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Abstract. In this contribution to the memorial issue of Göran Lindblad, we investigate
the periodically driven Lindblad equation for a two-level system. We analyze the sys-
tem using both adiabatic diagonalization and numerical simulations of the time-evolution,
as well as Floquet theory. Adiabatic diagonalization reveals the presence of exceptional
points in the system, which depend on the system parameters. We show how the presence
of these exceptional points affects the system evolution, leading to a rapid dephasing at
these points and a staircase-like loss of coherence. This phenomenon can be experimen-
tally observed by measuring, for example, the population inversion. We also observe that
the presence of exceptional points seems to be related to which underlying Lie algebra the
system supports. In the Floquet analysis, we map the time-dependent Liouvillian to a non-
Hermitian Floquet Hamiltonian and analyze its spectrum. For weak decay rates, we find a
Wannier-Stark ladder spectrum accompanied by corresponding Stark-localized eigenstates.
For larger decay rates, the ladders begin to dissolve, and new, less localized states emerge.
Additionally, their eigenvalues are exponentially sensitive to perturbations, similar to the
skin effect found in certain non-Hermitian Hamiltonians.

This paper is an invited contribution to the Lindblad memorial volume in Open Systems
and Information Dynamics.
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1. Introduction

The Lindblad equation (LE) [1]1 has long played a crucial role in the
quantum optics community [2, 3, 4, 5]. It is commonly used to describe the
evolution of a system that unavoidably couples to the environment through
the exchange of quanta. In many cases, the LE accurately captures the dy-
namics of the system. When the parameters of the LE are time-independent,
the system’s evolution is Markovian, which is often a good approximation for
weak system-bath coupling and typical photon frequencies in quantum [6].
Although non-Markovian effects can be investigated using master equations
in Lindblad-form with time-dependent coefficients [7, 8, 9, 10], our focus in
this work is rather on the spectral properties of the Liouvillian.

The LE is a linear equation that can always be vectorized to resem-
ble Schrödinger’s equation, where the time evolution generated by a non-
Hermitian (NH) ”Hamiltonian” is called the Liouvillian L̂. With the time
evolution generated by a NH matrix, unitarity is broken, and moreover it
may result in the appearance of exceptional points (EPs) [11] as well as the
skin effect [12, 13]. EPs are degeneracies in the complex spectrum and cor-
respond to the coalescence of eigenvectors. In experiments, EPs have been
primarily studied in classical optical systems that mimic quantum systems
with an NH Hamiltonian [14, 15] or NH quantum systems constrained to
”post-selection”[16]. The skin effect is typically identified by two properties:
all eigenvectors exponentially localize to one boundary of the system for a
local finite Hamiltonian [13], and the spectrum becomes exponentially sensi-
tive to non-local perturbations [17, 18]. On the experimental side, the skin
effect has been demonstrated in different classical systems, such as nonlinear
optics [19], electrical circuits [20, 21], and ultracold atomic gases [22]. All
these works belong to what has become known as NH quantum mechanics
(QM), which extends quantum mechanics to NH Hamiltonians [23].

NH QM is a natural result of a LE analysis where the terms corresponding
to ”quantum jumps” are omitted. However, this seemingly simple approx-
imation has far-reaching consequences. The time-evolution no longer pre-
serves the norm, and the map is not CPTP (complete positivity and trace-
preserving). Furthermore, it violates the no-signaling theorem [24], causality,

1We are aware of the fact that the equation is often referred to as the
Gorini–Kossakowski–Sudarshan–Lindblad equation (or GKSL for short), from the others
discussing the same type of master equation. For a contribution to a special issue in mem-
ory of Göran Lindblad we take the freedom to simply call it the Lindblad equation. During
a local reception at the Royal Institute of Technogy honoring Göran, one of us (JL) took the
opportunity to ask Göran about the “GKS” part of the equation. Humble as he was, Göran
replied that people knew about the general form before him, but a solid mathematical proof
was missing.
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LOCC [25], and more generally, the fluctuation-dissipation or quantum re-
gression theorems [2]. Additionally, the physical interpretations of NH QM
are not well-understood, which partly hinges on mathematical grounds [26].
These issues are not present in the LE formalism, yet as mentioned before,
the LE can be represented as a NH Schrödinger equation. Thus, EPs [27, 11,
28, 11] and the skin effect can still appear in the Liouvillian [29, 30, 31, 32].
However, working with the LE comes at a price - you must work in an en-
larged state space, and vectors in this space may not represent physical states.
As we explain below, although most eigenvectors of the Liouvillian are not
physical states, they still form a complete basis for any physical state, which
indeed is essential for the LE to be a dynamical CPTP map.

In this study, we investigate the impact of exceptional points (EP’s) on a
periodically dephasing qubit described by a time-periodic Lindbladian equa-
tion (LE). We show that in the absence of EP’s, the qubit undergoes expo-
nential relaxation, while in their presence, relaxation occurs in a step-like
fashion. We attribute this behavior to the breakdown of adiabaticity near
EP’s. To gain insight into the underlying dynamics, we employ a Lie algebra
decoupling method developed in the 1960s for closed system dynamics [33]
(see [34] for a tutorial). Our results suggest that exceptional points require
the full algebra to generate the associated dynamics. Additionally, we ex-
plore the Floquet Hamiltonian (Liouvillian) spectrum and find a complex
Wannier-Stark ladder with eigenstates localized within the lattice. Surpris-
ingly, a transition occurs where the ladder structure breaks down, and new
types of less localized states emerge. These new eigenvalues display extreme
parameter sensitivity, similar to systems that support the skin effect.

