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Abstract

We introduce different ensembles of random Lindblad operators L, which satisfy quantum detailed balance
condition with respect to the given stationary state σ of size N , and investigate their spectral properties.
Such operators are known as ‘Davies generators’ and their eigenvalues are real; however, their spectral
densities depend on σ. We propose different structured ensembles of random matrices, which allow us to
tackle the problem analytically in the extreme cases of Davies generators corresponding to random σ with
a non-degenerate spectrum or the maximally mixed stationary state, σ = 1/N . Interestingly, in the latter
case the density can be reasonably well approximated by integrating out the imaginary component of the
spectral density characteristic to the ensemble of random unconstrained Lindblad operators. The case of
asymptotic states with partially degenerated spectra is also addressed. Finally, we demonstrate that similar
universal properties hold for the detailed balance-obeying Kolmogorov generators obtained by applying
superdecoherence to an ensemble of random Davies generators. In this way we construct an ensemble of
random classical generators with imposed detailed balance condition.

Dedicated to the memory of Göran Lindblad, (1940-2022)

1 Introduction

In classical physics the principle of detailed balance essentially states that, for a system at equilibrium, the
rate of the elementary transition from state a to state b, a→ b, is the same as the rate of the reverse transition
b → a [1]. This principle perfectly works in chemistry and biology where transition a → b is interpreted
as a particular chemical reaction or transition between populations of two species, a and b [1]. Classical
detailed balance is a property of the corresponding generator of the Markovian evolution of probability vector
p = (p1, . . . , pN ) which is governed by the so-called Pauli rate equation,

ṗi =

N∑
j=1

(
Wijpj −Wjipi

)
, (1)

where non-negative numbers Wij are interpreted as transition rates. If p is a stationary state, then the detailed
balance condition w.r.t. p means that

Wijpj = Wjipi, (2)

for any pair i, j. Condition (2) is just a mathematical representation of the principle that if the system is in the
stationary state p, then the probabilities of transition i→ j and j → i are the same.

In the quantum case, Markovian evolution is governed by the celebrated Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) master equation ρ̇t = L(ρt), with the corresponding GKLS-generator1 having the well-known
structure [2–4]:

∗wojciech.tarnowski@doctoral.uj.edu.pl
†darch@fizyka.umk.pl
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1Henceforth, we will address these objects, in a interchangeable way, as ‘Lindblad operators’ and ‘GSKL-generators’
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L(ρ) = −i[H, ρ] +

N2−1∑
α=1

LαρL
†
α −

1

2
{L†αLα, ρ}, (3)

where the Hermitian operator H stands for an effective system’s Hamiltonian and Lα are jump (or noise)
operators.

Classical detailed balance condition (2) was generalized to quantum Markovian semigroups in Ref. [5–7] (see
also Ref. [8]). If σ is a stationary state (meaning that L(σ) = 0), then L satisfies quantum detailed balance
condition if its dissipative part in the Heisenberg picture is Hermitian w.r.t. the inner product (X,Y )σ =
Tr(σX†Y ) which reduces to the standard Hilbert-Schmidt inner product if the stationary state is maximally
mixed; see Section 3 for more details. In particular, if |ek〉 is an eigen-basis of σ, then the following classical
transition matrix Wij =

∑
α |〈ei|Lα|ej〉|2 satisfies (2).

The quantum detailed balance (QDB) condition is a characteristic property of quantum Markovian semigroup
describing the interaction of a system with an environment at equilibrium [9]. In particular, it has been shown by
Davies [10–12] that quantum Markovian semigroup derived in the weak coupling limit satisfies QDB condition
w.r.t. stationary state σ. Assuming the standard form of the system-environment Hamiltonian [13–16],

H = HS ⊗ 1lE + 1lS ⊗HE +Hint, (4)

and thermal initial state of the environment, ρE = e−βHE/ZE , Davies proved that, in the weak coupling limit,
σ = σβ := e−βHS/ZS , the corresponding generator (3) satisfies QDB condition w.r.t. σβ . Moreover, in this case
unitary part generated by HS (corrected by the Lamb shift) and dissipative part of L commute which implies
that, during the evolution of the density operator ρt, the diagonal and off-diagonal elements of the density matrix
decouple. Many open quantum systems studied in the literature [13–16] fit into this class. The corresponding
generators are often called ‘Davies generators’ (or ‘Davies GKLS-generators’) and the corresponding dynamical
map Λt = etL is referred to as a ‘Davies map’ [17].

The quantum detailed balance condition plays an important role in quantum thermodynamics of open
quantum systems [9, 16] (see also recent works [18–24]). In particular, assuming that the QDB holds, the
Second Law of thermodynamics stating that the entropy production rate is never negative can be formulated
as [9]:

d

dt
S(etL(ρ)||σβ) ≤ 0, (5)

where S(ρ||σ) is the relative entropy and ρ is an arbitrary state of the system of size N .
Another interesting property of the GKLS-generators obeying the DB condition was observed in Ref. [25].

Let `α denote (in general complex) eigenvalues of L. One has L(σ) = 0 and it is well known that Re `α ≤ 0.
Hence one defines (non-negative) relaxation rates Γα = −Re `α (α = 1, . . . , N2−1). Actually, Γα are measurable
quantities. It was conjectured [25] that

Γα ≤
1

N
(Γ1 + . . .+ ΓN2−1). (6)

Interestingly, this inequality was proven for L satisfying quantum detailed balance [25] (see also Ref. [26] for
a recent review). All that hints that GKLS-generators satisfying the detailed balance condition enjoy many
interesting properties, both from mathematical and physical points of view. In particular, spectra of such
operators might display some universal features. Note, that since dissipative part of L is Hermitian w.r.t.
inner product (A,B)σ = Tr(σA†B), it possesses real spectrum. Hence, purely dissipative Lindblad operators
satisfying detailed balance condition, have purely real spectra. Obviously, the same applies to Kolmogorov
operators obeying classical detailed balance.

Recently, we analyzed spectral properties of random Lindblad operators L [27, 28] as well as classical Kol-
mogorov operators K [28]. In particular, we have shown that purely dissipative random Lindblad operators
exhibit universal spectral properties, that is, properly rescaled complex eigenvalues form the universal lemon-
like shape on the complex plane (see also recent works on random Lindblad operators [29–32]). Such approach
enables one to study the properties of a typical quantum system evolving under the action of Markovian semi-
group. Random Matrix Theory (RMT) [33] provides appropriate tools to deal with this problem. RMT has
developed into a field with many important applications in physics and mathematics; see Ref. [34] and a col-
lection of papers in Ref. [35]. Starting from a seminal monograph by Haake [36] (see also Ref. [37]), random
matrices became a key theoretical tool to study classical and quantum chaos [38, 39]. For recent application of
RMT to open quantum system see, e.g., Ref. [40].

In Ref. [27] a simple random matrix (RM) model, which reproduces the lemon-like shape of the bulk of
complex eigenvalues of random Lindblad operators and provides analytical expression for the boundary of the
lemon, was proposed. Moreover, using free probability tools, we constructed structured ensembles of random
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matrices which allow us to describe the transition from the well-known Girko disc [41], characteristic of random
operations [42,43], to the lemon-like distribution typical of GKLS-generators.

