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We discuss the long-time relaxation of a qubit linearly coupled to a finite bath ofN spins (two-level
systems, TLSs), with the interaction Hamiltonian in rotating wave approximation. We focus on the
regime N ≫ 1, assuming that the qubit-bath coupling is weak, that the range of spin frequencies is
sufficiently broad, and that all the spins are initialized in the ground state. Despite the model being
perfectly integrable, we make two interesting observations about the effective system relaxation.
First, as one would expect, the qubit relaxes exponentially towards its zero-temperature state at a
well characterized rate. Second, the bath spins, even when mutually coupled, do not relax towards
a thermal distribution, but rather form a Lorentzian distribution peaked at the frequency of the
initially excited qubit. This behavior is captured by an analytical approximation that makes use of
the property N ≫ 1 to treat the TLS frequencies as a continuum and is confirmed by our numerical
simulations.

I. INTRODUCTION

In this paper we consider a simple and paradigmatic model of an open quantum system [1, 2], i.e., an individual
qubit linearly coupled to a bath of spins (two-level systems, TLSs) in rotating wave approximation. Contrary to the
standard descriptions at the basis of the theory of open quantum systems, however, we assume that the number N
of spins is finite. Open quantum systems coupled to finite baths have been studied in different works [3–6] with a
particular attention to their thermodynamic properties, for which the back-reaction of the system on the environment
must be taken into account [7]. In the present work our aim is to investigate the long-time behavior of the populations
of both the qubit and the bath spins, looking for signatures of “relaxation” or “thermalization” [8–10] in the physical
model. Since the number of bath modes is finite, the dynamics of the wave function of the total system will oscillate
in a coherent way at any time t and the Poincaré recurrence time t∗, i.e. the time at which the state of the system
is identical to its initial state at time t = 0, will be finite. However, in the regime N ≫ 1, we observe that “effective
relaxation” can be observed, i.e., the dynamics of the system populations almost stabilizes at a fixed value for long
times.

Contrary to many descriptions of equilibration and/or thermalization in closed quantum systems [8–14], in this
paper we do not analyse the reduced density matrix of a subsystem and we do not perform a statistical or time
average. We just focus on the unitary population dynamics of the finite system depicted in Fig. 1. Our purpose is
to study the problem from a different perspective, showing how even with a finite number of bath spins the qubit is
for all practical purposes thermalizing, while the bath populations are relaxing towards a non-thermal distribution.
We note that our analysis can be straightforwardly adapted to the spin-boson model of a qubit coupled to harmonic
oscillators in a single-excitation regime.

Although mainly of conceptual interest, our work can be interesting for present day solid-state qubit research. For
instance, in a recent experiment the authors realised that their superconducting fluxonium qubit is coupled to an
ensemble of TLSs, which in turn are fairly isolated from the true thermal bath [15]. Our model could be applied to
the analysis of their system, either directly or possibly with adaptation due to the weak TLS coupling to the actual
bath.

We dedicate this article to the memory of Göran Lindblad, an outstanding scientist who influenced the work of so
many, and whose tools we use practically every day.

We structure the rest of the paper as follows. In Sec. II we describe the model and the Hamiltonian that we work
with. In Sec. III we briefly recall the standard description of the dissipative model with an infinite number of bath
modes and under the standard Markovianity assumption. Then, we present our main results in Sec. IV. Finally, we
discuss the results and draw some conclusions in Sec. V.
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FIG. 1. (a) The standard framework of an open quantum system: a qubit is coupled to a large collection of bath modes (spins,
two-level systems). (b) Same as (a), but now the qubit is treated on the same footing as the bath spins. We can include
inter-spin couplings in the model.

II. PHYSICAL MODEL

Let us now formalize the physical model. We consider a qubit with energy gap ℏΩ coupled to a (finite) bath formed
of N spins with level spacing of the jth one equal to ℏωj [16]. The Hamiltonian reads H = HQ + V + HB . Here
HQ = ℏΩa†a is the qubit Hamiltonian, where a = |g⟩⟨e|, with |g⟩, |e⟩ the ground and excited state, respectively.