This paper is structured as follows. In Sec. 2., we introduce the time-
dependent Lindblad equation and discuss two commonly used parametriza-
tions of it; regular vectorization and te Bloch representation. We also men-
tion some general properties of the resulting Liouvillians, and discuss how
the two are connected. In Sec. 3., we analyse the periodic qubit system with
the Bloch representation and using Floquet theory. The work is concluded
Sec. 4..

2. The Lindblad equation with time-dependent coefficients, and
ways of vectorisation

The single-channel time-dependent LE is given by

˙̂ρ = −i[Ĥ, ρ̂] + γ(t) (2L̂ ρ̂ L̂†
− {L̂†L̂, ρ̂}) , (1)

where ρ̂ is the density matrix of the system, Ĥ is the system Hamiltonian,
and L̂ is the Lindblad operator for the single decay channel. Through-
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out, we will consider a time-independent Hamiltonian, while the rate γ(t) =

γ
(n)
0 (1 + cos(ωnt)) is periodic in time. We point out that our analysis does

not depend crucially on that especially γ(t) is time-dependent. We could
alternatively consider a constant γ and a time-periodic Hamiltonian.

We take (1) as our starting point, i.e. we take it as given. We may note,
however, that some extra care is needed when deriving time-dependent LE’s,
especially for systems where the rate γ(t) end up being time-dependent [6].
The LE, despite being explicitly time-dependent, preserves positivity and
the trace of the density matrix, i.e. it has the aforementioned CPTP prop-
erty [35], something that will be important for the following discussions.

2.1. Straightforward vectorisation of the master equation, and
some properties of the Liouvillian

Due to the linearity of the LE we can always rewrite it as a matrix equa-
tion. In this and the next subsection we present the most common ways how
to parameterise the density operator and express it in terms of a vector. For
larger dimensions, the method outlined in this section is typically favorable.
In addition, it has advantages when it comes to numerical simulations since
many numerical routines can be more or less straightforwardly applied. For
smaller systems it is, however, often practical to consider a different param-
eterisation.

By stacking either the columns or rows of the density matrix, we note
that eq. (1) can be written as

d

dt
∣ρ⟫ = L̂(t) ∣ρ⟫ , (2)

where ∣ρ⟫ is the vectorised version of the density matrix ρ̂ and L̂(t) is the
Liouvillian (sometimes also called Lindbladian1). The Louvillian is given by

L̂(t) = −i(Ĥ(t) ⊗ 1 − 1⊗ ĤT
(t)) (3)

+
γ(t)

2
[2L̂⊗ L̂†T

−L̂†L̂⊗ 1 + 1⊗ (L̂†L̂)T] .

The formal solution to the time-dependent LE becomes

∣ρ(t)⟫ = Ŝ(t) ∣ρ0⟫ , (4)

where Ŝ(t) is the time-ordered exponential of L̂(t):

Ŝ(t) = T exp [∫
t

0
dt′ L̂(t′)] . (5)

1As Ingemar Bengtsson once formulated it: Here at the physics department in Stockholm
we only have one researcher being a noun and that is Göran
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This is a key expression that captures both the unitary and the non-unitary
evolution.

For a pure state, ρ̂ = ∣ψ⟩⟨ψ∣, the vectorised state reads

∣ρ⟫ = ∣ψ⟩ ⊗ ∣ψ∗⟩ . (6)

The state ∣ρ⟫ lives in the enlarged state space, Liouville space [36], compris-
ing all pure and mixed states, but also unphysical states. Thus, a general
vector ∣ν⟫ in this space does not have to represent a physical density matrix,
meaning that it need not be positive semi-definite nor have a unit trace. For
the Hilbert-Schmidt scalar product, in the Liouville space, ⟪ρ̂∣ϱ̂⟫ = Tr [ρ̂ϱ̂].
Eigenvectors ∣ϱn⟫ and eigenvalues µn of any time-independent Liouvillian L̂
are given by the standard expression

L̂ ∣ϱn⟫ = µn ∣ϱn⟫ . (7)

It follows that the steady state ∣ϱss⟫ is the eigenvector with µn = 0. There can
exist more than a single steady state, even though in most cases the steady
state is unique for time-independent Liouvillians [37, 38]. Since L̂ is in general
not a Hermitian operator (or rather iL̂ to be precise), we must distinguish
between left and right eigenvectors; in (7), for example, we consider the right
eigenvectors [23]. We may note that the left and right eigenvectors both form
complete bases, hence any state can be expressed in terms of them, e.g.

∣ρ⟫ = ∑
n

dn ∣ϱn⟫ . (8)

These basis vectors are not, in general, orthogonal, i.e. ⟪ϱn∣ϱm⟫ ≠ δnm, while
the left/right eigenvectors can indeed be made orthogonal, something referred
to as biorthogonality [23, 39, 40].