The classical counterpart, that is an ensemble of random Kolmogorov generators, was analyzed first by Timm
[45] and further discussed by Bordenave, Caputo, and Chafai [44]. It turns out that the properly rescaled complex
eigenvalues of K form the universal spindle-like shape on the complex plane [44, 45]. Interestingly, these two
types of operators, Lindblad and Kolmogorov ones, can be related by superdecoherence [28]. Superdecoherence
is a particular example of a supermap, i.e. a linear map which sends a quantum channels into a quantum
channel [46–48]. In analogy with the mechanism of decoherence, which transforms a quantum state into a
classical one (w.r.t. a fixed orthonormal basis in the system’s Hilbert space), superdecoherence sends quantum
maps into classical stochastic matrices [49,50], while quantum Lindblad operators are transformed into classical
Kolmogorov operators [28]. By gradually increasing strength of superdecoherence, one can observe how the
lemon-like shape of the spectral distribution transforms into the spindle-like shape [28].

In this paper we extend the analysis to the operators satisfying detailed balance condition. As in this case
the spectrum of the operators is real, we analyze the density of eigenvalues along the real axis for various
assumptions concerning invariant states. In particular, we consider most relevant examples of random state σ
with a non-degenerate spectrum, which leads to a Davies generator, and also the fully degenerated stationary
state, σ = 1l/N . A class of random Davies generators for stationary partially degenerated states is also analyzed.

This paper is organized as follows. Classical and quantum detailed balance conditions are recalled in Sec-
tions 2 and 3, respectively. Generic random Lindblad and Kolmogorov operators are reviewed in Section 4.
Ensembles of random Lindblad operators, which satisfy the QDB condition with respect to a steady state σ
with varying eigenvalue degeneracy, are analyzed in Section 5. Several random matrix models which allow us
to approximate the spectral density of random operators, observed in numerical simulations, are introduced.
Concluding remarks, including a list of open problems and some possible directions for future research, are
presented in Section 6. Appendix A contains a concise review of basic RMT ensembles used in this work. A
short discussion of the Pastur equation [51], which is essential for the description of eigenvalue densities, is
presented in Appendix B. Some of the technical details of the results for the random Lindbladian with partially
degenerate steady state are presented in Appendices C and D.

2 Classical detailed balance condition

The operator generating Pauli master equation (1) is called Kolmogorov generator and given by

Kij = Wij − δij
N∑
k=1

Wkj . (7)

Any classical generator has at least one stationary state p such that Kp = 0.

Definition 1. Classical operator K satisfies detailed balance condition w.r.t. p if Eq. (2) is satisfied for any
pair i, j.

The very condition (2) is just a mathematical representation of the principle that if the system is in stationary
state p, then the probabilities of transition i→ j and j → i are the same. In particular, if p is a thermal state
at inverse temperature β, i.e. pk = e−βEk , then

Wij

Wji
= e−β(Ei−Ej). (8)

Interestingly, the detailed balance condition (2) can be reformulated as follows: Let us define in RN an inner
product (. , .)p with respect to a given state p,

(x,y)p :=

N∑
k=1

pkxkyk. (9)

Proposition 1. An operator L satisfies the detailed balance condition w.r.t. p if and only if LT satisfies

(LTx,y)p = (x, LTy)p, (10)

for any x,y ∈ Rn, that is, LT is Hermitian w.r.t. (. , .)p.

Equivalently, defining diagonal matrix P := Diag[p1, . . . , pn], condition (2) can be rewritten as

WP = PWT. (11)
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In particular, if p is maximally mixed, then the transition matrix WT = W , i.e. W is symmetric. Assuming
that p is faithful, i.e. pk > 0, any transition matrix W satisfying condition (11) may be constructed as

W = SP−1, (12)

where S is an arbitrary (real) symmetric matrix.

3 Quantum detailed balance

Classical detailed balance condition was generalized for quantum Markovian semigroups [5–7]. Let us first
recall the standard Hilbert-Schmidt product of two operators, (X,Y )HS = TrX†Y . It will be also convenient
to distinguish fixed faithful quantum state σ > 0 and to introduce a scalar product of any two operators,
(X,Y )σ := Tr(σX†Y ). In analogy to the scalar product (9), for the maximally mixed state σ = 1l/N , the inner
product (X,Y )σ reduces to the standard construction of Hilbert-Schmidt product, i.e. (X,Y )σ = 1

N (X,Y )HS.
These notions allow one to express the quantum condition of detailed balance [5–7].

Definition 2. A GKLS generator satisfies quantum detailed balance condition with respect to a given stationary
state σ if there exists a representation

L(ρ) = −i[H, ρ] + LD(ρ), (13)

such that [H,σ] = 0, and the dissipative part LD satisfies

(L‡D(X), Y )σ = (X,L‡D(Y ))σ, (14)

where Φ‡ denotes a dual map (in the Heisenberg picture) defined via (Φ‡(X), Y )HS = (X,Φ(Y ))HS.

Note, that if

L(ρ) = −i[H, ρ] + Φ(ρ)− 1

2
{Φ‡(1l), ρ}, (15)

for some completely positive map Φ, then its dual is defined as follows

L‡(X) = i[H,X] + Φ‡(X)− 1

2
{Φ‡(1l), X}. (16)

Quantum detailed balance condition (14) reduces to [Φ†(1l), σ] = 0 together with the following condition

(Φ‡(X), Y )σ = (X,Φ‡(Y ))σ, (17)

that is, the map Φ‡ is Hermitian w.r.t. (. , .)σ. If the stationary state σ is faithful the above condition may be
rewritten as follows

Φ‡(X) = Φ(Xσ)σ−1, (18)

or, equivalently

Φ‡(X)σ = Φ(Xσ), (19)

Actually, defining a map (so called modular operator)

∆σ(X) := σXσ−1, (20)

one proves [5] that if L satisfies quantum detailed balance w.r.t. σ, then

[L,∆σ] = 0, [L‡,∆σ] = 0. (21)

It is clear that a completely positive map Φ is a quantum version of classical transition matrix Wij . Let {|i〉}Ni=1

be an eigen-basis of σ, i.e. σ =
∑N
i=1 pi|i〉〈i| and define

Wij := 〈i|Φ(|j〉〈j|)|i〉 = 〈j|Φ‡(|i〉〈i|)|j〉. (22)

Then, if Φ satisfies conditions (17), the transition matrix Wij satisfies the classical condition (2).

In particular, if σ = 1l/N , then the quantum detailed balance condition states that L‡D = LD, i.e. Schrödinger
and Heisenberg pictures coincide. Hence the dissipative part may be represented as

L‡D(X) =

N2∑
α,β=1

Kαβ

(
FαXFβ −

1

2
{FαFβ , X}

)
, (23)
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with Hermitian operators Fα and real symmetric Kossakowski matrix Kαβ .
Let Eii′ = |i〉〈i′|, where |i〉 defines an eigen-basis of the stationary state, be an orthonormal basis in the

operator space. One has the following representation

L‡D(X) =

N∑
i,i′=1

N∑
j,j′=1

Kii′,jj′

(
|i〉〈i′|X|j′〉〈j| − 1

2
δi′j′{|i〉〈j|, X}

)
, (24)

where the Kossakowski matrix Kii′,jj′ is positive definite. Now, the detailed balance condition (14) implies the
following relation between elements of the Kossakowski matrix [7]:

Kii′,jj′pj = Kj′j,i′ipj′ . (25)

Note that condition (25) implies

Kii′,jj′qjj′ = Kii′,jj′qii′ , (26)

where qmn := pm/pn. The QDB is a highly restrictive condition, since if qii′ 6= qjj′ , the corresponding elements
Kii′,jj′ must vanish. In particular, in a typical case of non-degenerate σ satisfying

qmn = qm′n′ ⇐⇒ (m,n) = (m′, n′), (27)

the only non-vanishing elements of K are the following

Wij = Kij,ij , Dij = Kii,jj , i, j = 1, . . . , N. (28)

Note, that Wij ≥ 0, and Dij = Dji.