HB =
∑N

j=1 ℏωjb
†
jbj + H

(int)
B is the Hamiltonian of the bath (H

(int)
B is a term that describes internal interactions

between the bath spins, which we will specify later), where bj are annihilation operators for the spins, while V is the
coupling between the qubit and the bath.

Since a physical coupling, for instance inductive or capacitive coupling in circuit QED [17, 18], would yield V =∑N
j=1 γj(a+ a†)(bj + b†j) with coupling constant γk (e.g., the “mutual inductance” of the inductive coupling), we may

take, ignoring fast rotating terms straight away,

V =

N∑
j=1

γj(ab
†
j + a†bj). (1)

We have assumed real γk for simplicity. This “tunneling” coupling reads

VI(t) =

N∑
j=1

γj(ab
†
je

−i(Ω−ωj)t + a†bje
i(Ω−ωj)t) (2)

in the interaction picture with respect to the non-interacting system.
We may also want to include internal couplings between the bath spins. In this case, we will employ the following

Hamiltonian:

H
(int)
B =

N∑
j ̸=k

κjk b̂
†
j b̂k, (3)

which is still quadratic and in the rotating wave approximation. For simplicity, the inter-oscillator couplings κjk are
real.

III. QUBIT THERMALIZATION IN A MARKOVIAN SCENARIO

In this section we recall how a single qubit coupled to an infinite thermal reservoir relaxes towards equilibrium,
following the standard derivations of an open quantum system. We proceed in the weak coupling and Markovian

regime for this system. For simplicity, we make the internal couplings of the bath to vanish, H
(int)
B = 0. The master

equation for the density operator ρ(t) of the full system and bath in the interaction picture is obtained formally from

ρ̇(t) = − i

ℏ
[VI(t), ρ(0)]−

1

ℏ2

∫ t

0

dt′
[
VI(t), [VI(t

′), ρ(t′)]
]
. (4)
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We will assume that the initial state of the qubit and reservoir are separable: ρ(0) = ρ(Q)(0) ⊗ ρB , where ρB is the
thermal state of the bath. Under this assumption we observe TrB([VI(t), ρ(0)]) = 0. The reduced density operator
ρ(Q)(t) is obtained by tracing over the spin bath degrees of freedom as ρ(Q)(t) = TrB(ρ(t)).
Starting from Eq. (4) we can apply the standard Born-Markov approximations, whose derivation and details can

be found, for instance, in Refs. [1, 2, 19]. The assumptions at the basis of such approximations are the following. i)
The qubit-bath coupling constant is weak, such that the interaction Hamiltonian can be treated as a perturbation of
the model Hamiltonian and we can truncate any terms in the master equation that are beyond the second order; ii)
The autocorrelation functions of the bath decay sufficiently fast in time with respect to the relaxation timescale, so
that the “memory” of the past dynamics is lost and the evolution of the state of the system is fully Markovian. The
latter assumption is satisfied only if the bath is infinite, so that the recovery time of the bath oscillations is infinite.

After applying the Born-Markov approximations the master equation reads

ρ̇(Q)(t) = − 1

ℏ2
TrB

{∫ t

−∞
dt′

[
VI(t), [VI(t

′), ρ(Q)(t)⊗ ρB ]
]}
. (5)

Here TrB refers to the partial trace over the degrees of freedom of the bath. The basic master equation for the qubit
is obtained from Eq. (5). We skip here all the details of the derivation that can be found in Refs. [1, 2, 19]. Focusing

on the population of the ground state ρ
(Q)
gg = 1− ρ

(Q)
ee , we have

ρ̇(Q)
gg (t) = −Γ↑ρ

(Q)
gg (t) + Γ↓ρ

(Q)
ee (t). (6)

The transition rates are then given by

Γ↓ =
2π

ℏ2
∞∑
j=1

γ2j TrB(ρBbjb
†
j)δ(ωj − Ω), Γ↑ =

2π

ℏ2
∞∑
j=1

γ2j TrB(ρBb
†
jbj)δ(ωj − Ω). (7)