Given the expansion (8), it follows that its time evolution reads

∣ρ(t)⟫ = ∑
n

dne
µnt ∣ϱn⟫ . (9)

Solving the dynamics by finding the eigenvalues of the Louvillian is also
known as the damping-basis approach [41].

Since the LE is trace-preserving we find the following important result
for the eigenstates [11]. Let ϱ̂n be the density matrix corresponding to the
eigenvector ∣ϱn⟫, and ϱ̂n(t) the time-evolved density matrix, it then follows

Tr [ϱ̂n] = Tr [ϱ̂n(t)] = Tr [ϱ̂n] e
µnt. (10)

In the first line, we used the trace conservation, and in the second line, we
used ϱ̂(t) = ϱ̂ eµnt. Since eµnt ≠ 1, unless µn = 0, we must have that Tr [ϱ̂n] =
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0. Thus, the only eigenvector representing a physical density matrix is the
steady state. All other eigenvectors are traceless, and thereby unphysical [38,
11], which is the reason why we call them eigenvectors rather than eigenstates
– they do not represent states. This implies that for the expansion (8) we
can actually separate the sum into two parts

∣ρ⟫ = ∣ϱss⟫ +∑
n

dne
µnt ∣ϱn⟫ . (11)

Moreover, to warrant positive semi-definiteness of the evolved state, the Li-
ouvillian spectrum comes in complex pairs, i.e. for each complex µn there
exists another eigenvalue µm = µ

∗

n [42, 43].
The above discussion breaks down when the spectrum is degenerate. More

precisely, upon varying some system parameter λ and whenever any two or
more eigenvalues coincide, µn(λ) = µm(λ), the corresponding eigenvectors
coalesce ∣ϱn⟫ = ∣ϱm⟫, implying that the Liouvillian is not diagonalisable at
this point [44, 11]. Such EPs mark a non-analytic behaviour in the spectrum
typically characterized by some square-root singularity.

2.2. Bloch vector vectroisation of the master equation

In the quantum optics community, an alternative to the above vectori-
sation (2) is often considered. This consists in parametrising the density
matrix in terms of the Bloch vector R

ρ̂ =
1

D

⎛

⎝
I +
√

D(D − 1)

2
R ⋅ λ

⎞

⎠
. (12)

Here, D = dim{H} is the dmension of the Hilbert space, R = (r1, r2, . . . , rD2−1)

is the generalized Bloch vector, and the vector λ = (λ̂1, λ̂2, . . . , λ̂D2−1) is com-
posed of the generalized Gell-Mann matrices λ̂i [45]. The set of matrices λ̂i
matrices are Hermitian, traceless and together with the identity I they are
mutually orthogonal, e.g. Tr [λ̂iλ̂j] =Dδij . Moreover, they form the genera-
tors of the group SU(D). The Bloch vector length ∣R∣ ≤ 1 such that the state
space can be represented by a ‘Bloch hypersphere. However, whenever D > 2
not all points within the Bloch sphere represent physical states [46, 47].

The LE parametrised in terms of the Bloch vector takes the general form

d

dt
R =MR + b. (13)

The advantage of this representation is that the constraint Tr[ρ̂] = 1 removes
one dimension of the matrix; the dimension of the Bloch Liouvillian matrix
M is (D2−1)×(D2−1) while the dimension of L̂ is D2×D2, which in higher
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dimension might not make a big difference. The price we pay is that eq.
(12) is in general not homogeneous due to the pump-term b. Note that when
b = 0 a trivial steady state, Rss = 0 corresponds to the maximally mixed
state. Typically, b = 0 when the Lindblad operators L̂i are Hermitian [38].
For a non-zero pump-term, we see that the steady-state Bloch vector becomes
Rss = −M

−1b.
As a final remark, we note that the pump term can be absorbed into M

by considering a ‘Bloch vector’ R̃ = (α,R), such that the density matrix is

parametrised as ρ̂ = 1
D (αI +

√
D(D−1)

2 R ⋅ λ), and the eq. (13) becomes d
dtR̃ =

M̃R̃. Hence, we have given up the normalisation constraint by introducing
a new parameter α, and the dimension of M̃ is now D2×D2. The voctorised
density matrix ∣ρ⟫ and the expanded Bloch vector R̃ can be related by some
matrix V , i.e. ∣ρ⟫ = V ∣R̃⟩, were we wrote the Bloch vector as a ket. Thus,
the Liouvillian and extended Bloch Liouvillian are related via M̃ = V −1L̂V .
For the qubit

V =
1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1
0 1 i 0
0 −i 1 0
1 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (14)

which up to a constant pre-factor is unitary, and hence the two spectra are
equivalent (up to a factor). We may therefore talk about the “Liouvillian
spectrum” without having to specify whether we use L̂ orM. This does not,
however, hold in higher dimensions.