Theorem 1. The Lindblad generator satisfying QDB condition with respect to a steady state that satisfies (27)
reads

LDav(ρ) = Φ(ρ)− 1

2
{Φ‡(1l), ρ} (29)

with
Φ(ρ) =

∑
i 6=j

Wij |i〉〈j|ρ|j〉〈i|+
∑
i,j

Dij |i〉〈i|ρ|j〉〈j|, (30)

and the transition matrix Wij satisfies the classical detailed balance condition Wijpj = Wjipi.

The above generator is usually called the ‘Davies generator’ [10]. Davies generator, apart from the classical
part defined in terms of Wij , contains a purely quantum part, defined in terms of Dij , which is responsible for
the decoherence process.

The second extreme scenario corresponds to the maximally mixed state, σ = 1l/N , for which condition (25)
reduces to

Kii′,jj′ = Kj′j,i′i, (31)

allowing for all elements of K to be non-zero. The matrix Kii′,jj′ is Hermitian, however (31) does not imply
symmetry. Nevertheless, when Lindblad operator is represented in the Hermitian basis Fα, QDB implies
Kαβ = Kβα.

Remark 1. Interestingly, the inner product (17) can be generalized to the following one-parameter family of
products [52–55]

(X,Y )s := Tr(σsX†σ1−sY ), (32)

for s ∈ [0, 1]. Note that (17) is recovered for s = 1 and it is often called ‘GNS product’. For s = 1
2 one obtains

so called ‘KMS product’,

(X,Y )KMS := (X,Y )1/2 = Tr(σ1/2X†σ1/2Y ). (33)

It turns out [52, 53] that if L‡D is self-adjoint w.r.t. (X,Y )1, then L‡D is also self-adjoint for any s 6= 1
2 . The

symmetric case corresponding to s = 1
2 was analyzed in Ref. [53].
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4 Spectral properties of random Lindblad and Kolmogorov opera-
tors without the detailed balance

Let us briefly recall the main properties of random Lindblad operators [27, 28] and random Kolmogorov
operators [28,44,45]. Assuming that the Hamiltonian part vanishes, a Lindblad operator has only a dissipative

part fully controlled by a completely positive map Φ, see Eq. (15). Fixing orthonormal basis {Fα}N
2

α=1, it can be

represented via Φ(ρ) =
∑N2

α,β=1KαβFαρF
†
β , where the so-called Kossakowski matrix K (with matrix elements

Kαβ) is positive definite. In what follows we use the following normalization TrK = N which is equivalent to

Tr Φ(1l) = Tr Φ‡(1l) = N. (34)

The spectrum of L coincides with the spectrum of the corresponding super-operator

L̂ = Φ̂− 1

2
(Φ‡(1l)⊗ 1l + 1l⊗ Φ‡(1l)), (35)

where Φ̂ =
∑
α,βKαβFα⊗F β is obtained by vectorization. Now, a random operator L corresponds to a random

CP map Φ and hence to a random Kossakowski matrix Kαβ which can be sampled as a Wishart matrix

K = N
GG†

TrGG†
, (36)

where G is a complex N2 × N2 square Ginibre matrix. It turns out [27, 28] that the rescaled operator L̂′ =

N(L̂+ 1l⊗ 1l) displays in the large N limit the universal lemon-shape distribution of eigenvalues; see Fig. 1a.
This universal shape can be explained by the following random matrix (RM) model [27,28]. By representing

positive matrix Kαβ as K = G†G, with G being a complex Ginibre matrix with the variance

〈GαµGβν〉 =
1

N3
δαβδµν , (37)

one obtains 〈TrK〉 = N (that is, we require that TrK equals N only on average). By introducing jump operators,

Lα =

N2∑
µ=1

GαµFµ, (38)

one obtains the diagonal Kraus representation

Φ =

N2∑
α=1

LαρL
†
α, (39)

where the (random) Kraus operators satisfy

〈TrLαL
†
β〉 =

1

N
δαβ . (40)

Now, since the entries of Lα are i.i.d. Gaussian variables in the large N limit, (complex) eigenvalues of Lα
uniformly cover the disk of radius r = 1/N on the complex plane. The corresponding super-operator L̂ has the
form

L̂ =

N2∑
α=1

Lα ⊗ Lα − 1l⊗ 1l− 1

2
(X ⊗ 1l + 1l⊗X), (41)

where Hermitian operator X is defined by

X = Φ‡(1l)− 1l =

N2∑
α=1

L†αLα − 1l. (42)

Hence the spectrum of L̂ is controlled by the spectra of Φ̂ and X⊗ 1l + 1l⊗X. Note that eigenvalues of Lα⊗Lα
in the large N limit are uniformly distributed on a disk of radius 1/N2. The super-operator Φ̂ is a sum of N2

independent matrices Lα ⊗ Lα. Hence, in the large N limit (according to the central limit theorem for non-
Hermitian matrices [56]), its spectral density is uniform on the disk of radius 1/N . It is, therefore, clear that in

the large N limit, Φ̂ can be modeled as a Ginibre matrix with the spectral radius 1/N . Actually, since the map

Φ preserves Hermiticity, Φ̂ can be modeled as a real Ginibre matrix GR. For the second term, X⊗1l+1l⊗X, let

us observe that due to (42) one has X =
∑N2

α=1Xα, with Xα = L†αLα− 1
N2 1l, i.e. Xα is a Wishart matrix L†αLα
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shifted by 1/N2. Note that the distribution of eigenvalues of Xα has zero mean and variance 1/N2. Applying
now the free central limit theorem [57] to random matrix X, which constitutes a sum of N2 matrices Xα, one
finds that the spectral density of X is defined by the Wigner semicircle supported on [− 2

N ,
2
N ],

ρX(x) =
N2

2π

√
4

N2
− x2. (43)

It is, therefore, evident that L̂′ := N(L̂+ 1lN ⊗ 1lN ) could be approximated by the following RM model [27,28]

L̂′ ≈ GR +
1

2
(GOEN ⊗ 1lN + 1lN ⊗GOEN ), (44)

where in both terms we have the same GOE matrix, the spectral density of which is given (at the large N limit)
by the Wigner semicircle on [−2, 2],

ρGOE(x) =
1

2π

√
4− x2. (45)

The spectral density of the above RM model is given by a free convolution of the unit Girko disk with a
(classical) convolution of two Wigner semicircles of two (rescaled by 1/2) GOE matrices (see Refs. [27, 28] for
more details). Interestingly, this simple RM model reproduces lemon-like shape of the spectral distribution
of random Lindblad operators. The boundary of the lemon is characterized by the solution of the following
equation [27,28]:

Im[z +G(z)] = 0, (46)

with

GL(z) = 2z − 2z

3π

[
(4 + z2)E

(
4

z2

)
+ (4− z2)K

(
4

z2

)]
, (47)

where K(z) and E(z) are the complete elliptic integrals of the first and second kind, respectively (cf. [27, 28]
for details). Additionally, the density of complex and real eigenvalues can be calculated, however the resulting
formulas are rather involved [28]. Interestingly, the density is constant in the imaginary direction.

