to each other. Our aim is to prove
that G is a disjoint union of d + 1 complete graphs, each containing
d vertices. This will prove that the vectors bj can be grouped into
d + 1 orthonormal bases, all being mutually unbiased to each other.
We shall begin by considering the number of edges in G. Note that if
the vectors in V form d+1 mutually unbiased bases, then the number
of orthogonality relations (i.e. the number of edges in G) should be
(d+ 1)

(

d

2

)

.
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The following is a well-known general fact, but we include it for the
convenience of the reader.

Lemma 2.1. Suppose A is a self-adjoint matrix of rank r = rk(A).
Then (Tr A)2 ≤ rTr (A2) with equality holding if and only if A is a
multiple of a projection.

Proof. We may assume that the rank r > 0 (the case r = 0 implies A =
0, which is trivial). Let P be the orthogonal projection onto the range
space of A. Then PA = A and Tr (P 2) = Tr (P ) = rk(P ) = rk(A) = r.
Using the Cauchy-Schwarz inequality |Tr(X∗Y )|2 ≤ Tr(X∗X)Tr(Y ∗Y )
we have

(Tr A)2 = (Tr PA)2 ≤ Tr (P 2) Tr (A2) = rTr (A2)

with equality holding if and only if A and P are parallel; i.e. when A
is a multiple of P . �

Corollary 2.2. The graph G has at most (d+ 1)
(

d

2

)

edges.

Proof. We will denote the number of edges by |E|. Consider the Gram
matrix

K := (〈bj ,bk〉){j,k}
of the given vectors. The rank of K is the dimension of the subspace
spanned by the vectors b1, . . .bn ∈ Cd and hence rk(K) ≤ d. Since
these vectors are of unit length, the diagonal elements ofK are all equal
to 1 and thus Tr (K) = n = d(d + 1). Moreover, as K is self-adjoint
(actually: positive semidefinite),

Tr (K2) = Tr (K∗K) =
∑

j,k

|Kj,k|2 =
∑

j,k

|〈bj,bj〉|2.

In the above sum, we have 3 kind of terms. First, the ones with j = k,
of which we have n = d(d + 1) many. Second, the ones corresponding
to orthogonal pairs of vectors; of these we have 2|E| – the factor of
2 needed because we considered G to be undirected. Finally, we have
the ones corresponding to unbiased pairs of vectors; of these we have
2
((

n

2

)

− |E|
)

. So

Tr (K2) = n · 1+ 2|E| · 0 + 2

((

n

2

)

− |E|
)

· 1
d
= n+

n(n− 1)

d
− 2|E|

d
,

and hence by the previous lemma

n2 ≤ d

(

n+
n(n− 1)

d
− 2|E|

d

)

.

Substituting n = d(d+ 1) and rearranging we get |E| ≤ d(d2−1)
2

, which
is the claimed bound. �
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To completely determine |E|, we also need to bound it from below.
This means bounding the number of non-orthogonal (i.e. unbiased)
pairs from above. More concretely, we need to show that using the
vectors b1, . . .bn, one can form at most

(

d+1
2

)

d2 unbiased pairs; i.e.
exactly as many as we would have if these vectors were to from a
complete system of MUBs.

To this end, for each j ∈ {1, . . . n} consider Qj := |bj〉〈bj|, i.e. the
orthogonal projection onto the one-dimensional subspace given by the
vector bj , and let Xj = Qj − 1

d
I. Elementary computation shows that

the Hilbert-Schmidt inner products satisfy

(1) 〈Xj, Xk〉HS = Tr (X∗
jXk) = |〈bj,bk〉|2 −

1

d
,

where 〈·, ·〉HS denotes the usual Hilbert-Schmidt inner product onMd(C).
We shall now apply the estimate of Lemma 2.1 to the Gram matrix

K̃ := (〈Xj, Xk〉HS){j,k}

Note that K̃ has size n× n.

Lemma 2.3. The graph G has exactly (d + 1)
(

d

2

)

edges, and K̃ is an
orthogonal projection of rank d2 − 1.