3. Analysis of a periodic two-level system

3.1. Model system

Considering a single qubit, we will stick to the Bloch representation (12),
rather than working with the vectorising outlined in subsection 2.1.. For
a qubit the Bloch vector takes the simple form R = (rx, ry, rz), and λ =
(σ̂x, σ̂y, σ̂z) is composed by the Pauli matrices. In a proper frame, we may
take a general two-level Hamiltonian as

Ĥqu = [
δ g
g −δ

] , (15)

with δ and g real. For multiple Lindblad operators L̂i, the Bloch equations
reads

∂tR =MHR +∑
i

(MLiR + bi) . (16)
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where the anti-symmetric matrix

MH = 2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 −δ 0
δ 0 −g
0 g 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (17)

derives from the unitary Hamiltonian evolution, and

MLi = γi(t)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−(∣Lyi∣
2 + ∣Lzi∣

2) LxiL
∗

yi + iL1iL
∗

zi L∗ziLxi − iL1iL
∗

yi

L∗xiLyi − iL1iL
∗

zi −(∣Lxi∣
2 + ∣Lzi∣

2) LyiL
∗

zi + iL1iL
∗

xi

LziL
∗

xi − iL1iL
∗

yi L∗yiLzi − iL1iL
∗

xi −(∣Lxi∣
2 + ∣Lyi∣

2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c.c.

(18)
is the contribution toM resulting from the jump operator L̂i, and the pump-
term

bi = 2iγi(t)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

L∗yiLzi

L∗ziLxi

L∗xiLyi

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ c.c. . (19)

The jump operators have been expressed in terms of the Pauli matrices;
L̂i = L1iI+Lxiσ̂x+Lyiσ̂y+Lziσ̂z. Here we see that Hermitian jump operators L̂i

generate vanishing pump-terms, i.e. bi = 0. The pump-terms also disappear
when only a single Lαi (α = x, y, z) is non-zero, e.g. dephasing in a given
basis.

Let us consider an example where the pump term is zero, bi, for example,
L̂ = σ̂y, which represents a dephasing in the y-basis. The Lindblad term can
also be viewed as an incoherent pump, in addition to the coherent drive
achieved for g ≠ 0. The Bloch Liouvillian matrix takes the form

M=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−γ(t) −δ 0
δ 0 −g
0 g −γ(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (20)

Using the Gell-Matrices λ̂j (i = 1, 2, . . . , 8), we may writeM= −γ(t)λ̂−iδλ̂2−

igλ̂7, with λ̂ = −2I/3 − λ̂3/2 +
√

3λ̂8/6.

3.2. Exceptional points and Bloch vector evolution

It is worth analysing the adiabatic diagonalisation of (20) to gain in-
sight into the system’s dynamics. Adiabaticity for open quantum systems
differs in some respects from how one thinks about it for closed quantum
systems [48, 49]. For example, the eigenvectors are typically not stationary
states, and in particular for the Liouvillian L̂ any eigenvector with Re(µn) < 0
will decay as time progresses. Hence, its norm is not preserved even for
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Fig. 1: The real parts of the adiabatic eigenvalues (21) in the vicinity of a
pair of EPs. The dimensionless parameters used are δ = 0.05, g = 0, γ0 = 10,
and ω = 0.05.

a time-independent Liouvillian. Moreover, turning to the Bloch Liouvil-
lian matrix we should stress that the norm of the eigenvectors Rn (i.e.
MRn = νnRn) plays a physical role; parallel Bloch vectors with different
norms represent different density matrices ϱ̂n. Another aspect is the fact
pointed out in Section 2.1., namely that eigenvectors of a NH matrix need
not be orthogonal. Despite these complications, we can perform a time-
instantaneous adiabatic diagonalisation of M(t). For the present example,
we find the adiabatic eigenvalues

ν0(t) = −γ(t),

ν±(t) = −
γ(t)

2
±

√
γ2(t)

4
− g2 − δ2.

(21)

We do not write out the explicit expressions for the Bloch eigenvectors
R0,±(t).

Using γ(t) = γ0 [1 + cos(ωt)] we have that for times tn such that ωtn =

arccos (2
√
(g2 + δ2)/γ0 − 1) + 2πn, with n ∈ N, the eigenvalues ν±(t) coincide

and EPs in terms of a square root singularity emerge. This is shown in
fig. 1 where we zoom in around two EPs. Note that the EP results from
‘balancing’ the term stemming from the Lindblad operator with those of the
Hamiltonian [50], and furthermore, the EP remains even if we let either g or
δ be zero.

The appearance of EPs in the Liouvillian may influence the evolution of
the system. From the general discussion related to eq. (10) we saw, however,
that eigenvectors of the Liouvillian typically do not represent physical states,
and this should, in one way or another, affect how EPs can be studied in
real experiments. It is known that if we consider an EP of second order (i.e.
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doubly degenerate) and an initial instantaneous eigenvector, the vector will
have swapped to the other eigenvector if the EP is adiabatically encircled [44,
23, 11]. This is a generalisation of the geometric phase to EPs; going around
once swaps the vectors, going around twice adds an overall minus sign to the
vector, going around three times causes the vectors to be swapped again but
with a minus sign, and going around four rounds we return to the original
vector. Recently, a qubit system exposed to both dephasing and dissipation
was experimentally analysed within the Lindblad formalism, and especially
the geometric properties upon encircling them were analysed [51].