For spins in equilibrium we have

Γ↓ =
2π

ℏ2
∞∑
j=1

γ2j [1− f(ℏωj)]δ(ωj − Ω), Γ↑ =
2π

ℏ2
∞∑
j=1

γ2j f(ℏωj)δ(ωj − Ω). (8)

Here f(ℏωj) is the Fermi-Dirac occupation number f(ℏωj) = 1/(1+eβℏωj ), where β = 1/kBT and T is the temperature
of the bath. For convenience, we also introduce the decay rate at zero temperature

Γ0 =
2π

ℏ2
∞∑
j=1

γ2j δ(ωj − Ω). (9)

The Dirac deltas will disappear once we transform the summation into an integral, and they will select the proper
value of the coupling constant γ2j , with j such that ωj = Ω. The detailed balance condition Γ↓/Γ↑ = eβℏΩ is satisfied,
hence the master equation (6) drives the qubit towards its stationary thermal state at the bath temperature T .
In this section we have focused on the state of the qubit only, while the main aim of the present work is to study

the populations of the spins of the bath. Therefore, let us finally spend a few words about the state of the bath in
the standard description of the Markovian model [1]. Under this framework, the bath is supposed to be a perfect
thermal reservoir made of infinite number of modes. The state of the bath ρB is stationary with respect to the bath
Hamiltonian HB . Moreover, the back-reaction of the qubit on the bath is always neglected, so that the state of the
bath can be approximated as ρB at all times, which is consistent with the assumption of thermal reservoir. As a
consequence, the typical studies in open quantum systems do not focus on the state of the reservoir as a function of
time at all. All this is usually justified through the fact that the qubit-bath coupling is weak and that the bath is
large enough to immediately absorb and “wash away” all the external perturbations. However, it has already been
pointed out that assuming that the state of the qubit and the state of the bath are almost uncorrelated at all times
is not very rigorous, as correlations (and thus perturbations of the thermal state ρB) grow linearly with time [20].
Therefore, the usual assumption about qubit-bath factorization at all times has to be understood as a heuristic guess
we need in order to apply with the Born approximation (truncating beyond the second order) without relying on the
more formal projector operator techniques [20].

IV. LONG-TIME RELAXATION: POPULATIONS OF THE QUBIT AND BATH SPINS

In this section we discuss the numerically exact solution of the Schrödinger equation for a reservoir with a finite
number N of spins and compare it to an analytic approximation. Our aim is to find the long-time behavior of
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the qubit and bath populations in the regime N ≫ 1. We will work in the interaction picture, so that we have
iℏ∂t|ψ(t)⟩ = VI(t)|ψ(t)⟩, where the interaction Hamiltonian is

VI(t) =

N∑
j=1

γj(â
†b̂je

i(Ω−ωj)t + âb̂†je
−i(Ω−ωj)t) +

∑
j ̸=k

κjk b̂
†
j b̂ke

i(ωj−ωk)t. (10)

Here a, a† refer to the qubit that we will initialize in the excited state, while the fermionic operators of the bath spins

are given by bj , b
†
j . The corresponding coupling strengths are γj and κjk. To keep the problem tractable, we assume

that all the spins are in the ground state initially, and only the qubit is excited. Because the coupling conserves the
number of excitations, we may then use the basis formed of the states {|0⟩ = |1000...0⟩, |1⟩ = |0100...0⟩, ..., |j⟩ =
|0 0...1(jth)...0⟩, ...}, where the first entrance refers to the qubit which is initially in the excited state |e⟩ and from the
second on to each of the N spins in the bath.

The model we have introduced above in the single-excitation regime is exactly integrable1. We can realize this by
noticing that the interaction Hamiltonian in Eq. (10) can be trivially diagonalized by finding the eigenmodes of the
total system, each of which will oscillate with a finite frequency (see Appendix A for details). Then, the state of the
system at time t will simply be given by the sum of all the oscillatory modes with suitable weights. This means that
no strict relaxation (let alone thermalization) can emerge in this model. However, we will see that a kind of “effective”
relaxation can be observed in the regime N ≫ 1. To do so, we next study the dynamics of the model by writing the
Schrödinger equation for the single-excitation basis.