Proof. Since Tr (Xj) = Tr (Qj − 1
d
I) = 1− (d/d) = 0 for all j = 1, . . . n,

the span of {Xj |j = 1, . . . n} is contained in the subspace of traceless

d× d matrices; thus rk(K̃) ≤ d2 − 1. Moreover,

Tr (K̃) =
∑

j

(

|〈bj,bj〉|2 −
1

d

)

= n

(

1− 1

d

)

and

Tr (K̃2) =
∑

j,k

(

|〈bj,bk〉|2 −
1

d

)2

= n(1− 1

d
)2 + 2|E| 1

d2

where we have used that by (1), the diagonal entries of K̃ are equal
to 1 − 1/d, the entries corresponding to orthogonal pairs are equal to
0 − 1/d = −1/d and the entries corresponding to unbiased pairs are

equal to 1/d − 1/d = 0. Taking into account rk(K̃) ≤ d2 − 1, the
application of Lemma 2.1 to the Gram matrix K̃ gives

(2) n2(1− 1

d
)2 ≤ (d2 − 1)(n(1− 1

d
)2 + 2|E| 1

d2
).

After substituting n = d(d+ 1) and rearranging, we get |E| ≥ (d +
1)
(

d

2

)

. This, together with Corollary 2.2, proves that this inequality is
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actually an equality. Therefore, by the equality case of Lemma 2.1, the
matrix K̃ is a multiple of a projection; K̃ = λP for some scalar λ and
orthogonal projection P . Also, the inequality in (2) must also be an

equality, which implies rk(P ) = rk(K̃) = d2 − 1. Therefore

n(1− 1

d
) = Tr (K̃) = Tr (λP ) = λ(d2 − 1),

implying that λ = 1 and hence that K̃ = P . �

Consider the n × n matrix A := (d − 1)I − dK̃. By what we know

about the entries of K̃, it is easy to verify that

Aj,k =

{

1, if bj ⊥ bk,
0, otherwise;

i.e. A is simply the adjacency matrix of G. Thus, by having established
that K̃ is a rank d2 − 1 projection, we can precisely determine the
spectrum of the adjacency matrix A, or, as it is called in short, the
spectrum of the graph G.

In general, the spectrum of a graph does not determine its isomor-
phism class. That is, there exist graphs which are not isomorphic, yet
have the same spectrum (including multiplicities); a curious fact that
was first noted more than half a century ago [6]. However, in this par-
ticular case, we can prove that G must be a disjoint union of (d + 1)
complete graphs, each with d vertices.

Theorem 2.4. Let n = d(d + 1) and b1 . . .bn ∈ Cd be a collection
of unit vectors such that |〈bj ,bk〉|2 is either 0 or 1/d for any j 6= k
(i.e. such that any two of them are either orthogonal or unbiased to each
other). Then the vectors b1 . . .bn can be arranged into d+1 orthogonal
bases, all being mutually unbiased to each other.

Proof. The eigenvalues of the matrix A = (d−1)I−dK̃, defined above,
are −1 (with multiplicity d2−1) and d−1 (with multiplicity n−d2+1 =
d+ 1). Let 1 ∈ Cn denote the vector with entry 1 in each coordinate,
and consider h = 〈1, A1〉. Due to the eigenvalues of A we have h ≤
(d−1)〈1, 1〉 = (d−1)d(d+1), with equality only if 1 is an eigenvector
with eigenvalue d−1. Furthermore, h is the sum of entries in A, which
equals to twice the number of edges in G (each edge being counted
twice by the symmetry of A). Therefore h = |E| = (d − 1)d(d + 1).
This implies that 1 is an eigenvector with eigenvalue d−1, which means
that each vertex in G has degree d− 1 (in other words, the graph G is
d− 1-regular).
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It is also well-known that Tr (A3) equals to the number of (ordered)
triangles present in G. By knowing the spectrum of A we can calculate
Tr (A3) = (−1)(d2 − 1) + (d − 1)3(d + 1) = (d2 − 1)d(d − 2). We
claim that this implies that G can be broken up to the disjoint union
of d + 1 complete graphs with d vertices each. Indeed, the number of
(ordered) triangles in a d − 1 regular graph on n vertices is at most
n(d− 1)(d− 2), because from each vertex we can choose (d− 1)(d− 2)
ordered pairs of edges, and the maximum number of triangles occurs
if each of these pairs can be completed by a further edge to make a
triangle. This happens if and only if G breaks up to a disjoint union
of d+ 1 complete graphs on d vertices.

In turn, this is equivalent to the vectors b1,b2, . . . ,bn forming d+1
orthonormal bases, all being pairwise unbiased with respect to each
other. �
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