Contrary to the situations above, let us focus on how the EPs affect the
evolution of the system under a periodic modulation (for a time-dependent,
but not periodic, study see ref. [28]). In our case, this will cause the sys-
tem to repeatedly experience the presence of EPs. Since the gap closes at
an EP, and eigenvalues do not have continuous derivatives at these points,
adiabaticity is expected to break down when the system is driven through
any EP. However, on second thoughts, it is not as clear how adiabaticity
is affected by the EPs. We expect that if we start in an initial eigenvector
Rn(0) of M(0), for slow enough changes and large enough gaps, we expect
that the system evolves along the instantaneous eigenstate Rn(t) with the
prefactor exp (∫

t
0 νn(t

′)dt′) (we do not need to care about possible geometric
phases for our argument [52]). Note that if we require the initial vector to
represent a physical state, Rn(t) has to be a real vector and this implies
that Im[νn(0)] = 0. Thus, under adiabatic evolution the adiabatic vector

R
(ad)
n (t) = exp (∫

t
0 νn(t

′)dt′)Rn(t) stays real. This follows from the CPTP
property of the LE. If the system is driven through an EP, after the EP the
eigenvalue is no longer purely real and it comes with a companion complex
eigenvalue (for the qubit case these are the ν±(t) eigenvalues of eq. (21)).
Even so, the CPTP property implies that the evolved Bloch vector R(t) has
to remain real, and hence, regardless of how slow or adiabatic the change is
the vector has to become a superposition of the two companion instantaneous
eigenvectors. Hence, there is no way the vector can remain in a single Bloch
eigenvector if it traverses through EPs – the CPTP property selects a linear
combination that guarantees the positivity of the evolved state.

The steady state of the Liouvillian matrix (20) is the maximally mixed
state ∣Rss∣ = 0, meaning that even for the periodic decay rate the system
should eventually approach this state. The eigenvector R0(t) has the largest
negative real part of the eigenvalue and therefore shows the fastest instan-
taneous decay, while R−(t) decays the slowest. Let us consider an initial
state R(0) = R−(0) and evolve it in time according to the Liouvillian (20).
To explore the influence of the EPs we pick parameters such that ν±(t) co-
incide at the aforementioned points tn. We wish to explicitly explore the
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Fig. 2: The evolution of the Bloch vector amplitude (blue solid line) and the
trace distance (22) (red solid line). For the given parameters, the adiabatic
eigenvalues (21) displays pairs of EPs (see fig. 1) where the Bloch vector
length rapidly decreases and the trace distance drastically changes. In be-
tween the EPs, both the Bloch vector and the trace distance stay roughly
constant, i.e. here the evolution is approximately adiabatic. At larger times,
the Bloch vector approaches R → Rss = (0,0,0) which is the unique steady
state for the system. The parameters are the same as those of fig. 1, and the
system is initialised in the eigenvector R−(0).

adiabaticity and we thereby compare the evolved state with the adiabatic

state R
(ad)
− (t). In particular, we calculate the trace distance between the

corresponding density matrices

T (ρ̂, ρ̂(ad)) =
1

2
Tr ∣ρ̂(t) − ρ̂(ad)(t)∣ . (22)

Over longer times, the trace distance will approach zero since the two Bloch
vectors vanish in the steady state. Nevertheless, it gives a rough idea of how
well the evolved state follows the adiabatic one.

In fig. 2 we display both the trace distance and the purity of the state
given by the Bloch vector amplitude ∣R(t)∣. For the given parameters, same
as for fig. 1, one finds two EPs nearby in time, and in these instances, the
purity suddenly drops. The purity is monotonously decreasing so we see no
signs of reestablished coherences, which could possibly happen for a time-
dependent LE. The trace distance demonstrates that the breakdown of adia-
baticity occurs at the EPs for these parameters; apart from the vicinities of
the EPs the trace distance stays approximately constant. For other parame-
ters, where no EPs occur, we see a qualitatively different behaviour with an
approximate exponentially decaying purity. Thus, the EPs may influence the
evolution of the system by making the dephasing highly non-exponential. In
the next subsection, we will see that the emergence of EPs seems to have a
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more hidden effect which becomes clear by analysing the model in a Floquet
basis.

We have observed that the appearance of EPs in the Bloch Liouvillian
does not occur for just any Hamiltonians and Lindblad jump operators. Es-
pecially, in many solvable models one notices that the underlying Lie algebra
is rather simple (i.e it is closed and has a low dimension), and it seems that
these models have in common that they lack EPs. As an example, in ref. [53],
another set of Bloch equations than those of eq. (20) were studied, and an-
alytical solutions could indeed be given thanks to a closed Lie algebra. For
our model, the set {λ̂, λ̂3, λ̂8} does not alone form a closed algebra. To try
and further understand the underlying structure giving rise to EPs in two-
level systems, we turn to a Lie algebra method first developed by Wei and
Norman [33]. This method has been frequently used in the literature to solve
the dynamics of both two-level [54] and continuous variable systems [55, 56].
The premise of the method is to identify a finite-dimensional Lie algebra that
generates the time evolution of the system. Once such an algebra has been
identified, a set of differential equations can be derived which fully determine
the dynamics.