The time evolution of the state of the whole system (qubit + N spins) in the interaction picture, |ψ(t)⟩ =∑N
j=1 Cj(t)|j⟩, then reads

iℏĊ0 =

N∑
j=1

γje
i(Ω−ωj)tCj

iℏĊj = γje
−i(Ω−ωj)tC0 +

∑
j ̸=k

κjke
i(ωj−ωk)tCk. (11)

With the given initial conditions C0(0) = 1 and Cj(0) = 0 for j = 1, ... , N , i.e. with state |ψ(0)⟩ = |0⟩, we find

C0(t) = 1− i

ℏ

N∑
j=1

γj

∫ t

0

dt′ei(Ω−ωj)t
′
Cj(t′)

Cj(t) = − i

ℏ
γj

∫ t

0

dt′ e−i(Ω−ωj)t
′
C0(t′)−

i

ℏ

N∑
k ̸=j

κjk

∫ t

0

dt′ei(ωj−ωk)t
′
Ck(t′). (12)

These equations can then be exactly solved numerically. As will be shown in the next section, we can also find a
simple analytical result for the model populations at time t in the limit of weak couplings γj , no internal couplings
κjk, and for N ≫ 1, as we show in the following.

A. Analytical approximation

We will for now neglect the internal coupling between the spins, that is, κjk = 0. Moreover, we consider γj to
be a small perturbation of the model Hamiltonian, i.e., weak coupling between qubit and bath. Then, we can solve
Eq. (12) iteratively. After inserting the initial conditions to the right-hand side of (12), let us focus on the behavior
of Cj(t). With C0(t′) ≈ 1, we find

C(0)
j (t) =

γj
ℏ
e−i(Ω−ωj)t − 1

Ω− ωj
, (13)

where the superscript in parenthesis refers to the lowest iteration order. Using |C(0)
0 (t)|2 = 1 −

∑N
j=1 |C

(0)
j (t)|2, we

then obtain

|C(0)
0 (t)|2 = 1− 2

ℏ2
N∑
i=1

γ2i
1− cos((ωi − Ω)t)

(ωi − Ω)2
. (14)

1 While the notion of integrability in quantum systems is not always well-defined [8], here we use it with a quite simple meaning: we can
find N + 1 commuting and “independent” conserved quantities of the physical model.
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FIG. 2. Relaxation of the qubit in different regimes. (a) The solid blue line shows the full solution of the Schrödinger equation
for N = 106 bath oscillators. The parameters are Γ0 = 0.03Ω, ∆ω = 2Ω, κij = 0. The red line shows the exponential decay,
|C0(t)|2 ≃ exp(−Γ0t) closely following the numerical line at times Ωt ≫ 1. The upper inset presents the short time decay,
together with the quadratic approximation of Eq. (16) shown by the nearly overlapping black dashed line. The lower inset
displays the same data as in the main panel on the logarithmic vertical scale. (b) The sum of Eq. (14) for a uniform energy

distribution of independent bath oscillators in form χ(t) =
∫∆ωt/2

−∆ωt/2
dw(1−cosw)/w2 leading to quadratic dependence [Eq. (16)]

of |C0(t)|2 on t at short times ∆ωt ≲ 10, and linear and eventually exponential t dependence [Eq. (17)] at large times ∆ωt ≳ 10.

We now perform an important step to effectively introduce dissipation in the model. Assuming N ≫ 1 and that
the frequencies of the bath spins ωj are distributed uniformly around the qubit frequency Ω, we replace the sum

over the oscillators with an integral as
∑N

j=1 → ν0
∫ ∆ω

2

−∆ω
2

dω, where ω replaces ωj − Ω, ν0 = N/∆ω is the density of

oscillators in ω, and ∆ω denotes the width of the uniform distribution of ωj symmetrically around Ω. We then have

|C(0)
0 (t)|2 = 1− 2

ℏ2 ν0t⟨γ2i ⟩
∫ ∆ω

2 t

−∆ω
2 t

dw 1−cosw
w2 , where ⟨.⟩ refers to the average over the spins, and we have assumed that

γi and ωi are uncorrelated. The integral

χ(t) =

∫ ∆ω
2 t

−∆ω
2 t

dw
1− cosw

w2
(15)

is shown in Fig. 2(b). For short times the integral gives χ(t) ∝ t and beyond that χ(t) ≃ constant, yielding the two
main regimes (1 and 2) of relaxation as described below.