Similar analysis can be performed for random Kolmogorov operators [28,44,45]. One has Kij = Wij−δijWj ,
with Wj =

∑
kWkj , and Wij ≥ 0. To generate K, the elements of W are i.i.d sampled from a distribution

supported on a positive half-line. We choose Wij = |zij |2, where zij are i.i.d. complex Gaussian with zero

mean and N−1/2 variance. The rescaled operator K′ =
√
N(K + 1l), in the large N limit, exhibits universal

spindle-shaped distribution of its eigenvalues, see Fig. 1b. This distribution can be obtained with the following
simple RM model. Matrix W is modeled by the real Ginibre matrix GR with the spectral radius 1. By the
central limit theorem the diagonal elements Wj can be approximated by Gaussians. One arrives at the following
model

K′ ≈ GR + GaussN , (48)

where GaussN represents a diagonal matrix whose elements are i.i.d. Gaussians with zero mean and unit
variance. This model implies that the distribution of eigenvalues is governed by a free convolution of a Girko
disk and a real Gaussian distribution. The boundary of the spindle-like shape can be calculated from (46),
where now the function G(z) reads

GK(z) =

√
π

2
e−z

2

[
Erfi

(
z√
2

)
− isgn(Im z)

]
, (49)

where Erfi(z) = −iErf(iz) and Erf(z) = 2√
π

∫ z
0
e−t

2

dt is the error function.

5 Random Lindblad operators satisfying the detailed balance con-
dition

In this section we study a family of ensembles of random Lindblad operators satisfying the QDB conditions.
Such operators are parameterized by an invariant state σ of size N , which can be chosen arbitrarily. Degeneracy
of eigenvalues of σ, more precisely, relation (26), determines which elements of the corresponding Kossakowski
matrix are allowed to be non-zero. We start the analysis with two extreme cases, namely a fully degenerate
density matrix corresponding to maximally mixed steady state σ = 1l/N , and a density matrix with no degen-
eracies, which is a typical scenario if that matrix is drawn at random. Then, we consider a scenario in which
the degeneracy of σ gradually increases, thus interpolating between the extreme cases.
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Figure 1: a) Spectral density P [Re(`′), Im(`′)] of the rescaled eigenvalues, `′ = N(` + 1), from the spectrum of random
purely dissipative Lindblad operators L for N = 250. Bright green contour is the spectral border, Eqs. (46,47). The
density was sampled with 10 realizations. b) Probability density functions P [Re(χ′), Im(χ′)] of eigenvalues χ′ =

√
N(χ′+

1), of Kolmogorov operators K obtained by decoherifying the ensemble of random Lindblad operators. The density was
sampled with 102 realizations. Bright green contour is the spectral border, Eqs. (46,49). c) Marginal density of real part
of eigenvalues, Re(`′), of random Lindblad operators (black line) and the spectral density of a random Lindblad operator
satisfying detailed balance conditions w.r.t. state σ = 1l/N (blue bars). c) Marginal density of real part of eigenvalues,
Re(`′), of random Kolmogorov operators (black line) the spectral density of a random Kolmogorov operator satisfying
detailed balance conditions w.r.t. state p = (1/N, 1/N, ..., 1/N) (blue bars).

5.1 The detailed balance with respect to maximally mixed state σ = 1l/N

If σ = 1l/N , then L satisfies QDB w.r.t. σ if and only if Φ is self-dual, i.e. Φ = Φ‡. We denote such
Lindblad operator as Lmm. In particular, if the basis Fα consists of Hermitian operators, then Φ = Φ‡ if and
only if Kαβ = Kβα, and hence the Kossakowski matrix K is real symmetric. It can be sampled according to
Eq. (36), where now G is a N2×N2 real Ginibre matrix. The corresponding jump operators in Eq. (38) are now
Hermitian, which is the main technical consequence of QDB. This provides an alternative and more efficient
method of sampling random Lindblad operators by generating jump operators as i.i.d. GUE matrices of size N
normalized to 〈TrL2

α〉 = 1
N .

Remark 2. In the canonical representation of GKLS- generator, Eq. (3), jump operators Lα are traceless.
However, one can easily check that if Lα is Hermitian, then

LαρLα −
1

2
{LαLα, ρ} = L̃αρL̃α −

1

2
{L̃αL̃α, ρ}, (50)

where L̃α = Lα − 1
NTrLα1l. Therefore, tracelessness of Lα is not essential.

The justification of the RM model follows the reasoning presented in Section 4 with tiny adjustments.
Namely, since jump operators are Hermitian, the super-operator Φ̂ is also Hermitian and it can be modeled
with a GOE matrix of size N2. Therefore, the rescaled Lindbladian L̂′mm = N(L̂mm+1l⊗1l) can be approximated
with the following RM model:

L̂′mm ≈ GOE
(1)
N2 +

1

2
(GOE

(2)
N ⊗ 1lN + 1lN ⊗GOE

(2)
N ), (51)

where GOE matrices with different superscripts are independent.
To calculate the density of the above RM model, we resort to free probability toolbox for Hermitian matri-

ces [58, 59]. Since the direct treatment of the density is unhandy, one usually resorts to its Stieltjes transform,
also known as Green’s function

G(z) =

〈
1

N
Tr (z −H)−1

〉
=

∫
ρ(x)

z − x
dx. (52)
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Figure 2: Density of rescaled eigenvalues of random Lindblad operators obeying quantum detailed balance condition
with respect to the maximally mixed state σ = 1l/N (blue bars) and the density of the RM model, Eq. (51), obtained
by solving Eq. (54) numerically (solid black line). Both densities for N = 100 are sampled with 102 realizations.

Once the Green’s function is obtained, the density can be then recovered through the Sokhocki-Plemenlj formula

ρ(x) = ∓ 1

π
lim
ε→0

G(z ± iε). (53)

In free probability, the problem of addition of random matrices is solved through free convolution [57–59]. In
our RM model the spectrum of matrix C ⊗ 1lN + 1lN ⊗ C is given by a (classical) convolution of two Wigner
semicircles. Then, the resulting density undergoes a free convolution with another Wigner semicircle.

Proposition 2. The Stjeltjes transform G(z) of L′mm satisfies the equation

G(z) = GL(z −G(z)) (54)

with GL given by (47).

The proof is presented in Appendix B.

5.2 Detailed balance with respect to random stationary state with no degeneracy

If the stationary state is chosen at random with respect to any non-atomic measure [60], its spectrum is
non-degenerate with probability one. The corresponding Lindblad operator is characterized by Theorem 1. The
corresponding diagonal form reads

LDav(ρ) =

N∑
i,j=1

LijρL
†
ij −

1

2
{L†ijLijρ}, (55)

where

• Lii =
∑N
j=1 l

i
jEjj ,

• Lij = Sijp
−1/2
j Eij for i, j = 1, . . . , N , i 6= j and Sij ∈ C such that |Sij | = |Sji|.

Recall that Eij = |i〉〈j|. Sij and Sji are related up to their phases and we choose S Hermitian. Theorem 1 is
recovered by setting Dij =

∑
k l
k
i l
k
j and Wij = |Sij |2p−1j .