We here briefly outline the method. Consider a Hamiltonian

Ĥ(t) =
m

∑
j

Gj(t)Ĥj , (23)

where Gj(t) are (possibly) time-dependent coefficient, and the Ĥj ’s encode
either free evolution or interaction terms. We then identify the Lie algebra L
by commuting the Hamiltonian operator terms Ĥj . Whenever they produce
a new operator that was not part of the initial set {Ĥj}, e.g. [Ĥi, Ĥj] ∝ Ĥk,
we add it to the set. If a finite number of n ≥ m operators can be identified
in this way, we have obtained a finite-dimensional Lie algebra that generates
the dynamics. We define the time-evolution operator in the usual way as

Û(t) = T exp [−
i

h̵
∫

t

0
dt′ Ĥ(t′)] , (24)

where T indicates time-ordering. It is often difficult to derive a closed-form
solution for Û(t), but according to [33], we state an ansatz with the help of
the factorised unitary

Û(t) = exp[−iF1(t) Ĥ1] exp[−iF2(t) Ĥ2]⋯ exp[−iFn(t) Ĥn], (25)

where Fj are time-dependent coefficients and Ĥj are the elements of the Lie
algebra. By then differentiating both (25) and (24), then equating the results,
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we can derive a set of differential equations

G⃗ = −iξ ˙⃗F, (26)

where G⃗ is the vector of Hamiltonian coefficients and F⃗ is the vector of
corresponding coefficients defined in the ansatz (25).

The Lie algebra decoupling method may be extended to open system
dynamics by treating the vectorised Louvillinan (2) as the Hamiltonian and
stating an ansatz for the time-evolution in the form of

Ŝ(t) = exp[D1L̂1] exp[D2L̂2] . . . exp[DnL̂n], (27)

where Dj are time-dependent coefficients.
Through this method, we may study the underlying structure of the alge-

bra that generates the time evolution. After vectorising the Lindblad equa-
tion for the Hamiltonian (15) as well as the Lindblad operators L̂ = σ̂y, we
obtain the terms 1

σ̂z ⊗ 1 1⊗ σ̂z σ̂y ⊗ σ̂y

σ̂y ⊗ 1 1⊗ σ̂y (28)

By commuting the terms, we obtain the full Lie algebra that generates the
evolution

σ̂x ⊗ 1 1⊗ σ̂x σ̂z ⊗ σ̂z

σ̂y ⊗ 1 1⊗ σ̂y σ̂y ⊗ σ̂y

σ̂z ⊗ 1 1⊗ σ̂z σ̂x ⊗ σ̂x

σ̂x ⊗ σ̂y σ̂y ⊗ σ̂x σ̂z ⊗ σ̂y

σ̂x ⊗ σ̂z σ̂z ⊗ σ̂x σ̂y ⊗ σ̂z (29)

This algebra contains all 15 elements, and thus the ansatz for the non-unitary
dynamics contains an equal number of terms. We conclude that despite the
rather simple model used in our numerics ĤH ∝ σ̂z and L̂ = σ̂y, it generates
a high dimensional Lie algebra.

Instead, we may consider a Hamiltonian and Lindblad operator that to-
gether generate a smaller algebra. In [54], it was shown that the following
choice of Hamiltonian and Lindblad operators generates an algebra with only
three elements:

Ĥ = −
1

2
Ωσ̂z,

1Technically, the additional transpose that arises from our choice of vectorisation gives
us the term σ̂y ⊗ σ̂∗y , however, we note that σ̂∗y = −σ̂y. Thus we can consider the full Lie
algebra without the transpose.



14

and Lindblad operators

L̂1 = σ̂+, L̂2 = σ̂−, L̂3 = σ̂z. (30)

The ansatz reads

Ŝ(t) = eFz(t)Ĥz eF↑D̂↑ eF↓D̂↓ eF33D̂33 , (31)

where we have introduced

Ĥ3 = −i (12 ⊗ σ̂z − σ̂
∗

z ⊗ 12) , (32)

as well as the super-operators

D̂↑;↓ =
1

2
(D̂11 + D̂22 ∓ iD̂12 ± D̂21) , (33)

for which

[D̂↑, D̂↓] = D̂↑ − D̂↑, (34)

and where

Djk = σ̂
∗

k ⊗ σ̂j −
1

2
12 ⊗ σ̂kσ̂j −

1

2
σ̂∗j σ̂

∗

k ⊗ 12. (35)

The differential equations for the coefficients in (31) are given in [54].
The link between the Hilbert space time-evolution Ŝ(t) and the eigen-

values of the spectrum studied is that the eigenvalues of the Louvillian are
given by

diagŜ(t) = diag(eλ1 , eλ2 , eλ3 , eλ4). (36)

However, when analysing the spectrum of the Louvillian that yields the
smaller algebra, we indeed find that no exceptional points arise. The lack of
exceptional points for a smaller algebra indicates that we require a Hamilto-
nian and noise operators that generate the full SU(4) algebra to observe this
phenomenon. At this point, this is just an observation and we have no proof
for it.