Regime 1, ∆ωt ≲ 1: For short times, we have the quadratic “Zeno” result

|C(0)
0 (t)|2 = 1− Λ2

0 t
2, (16)

where Λ2
0 = N⟨γ2i ⟩/ℏ2 . The result of this quadratic behaviour is shown by the dashed line in the upper inset of

Fig. 2(a); it nearly overlaps with the full numerical result shown by the blue line as in the main panel.
Regime 2, ∆ωt≫ 1: In this regime, one observes the linear dependence based on the present approximation as

|C(0)
0 (t)|2 = 1− Γ0t, (17)

where

Γ0 =
2π

ℏ2
ν0⟨γ2i ⟩ (18)

is the actual decay rate of the qubit. This quantity is the equivalent of Eq. (9) for the Markovian case. The last
step in Eq. (18) again applies for a uniform distribution of spins as given above. Equation (17) presents the linear
approximation of the exponential decay which can be obtained by standard perturbation theory as well (see, e.g.
[21]). For instance, we can write the persistence amplitude of the qubit in the Schrödinger picture as

C(S)
0 (t) ≡ ⟨0|e−iĤt/ℏ|0⟩, (19)
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where the evolution operator reads

e−iĤt/ℏ =
iℏ
2π

lim
ϵ→0

∫ ∞

−∞
dω

e−iωt

ℏω + iϵ− Ĥ
. (20)

The integrand contains an operator which can be written as

1

z − Ĥ
=

1

z − Ĥ0

∞∑
k=0

(V̂
1

z − Ĥ0

)k (21)

with z = ℏω + iϵ. For uncoupled bath oscillators κij = 0, the matrix element of the operator in the integrand,

⟨0|(ℏω + iϵ− Ĥ)−1|0⟩ can be easily re-summed in all orders yielding

⟨0| 1

ℏω + iϵ− Ĥ
|0⟩ = 1

z − ℏΩ− Σ0(z)
, (22)

with self-energy function of the state |0⟩ as

Σ0(z) =

N∑
i=1

γ2i
ℏω + iϵ− ℏωi

≃ 2

π
ℏΓ0

ω − Ω

∆ω
− i

ℏΓ0

2
. (23)

Here the real part is an approximation for |ω − Ω| ≪ ∆ω but imaginary part is exact. Combining (20)-(23) in C0(t)
we have in the limit Γ0

∆ω ≪ 1

C(S)
0 (t) ≃ e−iΩte−

Γ0
2 t. (24)

It confirms that the qubit decays exponentially as

|C(S)
0 (t)|2 ≃ e−Γ0t. (25)

This result is naturally the same in the interaction picture |C0(t)|2 ≃ e−Γ0t. The purple line in the main panel of
Fig. 2(a) shows Eq. (25) with the given parameters following closely the numerical result shown by solid blue line.
For very long times, ∆ωt ≫ ∆ω

Γ0
ln ∆ω

Γ0
, the decay becomes non-exponential. We will not discuss this regime further

here.
Next we approximate within the second equation of Eq. (12) in the lowest order

C0(t′) ≃ e−Γ0t
′/2

Ck(t′) ≃ − i

ℏ
γj

∫ t′

0

dt′′ e−i(Ω−ωj)t
′′
e−Γ0t

′′/2. (26)

Here we again take for illustration a uniform distribution of spin frequencies centered around the qubit frequency and
with width ∆ω, such that ν0 = N/∆ω. Substituting Eq. (26) in the second line of Eq. (12) with κjk = 0, we have