By a direct inspection of the Lindblad operator (29) one finds

LDav(Eij) = λijEij (i 6= j); LDav(Eii) =

N∑
j=1

KijEjj , (56)

where real eigenvalues λij read λij = − 1
2 (dij + wi + wj), and

dij =

N∑
k=1

(lki − lkj )2, wi =
∑
k 6=i

|Ski|2p−1i , Kij = |Sij |2p−1j − δij
N∑
k=1

|Skj |2p−1j . (57)
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This means that QDB implies that the evolution of diagonal elements of density matrix completely decouples
from the off-diagonal elements. Hermiticity preservation ties the evolution of the elements on the opposite side
of diagonal and implies double degeneracy of the corresponding eigenvalues, since λij = λji. Besides this, off-
diagonal elements of the density matrix evolve independently. Therefore, the Davies generator in its vectorized
form can be decomposed into

L̂Dav = K ⊕D ⊕D, (58)

with K being a Kolmogorov operator satisfying the classical detailed balance w.r.t. the probability vector
consisting of eigenvalues of σ. The diagonal matrix D of size N(N − 1)/2 contains the decoherence eigenvalues
λij for 1 ≤ i < j ≤ N . Interestingly, the same structure of the Lindblad operator is obtained a result of action
of superdecoherence [28]. Indeed, random Davies generator is almost classical. Only dij in Eq. (57) is purely
quantum and does not survive superdecoherence.

We introduce randomness in the Lindblad operator as follows. Elements of diagonal jump operators {Lii} are
Gaussian with zero mean and variance σ2

l = 〈(lij)2〉 = 1
N2 , while the elements of a Hermitian matrix Sij defining

the off-diagonal jump operators {Lij} are complex Gaussian with zero mean and variance σ2
S = 〈|Sij |2〉 =

1
N

1
〈p−1〉 , where we introduced a short-hand notation

〈p−1〉 :=
1

N

N∑
j=1

p−1j . (59)

This normalization scheme ensures that 〈TrK〉 = N . In the numerical setting, we further rescale all jump
operators by the same factor to have strict equality TrK = N .

Note that
∑
k 6=i |Ski|2 is a sum of squares of independent complex Gaussian random variables. Hence, its

distribution is the same as of 1
2σ

2
Sχ

2
2(N−1), where χ2

k denotes chi-squared distribution with k degrees of freedom.

By the law of large numbers, at large k χ2
k is well approximated by Gaussian distribution with mean k and

variance 2k. Therefore, for large N we have

wi ≈ (1 + qi)(1 + ξiN
−1/2) (60)

where ξi is a random variable from a standard normal distribution and qi =
p−1
i

〈p−1〉 − 1.

By following a similar reasoning one can found that, in the large N limit, dij is well approximated by
Gaussian distribution with mean 2/N and standard deviation of 2

√
2N−3/2. This means that dij � wi and

hence the contribution of dij to the eigenvalues λij is negligible.
The decoherence eigenvalues are effectively described as follows

λij ≈ −1− qi + qj
2

+
1√
2N

ξij , (61)

where ξij are i.i.d Gaussian random variables with zero mean and unit variance.
The elements |Sij |2 are independent with standard deviation σ2

S . Therefore, the spectrum of a symmetric

matrix with elements |Sij |2 fits the Winger semicircle rescaled by
√
Nσ2

S . The term −p−1j
∑N
k=1 |Skj |2 is the

sum of independent random variables, thus, by the Central Limit Theorem, its elements are Gaussian with
mean −1

〈p−1〉 and standard deviation 1
N1/2〈p−1〉 . Finally, we introduce diagonal matrix Q = Diag[q1, q2, . . . , qN ].

The Kolmogorov operator can be then represented as

K ≈
(
−1lN +

1√
N

(GOEN + GaussN )

)
(1 +Q) , (62)

with a N ×N GOE matrix and a diagonal matrix with elements drawn from a standard normal distribution.
Note that there are two sources contributing to the randomness in random Davies operators: randomness

in probabilities in σ and randomness in the elements of the symmetric matrix S. We denote by κ the standard
deviation of qi, which essentially encodes fluctuations in the probability vector p. It determines three regimes,
each with different effective RM model.

(i) If κ � N−1/2, the randomness in S dominates. Kolmogorov and purely decohering components are
rescaled as K = −1lN +N−1/2K′ and D = −1lN(N−1)/2 +N−1/2D′, where

K′ ≈ GOEN + GaussN , D′ ≈ 1√
2

GaussN(N−1)/2. (63)

(ii) If κ� N−1/2, the randomness in σ dominates and

Kij ≈ −δij
p−1i
〈p−1〉

, λij ≈ −
p−1i + p−1j

2〈p−1〉
. (64)

10



Figure 3: Spectral densities of random Lindblad operators satisfying quantum detailed balance condition with respect to
the thermal state, Eq. (67), for three different regimes. Since decohering eigenvalues (bottom row) are doubly degenerated,
they can be distinguished from the eigenvalues of the Kolmogorov part (top row) in the numerical procedure. In the
first regime, β � N−1/2, the density of the Kolmogorov part is juxtaposed with the spectral density of the RMT model
described by Proposition 3. In two other regimes densities of random Davies are compared to the spectral densities
obtained by sampling the corresponding RM models, Eqs. (64) and (65).

(iii) If κ ∼ N−1/2, both sources of randomness have comparable contributions that add up. Kolmogorov
component and purely decohering eigenvalues are rescaled as K = −1lN + N−1/2K′ and λij = −1 +
N−1/2λ′ij . With the introduction of rescaled variables qi = N−1/2q′i and Q′ = Diag[q′1, . . . , q

′
N ], the

rescaled components of the Davies operator read

K′ ≈ GOEN + GaussN −Q′, λ′ij ≈ −
q′i + q′j

2
+
ξij√

2
, (65)

where ξij are standard normal variables independent for i < j and satisfying ξij = ξji.

While the densities in regimes (ii) and (iii) are dependent on a particular choice of the steady state prob-
abilities, in regime (i), in the large N limit, the corresponding spectral density of the Kolmogorov part can
be calculated using the tools from free probability and its Stieltjes transform satisfies Pastur equation, see
Appendix B.

Proposition 3. Let K′ = A + B, where A is a GOE matrix normalized to 〈 1NTrA2〉 = 1 and B is diagonal
the elements of which are independent Gaussians of mean zero and unit variance, as in Eq. (63). The Stieltjes
transform of the spectral density of K′ satisfies the functional equation

G(z) = GK(z −G(z)), (66)

where GK is given by Eq. (49).

The above analysis can be illustrated with a thermal state σβ = Diag[p1, p2, ..., pN ], where

pj = e−βEj/Z , Z =

N∑
j=1

e−βEj . (67)

If energies Ej are uniformly distributed on [0, 1], then the three regimes determined by tightness of distribution
of p−1j around its mean can be translated to the scaling of the inverse temperature: β � N−1/2, β ∼ N−1/2,

and β � N−1/2. Hence for each regime we apply a different RM model (red line).
In Figure 3 we compare the numerical densities obtained by sampling over random Lindblad operators and

spectral densities of the corresponding RM models, confirming validity of RM models in all 3 regimes.

11



5.3 Partially degenerate stationary state

Noting the remarkable difference in the spectra of Lindblad operators in the two scenarios, of the asymptotic
state as the fully degenerate density matrix and density matrix with no degenerate eigenvalues, here we consider
Lindblad operators interpolating between these two extreme cases. To this end, we consider density matrices in
which first M (1 ≤M ≤ N) eigenvalues are equal to each other and the remaining N−M are pairwise different.
For convenience, we denote by A the set of indices in the degenerate space of σ and by pA the corresponding
probability. We also assume that there are no additional relations between eigenvalues that would allow for
additional non-zero elements of the Kossakowski matrix. Non-zero elements of the Kossakowski matrix are
characterized as follows.