3.3. Floquet analysis – Wannier-Stark ladders and parameter
sensitivity

To make the analog to Floquet theory [57, 58, 59] more transparent, let
us express the Bloch equations in terms of a Schrödinger-like equation with
a NH Hamiltonian

i
∂

∂t
∣R(t)⟩ = H(t)∣R(t)⟩, (37)
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where H(t) = iM(t) and ∣R(t)⟩ is the Bloch vector written as a ket. The
periodicity of H(t) allows us to introduce a time-independent Floquet Hamil-
tonian HF . A method to find the corresponding Floquet Hamiltonian is to
make use of the infinite Euclidean algebra [60]

[Ê0, Ê] = −Ê, [Ê0, Ê
†] = Ê†, [Ê, Ê†] = 0. (38)

We have the eigenstates of Ê0, Ê0∣m⟩ =m∣m⟩, for m ∈ Z, and ladder operators
Ê∣m⟩ = ∣m − 1⟩ and Ê†∣m⟩ = ∣m + 1⟩. We further introduce the phase states,
expressed in the Floquet states ∣m⟩ as

∣θ⟩ = lim
N→∞

N

∑
m=−N

e−iθm∣m⟩, (39)

such that Ê∣θ⟩ = eiθ ∣θ⟩ and Ê†∣θ⟩ = e−iθ ∣θ⟩.
Consider now a rotating frame with respect to ωÊ0, i.e. ∣θ(t)⟩ = e

−iω̂E0t∣θ⟩.
A practical feature is that ⟨θ(t)∣Ê∣θ(t)⟩ = e−i(ωt+θ), which implies that we
can express the Hamiltonian in (38) as the expectation value of the time-
independent Floquet Hamiltonian; H(t) = ⟨θ(t)∣HF ∣θ(t)⟩, and where we for
simplicity have taken the parameter θ = 0. Thus, we have transformed the
time-dependent problem of H(t) into a time-independent one of HF . In
general, we can use the mapping

γ(t) = γ0 [1 + cos(ωt)] →
γ0
2
(2 + Ê + Ê†) (40)

to go from H to HF . The Floquet Hamiltonian then becomes

HF = [ωÊ0 − i
γ0
2
(2 + Ê + Ê†) λ̂ − iδλ̂2 − igλ̂7] , (41)

where the λα-operators are the Gell-Mann matrices.
Apart from being NH, due to the presence of the imaginary i, and un-

bounded from below, the Hamiltonian (41) bears many similarities with other
known models. The ladder operators Ê† and Ê can be seen as re-scaled
bosonic creation/annihilation operators, and then the Hamiltonian is akin an
SU(3) Jaynes-Cummings or quantum Rabi model [61]. Here, the bare states
takes the form ∣m, êk⟩ (with êk representing the unit vector for the three Bloch
vectors with components k = x, y, z). Alternatively, the Hamiltonian also de-
scribes a single-particle tight-binding lattice model. More precisely we find a
1D three-legged ladder lattice, with the Floquet quantum number m denoting
the m’th rung sites in the lattice, the ladder operators describe (complex)
hopping along the legs, while the λ̂α-operators induce hopping along the
rungs instead. Similar lattice models arising in quantum optical models were
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Fig. 3: The numerically extracted Floquet spectrum εn for two different set of
parameters; (a) δ = 0.05, g = 0, γ0 = 0.1, and ω = 0.05 and (b) δ = 0.05, g = 0,
γ0 = 05, and ω = 0.05 (same as in Figs. 1 and 2). We truncate the Hamiltonian
to −800 ≤ m ≤ 800. The upper plot demonstrates the three Wannier-Stark
ladders (two of them being degenerate). At the edges of the spectrum, there
are a few scattered eigenvalues, but it should be understood that these are
artifacts from having a truncated Hamiltonian; in the thermodynamic limit,
the real parts of the Wannier-Stark ladders extend from −∞ to +∞. In the
lower plot, we consider parameters well in the regime where EPs appear in
the Liouvillian (see fig. 1). Here something interesting happens; a fraction
of the energies depart from the Wannier-Stark ladders and start to fill the
space between the two lower ladders.

recently studied in [62]. The bare term ωÊ0 plays the role of a tilt of the lat-
tice or a constant force parallel to the lattice. A tilted tight-binding lattice
model is known as a Wannier-Stark ladder [63, 64]. The characteristic prop-
erties of a (Hermitian) Wannier-Stark ladder are that the spectrum, in the
thermodynamic limit, Em = ωm is equidistant, and the m’th (Wannier-Stark)
eigenstate is localized to the m’th site – so-called Stark localization [65, 66].
Using knowledge from Jaynes-Cummings-like and Wannier-Stark models we
can now analyse the properties of our Floquet Hamiltonian.

Figure 3 presents two examples of the numerically extracted spectrum εn
of the Floquet Hamiltonian HF ,

HF ∣φn⟩ = εn∣φn⟩, (42)

in the complex plane, one where the LiouvillianM(t) does not support EPs
(a), and one were it does (b). The Floquet Hamiltonian was diagonalised



17

in the bare basis ∣m, êk⟩ with a truncation −800 ≤ m ≤ 800. We find that
for small γ0, the spectrum becomes what one could expect for a (complex)
Wannier-Stark ladder, namely

εm,{0,±} = ωm + iν{0,±}, (43)

with ν{0,±} = nu{0,±}(t = 0), and as visualised in (a). In this example, we find
three Wannier-Startk ladders, of which two are degenerate. As soon as γ0 is
increased beyond the EP, the two degenerate ladders split.