Cj(t) ≃ − i

ℏ
γj

∫ t

0

dt′ e−[
Γ0
2 +i(Ω−ωj)]t

′
= − i

ℏ
γj

1− e−[
Γ0
2 +i(Ω−ωj)]t

Γ0

2 + i(Ω− ωj)
. (27)

This equation corresponds to the lowest order approximation in the qubit-bath coupling. The population |Cj(t)|2
reads now

|Cj(t)|2 ≃
γ2j
ℏ2

(1− e−[
Γ0
2 +i(Ω−ωj)]t)(1− e−[

Γ0
2 −i(Ω−ωj)]t)

Γ2
0

4 + (Ω− ωj)2

=
γ2j
ℏ2

1− 2e−
Γ0
2 t cos[(Ω− ωj)t] + e−Γ0t

Γ2
0

4 + (Ω− ωj)2
. (28)

At t→ ∞, we have

|Cj(t→ ∞)|2 =
4γ2j
ℏ2Ω2

1

(Γ0

Ω )2 + 4(1− ωj

Ω )2
. (29)
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This expression preserves normalization,
∑N

j=1 |Cj(t→ ∞)|2 = 1, and it yields the correct energy of the microcanonical

system,
∑N

j=1 |Cj(t→ ∞)|2ℏωj = ℏΩ, while the qubit energy approaches zero in the long time limit. For Γ0 → 0, the
distribution becomes a delta function at ωj = Ω. The expectation value of this quantity for the spin j is then given
by

⟨|Cj(t→ ∞)|2⟩ = 4

Nπ

Γ0

Ω

(Γ0

Ω )2 + 4(1− ωj

Ω )2
. (30)

Equation (29) states that the populations of the bath spins stabilize at a fixed value given by a Lorentzian distri-
bution at infinite time. This is a clear signature of irreversibility in the model we are considering, and it is in contrast
with the fact that our model is integrable. Still, this result is physically meaningful, as we discuss in the following.
First, let us recall the assumptions we have made to obtain Eq. (29):

i) There are no direct interactions between the bath spins, i.e., κjk = 0. This assumption can be easily relaxed,
as the bath Hamiltonian in the presence of direct interactions can be diagonalized to obtain a new Hamiltonian
describing a collection of non-interacting modes, as discussed in Appendix A.

ii) There is weak-coupling between the qubit and the spins, i.e., γj are a perturbation of the model Hamiltonian.

iii) The values of the qubit-spin couplings and the spin energies are not correlated. This assumption has been taken
only for the sake of simplicity. Even if this is not the case, the final conclusions do not change.

iv) The number of spins is large, i.e., N ≫ 1. This is a key assumption we need in order to transform the summation
over the different spins into an integral, which is the mathematical procedure that is giving rise to irreversibility
in the population dynamics.

v) The frequency range is broad enough so that there exists a timescale for which ∆ωt≫ 1.

The last two assumptions are crucial to understand how dissipation and irreversibility are emerging in the model
we are considering. N ≫ 1 secures that the spins have a “dense enough” distribution of frequencies. The limit
∆ωt ≫ 1 is extending the integration interval for χ(t) in Eq. (15) from −∞ to ∞. Therefore, these approximations
correspond to treating the open system dynamics as if the qubit was interacting with an infinite collection of spins
in the weak-coupling regime, which is exactly the standard Markovian model we have described in Sec. III. Hence,
it is no surprise that the qubit is decaying exponentially as in the Markovian case, the only difference being in the
expression for the decay rate in Eq. (18). Nonetheless, contrary to the Markovian treatment, in our approach we are
also following the dynamics of each individual spin of the bath without ignoring the back-reaction of the qubit, and
we can find an approximate solution for their long-time populations, given by Eq. (29). This long-time solution of
the dynamics is clearly just an approximation, because we know that the model is integrable and there will exist a
time at which the system goes back to its initial conditions.