Proposition 4. Let A = {1, . . . ,M} and pi be the eigenvalues of σ that satisfy the following relations:

(i) pi = pj if i, j ∈ A

(ii) pi 6= pj if i /∈ A or j /∈ A

(iii) pipj 6= pi′pj′ and if one of indices /∈ A, then {i, i′} 6= {j, j′}

The non-zero elements of K satisfying QDB are of the form:

(i) Kij,kl for i, j, k, l ∈ A satisfying Kij,kl = Klk,ji,

(ii) Kkk,ll for k, l /∈ A satisfying Kkk,ll = Kll,kk,

(iii) Kij,kk and Kkk,ji for i, j ∈ A and k /∈ A satisfying Kij,kk = Kkk,ji,

(iv) Kik,jk and Kkj,ki for i, j ∈ A and k /∈ A satisfying Kik,jkpk = Kkj,kipj,

(v) Kkl,kl for k, l /∈ A satisfying Kkl,klpl = Klk,lkpk.

The proof simply follows from the consistency condition Kij,kl =
pjpk
pipl

Kij,kl (cf. (26)), i.e., either pjpk = pipl
or the corresponding element Kij,kl vanishes. The relation between those elements are determined by QDB,
Eq. (25).

By reordering indices of K, we bring it into a block-diagonal form with: One block of size M2 + N −M
containing cases (i)-(iii) in Proposition 4, 2(N − M) blocks of size M (elements are indexed by i and j)
corresponding to case (iv), and a diagonal part of size (N −M)(N −M − 1) containing elements described by
the case (v). Note that in cases (i) - (iii) QDB implies equality of certain elements within the block, while for
cases (iv) - (v) it imposes relations between certain pairs of blocks.

Having identified the block structure ofK and knowing that it is positive definite, we represent it asK = G†G
and choose G that has the same block structure as K. Then, the jump operators are constructed in a similar
way as in Eq. (38), but this time with the basis matrices Eij and we immediately arrive at the following

Proposition 5. Let the Lindblad generator be given by the following set of jump operators:

(i) Lα =
∑M
i,j=1 l

α
ijEij +

∑N
k=M+1 l

α
kkEkk with lαij = l

α

ji for α = 1, . . . ,M2 +N −M ,

(ii) Lkl = Sklp
−1/2
l Ekl for k, l = M + 1, . . . , N and k 6= l,

(iii) Lik =
∑M
j=1 T

i
jkp
−1/2
k Ejk for i = 1, . . . ,M and k = M + 1, . . . , N ,

(iv) Lki =
∑M
j=1 T

i
kjp
−1/2
j Ekj for i = 1, . . . ,M and k = M + 1, . . . , N ,

where complex matrices S and T i satisfy |Skl| = |Slk| and T ijk = T ikj. Then this generator satisfies the QDB
condition with respect to σ whose eigenvalues satisfy assumptions of Proposition 4.

Remark 3. Davies generator is recovered at M = 1 where cases (iii) and (iv) reduce to (ii), or, eqivalently, at
M = 0 where (iii) and (iv) are empty. In case of full degeneracy, all jump operators are of the form (i). The
presence of non-trivial generators of types (iii) and (iv) is a unique feature of QDB Lindblad operators with
partially degenerate steady state.

Elements Sij and Sji have equal modulus, but their phases are not constrained. For convenience, we choose
S Hermitian. We also introduced a hybrid notation in which some jump operators are index with a single Greek
letter, while others with double-index Latin letter. This construction of jump operators is illustrated in Fig. 4.
The Lindblad operator has the same block structure as the underlying Kossakowski matrix, see Appendix C.

As observed in Section 5.2, the shape of the spectrum of random Davies generators depends on the scale of
randomness in the matrix S and the spread of inverse eigenvalues of the steady state. The motivation for the
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Figure 4: (left) Kossakowski matrix satisfying quantum detailed balance condition for a system of size N = 4 with
M = 2 degenerated eigenvalues. (center) Upon permutation of its indices, the Kossakowski matrix can be brought into
a block-diagonal form. (right) Non-zero elements of K indicate non-zero elements in jump operators, which are obtained
by taking a row of K, slicing it into pieces of length N each. These pieces are stacked on top of one another to form L.

interpolating Lindblad operators was to study the influence of the degree of the degeneracy and the resulting
structure of the Kossakowski matrix on the shape of the spectrum. From that perspective, distribution of p−1a
may blur the resulting picture by bringing unnecessary complexity. Therefore, we assume here that first M
eigenvalues of σ are equal to 1/N , while the non-degenerate eigenvalues are concentrated around 1/N . The
spectrum of L is not affected by the distribution of pa, so we can set pa = 1/N .

We introduce randomness into jump operators in the following way. Elements of complex hermitian matrices
are Gaussian with zero mean and variances 〈|lαij |2〉 = σ2

L, 〈|T ijk|2〉 = σ2
T and 〈|Sij |2〉 = σ2

S . We assume the
following normalization

σ2
L =

1

N(M2 −M +N)
, σ2

S =
1

N2
, σ2

T =
1

MN2
.

This normalization scheme assures that jump operators have on average equal norm, 〈TrLL†〉 = 1
N .

The spectra of Lindblad operators are centered at −1 and the eigenvalues are scattered in an interval the

size of which scales like
√
N−M+1
N . This scaling factor interpolates between N−1/2 for random Davies generators

(M = 1) and N−1 for the case of maximimally mixed stationary state. Therefore, to describe bulk of the

spectrum we rescale the Lindblad operator as L = −1l +
√
N−M+1
N L′, and propose a random matrix model valid

for 1�M � N . The random matrix model is composed of four components, L′ ≈ L′1⊕L′1⊕L′2⊕L′2⊕L′3⊕L′4,
with the building blocks

L′1 ≈
1√
2

Gauss(N−M)(N−M−1)/2, L′2 ≈
N−M⊕
i=1

1

2
(Gauss

(i)
M + GOE

(i)
M ), (68)

L′3 ≈ GOEM ⊗ 1lM + 1lM ⊗GOEM , L′4 ≈ GOEN−M + GaussN−M . (69)

Here Gauss is a diagonal matrix with standard independent Gaussian elements on the diagonal. Blocks L′1 and
L′2 appear twice to reflect the double degeneracy of eigenvalues due to Hermiticity preservation. Models for L′3
and L′4 are found under a further approximation of the part of Lindbladian given by jump operators of type (i)
in Proposition 5, see Appendix D for details.

With the decreasing degeneracy, blocks L′2 and L′3 shrink and disappear for M = 0, while L′1 and L′4 reduce
to the random matrix model for random Davies as in Eq. (63). The route to the matrix model for a maximally
mixed state is less trivial. The RMM for L′3 should include also the term 1√

N−M+1
L′mm, however, since we

assume N � M this part is neglected. On the other hand, for M ≈ N , the GOE matrix in L′3 ceases to be a
good model and this regime requires more refined treatment, see Appendix D for details.

6 Conclusions

We introduced several ensembles of random Lindblad operators L, which satisfy the quantum detailed
balance condition. These ensembles can be labeled with their stationary state σ. Random stationary states,
which are typically non-degenerate, lead to the so-called Davies generators [10–12]. As the detailed balance
condition enforces the spectrum of L to be real, we investigated density of eigenvalues along the real axis. For
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Figure 5: Ensembles of random generators of Markovian evolution obeying detailed balance and the corresponding
Random Matrix models. Quantum generators (Lindblad operators) are specified by the type of their asymptotic states.
For any ensemble of quantum Lindblad generators L one obtains, by applying supredecoherence, the corresponding
ensemble of classical Kolmogorov operators K.

various assumptions concerning the degeneracy of stationary state σ, we constructed the corresponding ensemble
of random matrices (see Appendix A), which allowed us to find analytic expressions for the asymptotic spectral
densities.

