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A RIGIDITY PROPERTY OF COMPLETE SYSTEMS
OF MUTUALLY UNBIASED BASES

MATE MATOLCSI AND MIHALY WEINER

ABSTRACT. Suppose that for some unit vectors by,...b, in C¢
we have that for any j # k bj; is either orthogonal to by or
|(b;,bg)|*> = 1/d (i.e. bj and by are unbiased). We prove that
if n = d(d+1), then these vectors necessarily form a complete sys-
tem of mutually unbiased bases, that is, they can be arranged into
d 4+ 1 orthonormal bases, all being mutually unbiased with respect
to each other.

1. INTRODUCTION

The concept of mutually unbiased bases (MUBs) originates from
quantum state tomography ([§]), and appears also in several protocols
in quantum information theory ([12]). As such, the existence and ex-
plicit constructions of MUBs have been active areas of research in the
past decades (see e.g. [7] for a recent comprehensive survey article).

Recall that two orthonormal bases in C4, A = {e;,...,e;} and B =

1
{f1,....£;} are called unbiased if for every 1 < j, k < d, |(e;,fi)| = Nk

A collection By, ...B,, of orthonormal bases is said to be (pairwise)
mutually unbiased if any two of them are unbiased. If the dimension
d is a prime-power, then the maximal number of MUBs is well-known
to be d + 1 (see e.g. [8, 13, [I, [10]). It is also well-known that in any
dimension d the maximal number of MUBs is at most d + 1 (see e.g.
[13, 2, [IT), [7]). For this reason, a set of d + 1 mutually unbiased bases
is commonly called a complete system of MUBs. However, for any d
which is not a prime-power, it is not known whether a complete system
of MUBEs exists (even for d = 6, despite considerable efforts [3, 4], [5, [9]).
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In [2 Theorem 8] it is proved that unit vectors forming a complete
system of MUBEs, if they exist, must satisfy some extra algebraic rela-
tions. Furthermore, in [11], Theorem 2.2] the following result is proved:
a collection of unit vectors in C¢, all of which are orthogonal or unbi-
ased to a fixed orthonormal basis, can consist of at most d? vectors.
These two results raise the following very general and natural question:
given a set of d(d + 1) unit vectors in C? such that any two of them
are either orthogonal or unbiased to each other, is it true that they
necessarily form a complete system of MUBs? In this paper we answer
this question in the affirmative, which can be viewed as a certain rigid-
ity property of complete systems of MUB’s. This result is somewhat
surprising, considering that as many as (d — 1) unit vectors in C¢ can
be given such that they are pairwise unbiased to each other. Indeed,
consider a SIC-POVM (which conjecturally exists in any dimension) in
C41 ie. a collection of (d — 1)? unit vectors in C%~! such that any
pair has inner product with absolute value %. Append each vector
with a coordinate 0 in the dth coordinate, and you obtain a collection
of (d—1)? unit vectors in C? which are pairwise unbiased to each other.
One might expect that similar special constructions may yield d(d+ 1)
unit vectors in several different ways, such that they are all orthogonal
or unbiased to each other, but Theorem [2.4] tells us that this is not the

case.

2. FROM A SET OF VECTORS TO A COMPLETE SYSTEM OF MUBSs

Suppose that n = d(d+ 1) and by, ...b,, € C%is a collection of unit
vectors such that any two of them is either orthogonal or unbiased to
each other, that is [(b;, b;)| = 0 or % for any j # k. We will prove

below (Theorem [2.4]) that these vectors necessarily form a complete
system of MUBs.

Consider the simple graph G = (V, E) with vertex set V' = {by,...b,}
and edge set E containing all (unordered) pairs of orthogonal vectors
in V. In other words, we imagine that vectors b; and by, are connected
by an edge if they are orthogonal to each other. Our aim is to prove
that G is a disjoint union of d + 1 complete graphs, each containing
d vertices. This will prove that the vectors b; can be grouped into
d + 1 orthonormal bases, all being mutually unbiased to each other.
We shall begin by considering the number of edges in G. Note that if
the vectors in V' form d + 1 mutually unbiased bases, then the number
of orthogonality relations (i.e. the number of edges in G) should be

d+1)(9).
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The following is a well-known general fact, but we include it for the
convenience of the reader.
Lemma 2.1. Suppose A is a self-adjoint matriz of rank r = rk(A).
Then (Tr A)? < rTr (A?) with equality holding if and only if A is a
multiple of a projection.
Proof. We may assume that the rank r > 0 (the case r = 0 implies A =
0, which is trivial). Let P be the orthogonal projection onto the range
space of A. Then PA = A and Tr (P?) = Tr (P) = rk(P) = tk(A) = r
Using the Cauchy-Schwarz inequality |Tr (X*Y)|> < Tr(X*X)Tr (Y*Y)
we have

(Tr A)? = (Tr PA)? < Tr (P?) Tr (A?) = rTr (A?)
with equality holding if and only if A and P are parallel; i.e. when A
is a multiple of P. O
Corollary 2.2. The graph G has at most (d + 1)(;[) edges.