B. Numerical results and comparison with the analytical limit

For the numerical result, we integrate Eq. (12) in time t yielding the exact solution of the Schrödinger equation for
our model. Some results of these numerical calculations are summarized in Fig. 3. For these data, we have chosen
Γ0/Ω = 0.01, N = 2000, and the distributions of γj and ωj are uniform and uncorrelated as described above, with
∆ω/2 = Ω. Furthermore, we have included the mutual couplings κjk with the same distribution as γj . The time
integral is extended from 0 to Ωt = 104. The results are presented in form of individual spin populations |Cj(t)|2 for
all the spins as functions of their corresponding energy ℏωj . In the figure panels the energies have been normalized
by that of the qubit, i.e. the horizontal axes are shown in form of ωj/Ω.
In Fig. 3(a) we present the time evolution of the spin populations; here the vertical |Cj(t)|2 scale is linear. The

populations are averaged over short time intervals demonstrating how initially at short times, t ≪ Γ−1
0 , all the spins

are effectively in the ground state, whereafter they receive the energy of the qubit and get excited. Remarkably the
distribution is initially quite broad in ωj but sharpens towards the asymptotic Lorentzian distribution when t > Γ−1

0 .
The main frame is Fig. 3(b) shows a more complete set (eight snapshots) as in (a) but now on logarithmic scale and
all time intervals combined. In (c) we demonstrate the main result by contrasting the exact numerical populations
in the long time limit, averaged over 9500 < Ωt ≤ 10000 against the analytic Lorentzian distribution (solid line from
Eq. (30)).

The analytical approximation of Eq. (30) compares remarkably well with the result of long-time numerical simula-
tions in Fig. 3(c). In practice this means that we can essentially reach the dissipative large N limit with a limited
number of spins.
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FIG. 3. Results of relaxation to an equilibrium state when the bath is initially in the ground state and the qubit is in the
excited state. (a) Snapshots of the distribution of the populations of the spins in four different short time intervals, Ωt < 100,
200 < Ωt < 300, 400 < Ωt < 500, and 9900 < Ωt < 10000. (b) The same as (a) but all in the same panel and on the logarithmic
scale with a more complete set of eight time intervals. (c) The long time populations in the interval 9500 < Ωt < 10000. The
symbols show the exact numerical result for the bath spins, and the solid line is the analytic approximation of Eq. (30) for the
asymptotic long time limit. We have assumed N = 2000, Γ0/Ω = 0.01, and uniform and uncorrelated distributions for γj :s and
ωj :s.

V. FINAL REMARKS

The emergence of effective relaxation in the physical model we have studied is due to the fact that we have considered
the long-time dynamics of some quantities, namely the populations of each two-level system, that are functions of
many (N ≫ 1) different oscillating normal modes of the system, as explained in Appendix A. This concept is related
to Khinchin’s approach to thermalization in closed classical systems [22], according to which thermalization can occur
also in a perfectly integrable model, if we only look at specific observables that are “sum functions”, i.e., sum of many
decoupled canonical variables of the integrable system. In the model we have studied, however, we observe relaxation
without thermalization. For future studies, it may be interesting to investigate the relation between our results and
Khinchin’s thermalization, which has been recently observed numerically in classical models that are quite similar to
the dynamics in the single-excitation sector we have analysed in this work [23, 24].

Obviously our model does not demonstrate thermalization into Gibbs distribution. Quantum thermalization [8–
14, 25, 26] often counts on ergodicity and nearly exponential increase of available microstates with increasing energy.
In the example of zero-temperature initial state that we have discussed we only probe states with single-excitation
because of the number-conserving form of the coupling Hamiltonian. This conserved number of excitations does not
comply with the exponential increase of number of states with energy. It fails to satisfy the ergodicity requirement
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of thermalization. Secondly, we did not expand, analytically, beyond the golden rule treatment. So we anticipate
that in order to see full thermalization, one needs to consider the next order process (two photons) to couple spins
with different energies and a coupling Hamiltonian where double creation and annihilation operations are possible,

like (a+ a†)(bi + b†i ) and (bi + b†i )(bj + b†j). This interaction, unlike the one in rotating wave approximation, modifies
the ground state of the model as briefly discussed in Appendix B. Moreover, this form arises naturally for instance
in circuit QED setups for superconducting qubits with inductive and capacitive coupling. However, one needs an
alternative method to address this regime due to the exponential expansion of the Hilbert space.
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Appendix A: Proof of integrability of the model in the single-excitation sector