In our previous works [27, 28], we explored properties of completely random Lindblad operators and found
that their spectra are supported on a universal lemon-shaped region on the complex plane. Integrating out the
imaginary part of the eigenvalues, we obtain the marginal distribution which provides a fair approximation to
the spectral density of Lindblad generators obeying detailed balance with respect to the maximally mixed state.

We also consider random Kolmogorov operators, which induce time-continuous dynamics over the classical
probability simplex. Instead of analyzing the problem in a straightforward manner, we employed the idea of
superdecoherence [28]. Namely, by decoherefying ensembles of quantum Davies generators, we transform them
into classical Davies generators and investigated spectral features of the latter. As in the quantum case, the
marginal of the probability distribution describing the complex spectra of random Kolmogorov operators K,
supported on the universal spindle-shaped region on the complex plane [44,45], gives a reasonable approximation
of the spectral density of classical Davies generators.

Finally, we developed a family of Random Matrix models which reproduce spectral densities of different
balance-obeying operators, classical and quantum. They are summarized on a sketch presented in Figure 5.

As a next step, it would be interesting to investigate how the quantum-to-classical transition, induced by
superdecoherence, realizes in case of generators satisfying (exactly on in part) the detailed balance condition.
Furthermore, the spectral properties of random Lindblad operators depend significantly on the rank of the
operator, which could take any value from 1 to N2. A more exhaustive analysis of random generators and their
dependence on three parameters, (a) degree of superdecoherence, (b) accuracy with which the detailed balance
condition is satisfied, and (c) rank of operator L, will be a subject of a forthcoming work [61].
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Appendices

A Basic ensembles of random matrices

The following fundamental ensembles of random matrices were used in this paper:

• Let G denote a random N × N Ginibre matrix [62], with the entries being i.i.d. Gaussian random
variables with zero mean and variance 〈|Gij |2〉 = 1/N . Its spectrum covers uniformly the unit disk, a
result called the circular law of Girko [41, 62,63].

• GR = (G+G)/
√

2 denotes a matrix from the real Ginibre matrix - real non-symmetric random matrix.
The spectrum consists of a (deformed) Girko disk in a complex plane and a singular component at the
real axis, compensated by a dip in the spectral density just below and above the real axis. In the limit
N →∞ these finite–size effects disappear [64–66], and the standard Girko disk is recovered.

• GUEN = (G + G†)/
√

2 denotes a hermitian random matrix from Gaussian Unitary ensemble [67].
The name refers to the invariance of its probability density with respect to the unitary group U(N). In
the limit of large matrix dimension N , its spectrum converges to Wigner’s semicircle distribution (45).

• GOEN = (GUEN + GUEN )/
√

2 denotes a real symmetric random matrix from Gaussian Orthogonal
ensemble, invariant with respect to the orthogonal group O(N). Asymptotically the level density also
converges to the semicircle, but the correlation between levels are different. The nearest-neighbour distri-
bution displays level repulsion, P (s) ∼ sβ , with β = 2 for GUE and β = 1 for GOE, where s denotes the
(unfolded) spacing between consecutive eigenvalues.

• GaussN denotes a random diagonal matrix with independent real Gaussians with zero mean and unit
variance at the diagonal. Its level density is Gaussian, and the uncorrelated levels exhibit level clustering
and Poissonian behaviour, P (s) = exp(−s), which corresponds to β = 0.

• Finally, X is an auxiliary N ×M real rectangular Ginibre matrix. Its elements are real i.i.d Gaussian
random variables with zero mean and unit variance. The N × N matrix WishN,M = 1

MXXT is a real
Wishart matrix. In the limit N,M → ∞ such that r = N/M remains constant its spectral density is
given by the Marchenko-Pastur law [68,69]

ρMP (x) =
1

2πrx

√
(r+ − x)(x− r−), (70)

where r± = (1±
√
r)2 are the edges of the spectrum. If r > 1 the density includes additional Dirac delta

at 0.

B Pastur equation

The main object of interest in Hermitian random matrices is the average spectral density ρ(x) = 〈 1N
∑N
i=1 δ(x−

λi)〉. This object is studied through its Stieltjes transform, also known in the physics literature as the Green’s
function, GH(z) = 〈 1NTr(z −H)−1〉. Once the complex-valued Green’s function is known, the spectral density
is recovered from the behavior of G near real line via Sochocki-Plemelj formula

ρ(x) = ∓ 1

π
lim
ε→0

G(x± iε). (71)

One of the central problems in random matrix theory is to calculate the spectrum of a sum of two random
matrices A + B. This problem can be solved in the large N limit with the tools of free probability developed
for non-commuting objects [58, 59]. In this framework the notion of independence is replaced by freeness.
Informally, two matrices are free if there are no relations between their eigenbases.

To calculate the spectrum of a sum of two matrices, one first calculates their Green’s function and its function
inverse B(z) satisfying

G(B(z)) = z, B(G(z)) = z, (72)

and defines R(z) = B(z)− 1
z the R-transform, which is additive for free random matrices

RA+B(z) = RA(z) +RB(z). (73)
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In the context of this work we are interested in the case when A is a GOE, while B can be arbitrary
Hermitian. The R-transform for GOE reads R(z) = z, thus we have the relation RA+B(z) = z+RB(z). Adding
1
z to both sides leads to

BB(z) = BA+B − z. (74)

In the net step we evaluate GB at both sides of equation and use (72) to get

z = GB(BA+B(z)− z). (75)

Finally, we substitute z → GA+B(z) and use (72), obtaining the Pastur equation [51]:

GA+B(z) = GB(z −GA+B(z)). (76)

To cover cases appearing in the main text, one only needs to find GB(z). In fact, for both instances of our
interest, namely B = 1

2 (C ⊗ 1l + 1l⊗C) with C a GOE matrix (for Proposition 2) and B Gaussian diagonal (for
Proposition 3), their Stieltjes transforms are calculated in [27,28].

C Spectral properties of Lindblad operators obeying detailed bal-
ance with respect to a partially degenerate steady state

By straightforward, albeit lengthy, calculation one can verify action of the QDB generators acting on the
base matrices.

Proposition 6. The Lindblad operator be defined by the set of jump operators in Proposition 5 satisfies the
following relations:

(i) for a, b /∈ A and a 6= b

L(Eab) = λabEab, where λab = −1

2
(dab + ta + wa + wb + tb),

(ii) for a ∈ A and b /∈ A

L(Eab) = −1

2

M∑
i=1

(
G

(b)
ia + p−1A Hia + δia(wa + ta)

)
Eib,

(iii) for a /∈ A and b ∈ A

L(Eab) = −1

2

M∑
i=1

(
G

(a)
bi + p−1A Hbi + δbi(wb + tb)

)
Eai,

(iv) for a, b ∈ A

L(Eab) = L̃mm(Eab) + p−1A

N∑
k=M+1

Tk,baEkk −
1

2
p−1A

M∑
j=1

(HjaEjb +HbjEaj) ,

(v) for a /∈ A

L(Eaa) =

N∑
k=M+1

KkaEkk +

M∑
i,j=1

p−1a Ta,ijEij − taEaa,

where

Ta,ij =

M∑
m=1

Tmia T
m
aj , Hja =

N∑
k=M+1

Tk,ja, ta = p−1a

M∑
j=1

Ta,jj , wa =

N∑
k=M+1
k 6=a

|Ska|2p−1a ,

dab =
∑
α

(lαaa − lαbb)
2
, G(b) =

∑
α

(J (b)
α )2, (J (b)

α )ij = lαij − lαbbδij , K̃ka = |Ska|2p−1a − δka
N∑

j=M+1

|Sja|2p−1a ,

L̃mm(Eab) =
∑
α

L̃αEabL̃α −
1

2
{L̃2

α, Eab} with L̃α =

M∑
i,j=1

lαijEij .
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The relation between (ii) and (iii) simply follows from hermiticity preservation of L. L̃mm above is a
Lindbladian satisfying QDB with respect to a maximally mixed state, restricted to the space spanned by the
degenerate part of σ. Analogously, K̃ is a Kolmogorov generator restricted to the space spanned by non-
degenerate part of σ.