A novel phenomenon emerges when we increase γ0 further, see (b). After
a certain dephasing rate γ0 (≈ 1 for these parameters), two of the ladders
start to break up; some eigenvalues pull out from the ladders and start to fill
up the space between the two ladders. Recall, that in reality −∞ < m < ∞
meaning that the behaviour at the edges of the spectrum (i.e. large values
of ∣Re [εn] ∣ in the plot) is a finite size effect from the numerical truncation.
This effect of collapsing the ladders gets stronger the larger γ0 considered.
Using an argument of analytic continuation to the complex plane of a regular
Wannier-Stark ladder, it is tempting to think that this is a numerical artifact
from diagonalising large NH matrices [17, 18]. We find no evidence of such
numerical sensitivity by varying system sizes and numerical precision, but, on
the other hand, we lack a mathematical proof that this indeed is a physical
result. In recent years, exponential sensitivity of the spectrum, i.e. small
perturbations ϵ render a spectral change scaling as ∼ exp(ϵL) where L is
the spatial size of the perturbation (e.g. if the perturbation changes the
boundary conditions L is the system size), has been thoroughly studied in
the realm of NH quantum mechanics where it is known to be related to the
skin effect. The NH skin effect is a phenomenon in which the (left/right)
eigenvectors of a lattice model become exponentially localized to one edge of
the system [17, 18, 13, 12].

In our NH Wannier-Stark model, we indeed find that the scattered points
display exponential sensitivity, both to parameter changes and to system
size. There is an important aspect to point out that makes our model
different from other NH models displaying exponential sensitivity, namely
that our eigenstates are spatially localized. The other paradigm example in
physics of extended (non-interacting) systems with localized eigenstates is
disordered ones, which give rise to Anderson localization [67]. In disordered
one-dimensional systems, all eigenstates become exponentially localized. One
can imagine that Anderson localization and the skin effect localization could
potentially conflict. Typically, in a system showing the skin effect any initial
state will propagate towards the boundary of the system, but if conductivity
vanishes due to Anderson localization it is unclear which effect will win. This
was analysed in [68], and it was found that there is a trade-off between the
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Fig. 4: The IPR (44) vs. the real parts of the spectrum for the examples of
fig. 3. In the case of well-resolved Wannier-Stark ladders, we also find nicely
localized eigenstates. In the other case when the ladders start to break up,
we find much less localized states, especially for those states not within a
ladder.

disorder strength and the drift in the system determining which mechanism
survives. In our model, the states are localized due to the Stark tilt, and
there are no boundaries in the system. As a result, we may expect that the
Stark localization should prevail, which is also what we find. To study the
sensitivity we introduce the inverse partition ratio

IPRn =
1

∑m,k ∣c
(n)
m,k∣

4
, (44)

where the c
(n)
m,k are the coefficients of the n’th (right) eigenstate expanded in

the bare states ∣m, êk⟩, i.e. ∣φn⟩ = ∑m,k c
(n)
m,k∣m, êk⟩. For a delocalized state,

the IPRn scales with the system dimension, while for a fully localized state
(occupying a single site) IPRn = 1. The IPR for the examples of fig. 3
are shown in fig. 4. We present the IPR as a function of the real part of
the eigenvalue. When the system displays no exponential sensitivity we also
find localized Stark-states (a). When the sensitivity has set in, the states of
the Stark ladders get less localized. More precisely, numerics suggest that
these states stay localized but instead of being exponentially localized, they
become more Gaussian-like. We have explored whether there is a continuous
phase transition governing this new behaviour, but we find no evidence for
this. It is further unclear if this should be called a Floquet skin effect; the
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states stay localized, only a fraction of the states show the sensitivity, and
there is no real boundary for the states to localize around.

4. Conclusions

In this study, we focused on topics inspired by Göran Lindblad’s inter-
ests, including open quantum systems, Lie algebras, and quantum dynamics.
While exponential sensitivity and exceptional points (EPs) have been widely
explored in non-Hermitian (NH) quantum mechanics, their investigation in
the context of Lindblad equations (LEs) has been relatively scarce. To shed
light on this issue, we investigated a periodically driven dephased qubit sys-
tem that is simple yet non-trivial. Our results indicate that in the presence of
strong dephasing, the dephasing evolution is no longer exponential. Instead,
the system exhibits a step-like decay of the qubit’s purity due to the presence
of EPs. Particularly, in the vicinity of the EPs, adiabaticity and exponential
decay break down, leading to sudden jumps of the Bloch vector.

We also explored the presence of EPs by examining the underlying Lie
algebra of the system. We found that all 15 Lie algebra elements are necessary
to close the algebra. Although other choices of Lindblad jump operators could
be used, resulting in a lower-dimensional algebra [53, 54], they do not support
EPs. It appears as if the dimension of the algebra cannot be too low for EPs
to appear.

Finally, we derived a non-Hermitian Floquet Hamiltonian using the peri-
odicity of the Liouvillian and analyzed its spectrum. As expected, we found
a complex Wannier-Stark spectrum with localized eigenvectors. However,
we also discovered new solutions that arise when the dephasing becomes
stronger. These solutions are still localized, but they do not form a ladder
spectrum and are exponentially sensitive to parameter changes. Similar sen-
sitivity has been reported in the context of the skin effect. While we have
explored the possibility of this effect being a numerical problem, we could not
find any evidence for it. Nonetheless, a deeper understanding of this effect
would be beneficial, but we leave it for future investigations.
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