Proof. We will denote the number of edges by |E|. Consider the Gram

matrix

K = (<bj7bk>>{j7k;}
of the given vectors. The rank of K is the dimension of the subspace
spanned by the vectors by,...b, € C? and hence rk(K) < d. Since
these vectors are of unit length, the diagonal elements of K are all equal
to 1 and thus Tr (K) = n = d(d + 1). Moreover, as K is self-adjoint
(actually: positive semideﬁnite)

Tr (K?) = Tr (K*K Zugk\ —Z|

In the above sum, we have 3 kind of terms. F 1rst, the ones with 7 =k,
of which we have n = d(d + 1) many. Second, the ones corresponding
to orthogonal pairs of vectors; of these we have 2|F| — the factor of
2 needed because we considered G to be undirected. Finally, we have
the ones corresponding to unbiased pairs of vectors; of these we have

2((3) — |E). So

and hence by the previous lemma

nn—1) 2|E|
d  d )

n2§d(n+

Substituting n = d(d + 1) and rearranging we get |E| < d(d , which
is the claimed bound. O
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To completely determine |E|, we also need to bound it from below.
This means bounding the number of non-orthogonal (i.e. unbiased)
pairs from above. More concretely, we need to show that using the
vectors bq,...b,, one can form at most (d;’I)d2 unbiased pairs; i.e.
exactly as many as we would have if these vectors were to from a

complete system of MUBs.

To this end, for each j € {1,...n} consider @), := |b;)(b,|, i.e. the
orthogonal projection onto the one-dimensional subspace given by the
vector b, and let X; = @), — 5] . Elementary computation shows that
the Hilbert-Schmidt inner products satisfy

1

Pk

where (-, -) g denotes the usual Hilbert-Schmidt inner product on My(C).
We shall now apply the estimate of Lemma 2.1] to the Gram matrix

K = ((Xj, Xi)ns)

(1) (X, Xiyus = Tr (X7 Xi) = (b, i) |* -

{3.k}
Note that K has size n X n.

Lemma 2.3. The graph G has exactly (d + 1)(3) edges, and K is an
orthogonal projection of rank d* — 1.

Proof. Since Tr (X;) = Tr(Q;—1I) =1—(d/d) =0forall j =1,...n,
the span of {Xj;|j = 1,...n} is contained in the subspace of traceless

d x d matrices; thus rk(K) < d? — 1. Moreover,

T () =Y <|<bj,bj>\2 - é) =n (1 - %)
and

- , 1\’ 1, 1
() =5 (Hob = 3) == 37+ 21l
where we have used that by (II), the diagonal entries of K are equal
to 1 — 1/d, the entries corresponding to orthogonal pairs are equal to
0 —1/d = —1/d and the entries corresponding to unbiased pairs are
equal to 1/d — 1/d = 0. Taking into account rk(K) < d? — 1, the
application of Lemma 2.1 to the Gram matrix K gives

1 1 1
2 2 2 2
(2 WL 2 < (@ = )01~ )+ 2Bl ).
After substituting n = d(d + 1) and rearranging, we get |E| > (d +

1)(;) This, together with Corollary 2.2, proves that this inequality is
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actually an equality. Therefore, by the equality case of Lemma 2.1} the
matrix K is a multiple of a projection; K = AP for some scalar A and
orthogonal projection P. Also, the inequality in (2) must also be an

equality, which implies rk(P) = rk(K) = d* — 1. Therefore

nﬂ—?zTﬂK%ﬁHMmzkwkﬂx

implying that A = 1 and hence that K = P. U

Consider the n X n matrix A := (d — 1)I — dK. By what we know
about the entries of K, it is easy to verify that

(1, ifb; Lby,
Ajk = {O, otherwise;

i.e. Ais simply the adjacency matrix of G. Thus, by having established
that K is a rank d?> — 1 projection, we can precisely determine the
spectrum of the adjacency matrix A, or, as it is called in short, the
spectrum of the graph G.

In general, the spectrum of a graph does not determine its isomor-
phism class. That is, there exist graphs which are not isomorphic, yet
have the same spectrum (including multiplicities); a curious fact that
was first noted more than half a century ago [6]. However, in this par-
ticular case, we can prove that G must be a disjoint union of (d + 1)
complete graphs, each with d vertices.

Theorem 2.4. Let n = d(d + 1) and by ...b, € C% be a collection
of unit vectors such that |(b;, by)|? is either 0 or 1/d for any j # k
(i.e. such that any two of them are either orthogonal or unbiased to each
other). Then the vectors by ... b, can be arranged into d+1 orthogonal
bases, all being mutually unbiased to each other.

Proof. The eigenvalues of the matrix A = (d—1)I —dK, defined above,
are —1 (with multiplicity d*—1) and d—1 (with multiplicity n—d?+1 =
d+1). Let 1 € C™ denote the vector with entry 1 in each coordinate,
and consider h = (1, A1). Due to the eigenvalues of A we have h <
(d—1)(1,1) = (d—1)d(d+ 1), with equality only if 1 is an eigenvector
with eigenvalue d — 1. Furthermore, h is the sum of entries in A, which
equals to twice the number of edges in G (each edge being counted
twice by the symmetry of A). Therefore h = |E| = (d — 1)d(d + 1).
This implies that 1 is an eigenvector with eigenvalue d—1, which means
that each vertex in G has degree d — 1 (in other words, the graph G is
d — 1-regular).
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It is also well-known that Tr (A%) equals to the number of (ordered)
triangles present in GG. By knowing the spectrum of A we can calculate
Tr (A%) = (=1)(d* = 1)+ (d — 1)*(d + 1) = (&> — 1)d(d — 2). We
claim that this implies that G can be broken up to the disjoint union
of d + 1 complete graphs with d vertices each. Indeed, the number of
(ordered) triangles in a d — 1 regular graph on n vertices is at most
n(d—1)(d —2), because from each vertex we can choose (d —1)(d — 2)
ordered pairs of edges, and the maximum number of triangles occurs
if each of these pairs can be completed by a further edge to make a
triangle. This happens if and only if G breaks up to a disjoint union
of d + 1 complete graphs on d vertices.

In turn, this is equivalent to the vectors by, bg, ..., b, forming d+ 1
orthonormal bases, all being pairwise unbiased with respect to each
other. ]
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