The proposition above shows that L̂ takes a block-diagonal form directly coinciding with the structure of
the Kossakowski matrix. The Lindbladian is already diagonal with eigenvalues λab on the subspace spanned by
Eab with a 6= b corresponding to the non-degenerate part of σ. There are (N −M)(N −M −1) such eigenvalues
including their double degeneracy. Moreover, there are N −M blocks (each for b /∈ A) of size M ×M . The
corresponding eigenvalues are doubly degenerate as well, since cases (ii) and (iii) are governed by the same
matrix, up to a transposition. Finally, there is a block of size M2 −M + N governing dynamics of diagonal
elements of the density matrix and the elements in the subspace spanned by degenerate part of σ.

D Justification of the random matrix model

In this section we analyze blocks of the random Lindbladian defined as in Proposition 6 and justify the
random matrix model (69).

Case (i). All eigenvalues are of the form λab = − 1
2 (dab + wa + wb + ta + tb). Similarly as in the case of

random Davies, contribution from dab is negligible. Both wa and ta are given as sums of squared moduli of
complex Gaussian, thus have the χ2 distribution. Overall, λab has the distribution as the random variable

λab ∼ −
1

4MN
χ2
4M2 −

1

4N
χ2
4(N−M−1). (77)

For small M the first term can be neglected, while for N �M � 1 both terms contribute. By the central limit
theorem, χ2

N is well approximated by the normal distribution with mean N and variance 2N . Therefore, for
M � N λab is well approximated by Gaussian distribution with mean −1 and variance N−M

2N2 .

Case (ii). The elements of the matrix J
(b)
α are Gaussian, so we use Wick’s theorem for the calculation of

its moments. Its second moment reads 〈 1
MTr(J

(b)
α )2〉 = σ2

L(M + 1) and the fourth moment 〈 1
MTr(J

(b)
α )4〉 =

σ4
L(2M2 + 6M + 4). Therefore, the spectrum of the matrix (J

(b)
α )2 has mean σ2

L(M + 1) and variance σ4
L(M2 +

4M + 3). The matrix G(b) is a sum of M2−M +N such matrices, therefore according to free CLT its spectrum

is the Wigner semicircle centered at M/N with variance M2

N2(M2−M+N) . The variance is of order at most 1/N

and decreases are M grows. Therefore, it is negligible, when compared to the contribution from ta and wa
analyzed before, which brings us to conclusion that G(b) can be approximated by the identity matrix rescaled
by M

N .
The elements of matrix H are given by

Hia =

N∑
k=M+1

M∑
m=1

Tmik T
m
ka. (78)

The fact that H is a Wishart matrix is the most evident if one notices that indices k and m can be grouped
into a single index ranging from 1 to M(N −M). Therefore, p−1A H has the same distribution as the matrix
N−M
N WishM,M(N−M), where WishN,T stands for N ×N Wishart matrix with the rectangularity parameter N

T .
Putting these results together, the Lindbladian in a single M ×M block of case (ii) can be represented as

−1

2

(
M +N

N
1lM +

√
N −M
N

GaussM +
N −M
N

WishM,M(N−M)

)
.

This model can be further simplified when N −M is large, because the Wishart matrix can be approximated as

WishM,M(N−M) ≈ 1lM +
1√

N −M
GOEM . (79)

This approximation follows from (78), in which H can be interpreted as a sum of N −M independent WishM,M

matrices to which free CLT is then applied. Therefore, the final model for a single M ×M block of case (ii)
reads

−1lM +

√
N −M
2N

(GOEM + GaussM ).

Case (iii) is a direct copy of case (ii) due to hermiticity preservation.
According to Proposition 6, the Lindbladian couples elements Eaa for a /∈ A and Eij for i, j ∈ A. However,

following numerical results, we make the assumption of neglecting the mixing terms containing Ta,ij in both
cases, which gives rise to two separate blocks.
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Case (iv). The matrix model for L̂mm analyzed in section 5.1 needs to be adjusted to take into account
different variance in the elements and different size. After these simple adjustments we have

˜̂Lmm = −M
N

1l +
1

N
L̂′mm, (80)

where L̂′mm is given by (51). As argued in case (ii), the part with the H matrix leads to

−N −M
2N

(
WishM,M(N−M) ⊗ 1lM + 1lM ⊗WishM,M(N−M)

)
,

which can be further simplified using (79). Additionally, under this assumption the term with L̂′mm is subleading
and we neglect it to get the final model

L̂3 ≈ −1lM2 +

√
N −M
2N

(GOEM ⊗ 1lM + 1lM ⊗GOEM ) .

For N −M = O(1) the approximation of a Wishart matrix by GOE ceases to hold, therefore to capture the
transition between partially degenerated case and fully degenerated case, one needs to use the full model

L̂3 ≈ −
M

N
1l− N −M

2N

(
WishM,M(N−M) ⊗ 1lM + 1lM ⊗WishM,M(N−M)

)
+

1

N
L̂′mm. (81)

Case (v). The first component is the truncation of the Kolmogorov generator, the elements of which are
generated as in Section 5.2, but only lower-left block of size N −M is taken. Taking this into account, the
random matrix model is qualitatively the same with a rescaling and shifting and reads

K̃ ≈ −N −M
N

1lN−M +

√
N −M
N

(GOEN−M + GaussN−M ) .

As argued previously, ta has the distribution of 1
2MN χ

2
2M2 , which can be approximated by the normal distribu-

tion with mean M
N and variance 1/N2. For M � N the fluctuations are negligible as compared to N−M

N2 above,

therefore terms with ta can be approximated by M
N 1l, hence

L̂4 ≈ −1lN−M +

√
N −M
N

(GOEN−M + GaussN−M ) . (82)
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[25] D. Chruściński, G. Kimura, A. Kossakowski, and Y. Shishido, Universal Constraint for Relaxation Rates
for Quantum Dynamical Semigroup, Phys. Rev. Lett. 127, 050401 (2021).
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[32] L. Sá, P. Ribeiro, T. Can, and T. Prosen, Spectral transitions and universal steady states in random Kraus
maps and circuits, Phys. Rev. B 102, 134310 (2020).

[33] M. L. Mehta, Random Matrices, 3rd ed. (Elsevier, Amsterdam, 2004).

[34] T. Guhr, A. Mueller-GRoeling, and H.A. Weidenmueller, Random-matrix theries in quantum physics,:
common concepts, Phys. Rep. 299, 189 (1998).

[35] Special issue: Random Matrix Theory, J. Phys. A: Math. and Gen. 36, (2003).

[36] F. Haake, Quantum Signatures of Chaos, 1st ed. (Springer, Berlin, 1991).
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[52] F. Fagnola and V. Umanitá, Generators of detailed balance quantum Markovian semigroup, Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 10, 335 (2007).
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