In the single-excitation sector spins and bosonic harmonic oscillators are indistinguishable. Therefore, for conve-
nience, in this appendix we work with the spin operators a and bj as if they were bosonic operators. Then, we can
write the model Hamiltonian in the Schrödinger picture introduced in Sec. II as a quadratic Hamiltonian represented
by

H = vTMH w, (A1)

where v = (a†, b†1, b
†
2, . . . , b

†
N )T is the vector of bosonic creation operators, and equivalently w = (a, b1, b2, . . . , bN )T .

In this representation, the Hamiltonian matrix is given by (we remind that γj and κjk are real):

MH =



Ω γ1 γ2 . . . . . . γN
γ1 ω1 κ12 κ13 . . . κ1N
γ2 κ12 ω2 κ23 . . . κ2N

γ3 κ13 κ23 ω3 . . .
...

...
...

...
...

. . .
...

γN κ1N κ2N . . . . . . ωN


. (A2)

This matrix can also be taken as the Hamiltonian of the model in the single-excitation sector, that is, in the basis
{|j⟩}Nj=0 we have introduced in Sec. IV.

MH
† = MH, therefore it can be diagonalized by a unitary transformation U as M̃H = UMHU

† = diag(f0, . . . , fN ),
while the new vectors of bosonic creation and annihilation operators are given by w̃ = Uw, ṽ = U∗v (U∗ is the complex

conjugate of U). Indeed, it is easily verified that [ṽj , w̃k] =
∑N

m,n=0 UknU
†
mj [vm, wn] = δjk. Then, the Hamiltonian

is written as H = ṽT M̃H w̃, and it describes a collection of N + 1 bosonic modes. Suppose that w̃ = (c0, c1, . . . , cN ),
and equivalently for ṽ. Then,

H =

N∑
j=0

Hj =

N∑
j=0

fjc
†
jcj , (A3)

where the eigenvalues of the matrix MH are the frequencies of the decoupled bosonic modes cj . Each single-mode
Hamiltonian Hj is therefore a conserved quantity of the dynamics. Since there are N +1 commuting and independent
conserved quantities the model is trivially integrable, as the solution of the dynamics at time t is just given by the
proper linear combination of modes cj rotating with frequency fj .

Finally, note that we may have also diagonalized only the matrix of the bosonic modes of the bath in Eq. (A2)
(i.e., the square matrix obtained by removing the first row and column). In this sense, the inter-spin couplings κjk
are only modifying the form of the frequencies ωj and of the qubit-bath couplings γj , but do not change the structure
of the physical model we are considering.
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Appendix B: Does our model comply with the ground state of the spin system being that of each spin
individually in the ground state?

If we consider a system composed of many isolated spins, the ground state by default will be |0 0 0 ... 0⟩, meaning that
all the spins are in their ground state. But if we consider couplings between the spins, there will be a superposition
between the spins due to the coupling (although the contributions are very small in the weak coupling limit), and the
eigenstates are of the form η|0 0 0 ... 0⟩+α|1 0 1 ... 0⟩+β|0 1 ...1 0⟩+γ|1 0 ...0 0⟩... where α, β, γ, ...≪ 1, and η ≈ 1. In

order to test this idea, we simply assume the two-spin model, where the perturbation is given by V̂JC = g(â†1â2+â1â
†
2).

In this case the Hamiltonian in the basis {|00⟩, |10⟩, |01⟩, |11⟩} is given by 0 0 0 0
0 ℏω1 g 0
0 g ℏω2 0
0 0 0 ℏω1 + ℏω2

 , (B1)

meaning that even in the presence of the coupling still the ground state is |0 0 0 ... 0⟩. This is true for any Hamiltonian
in the rotating wave approximation, as the annihilation operators in the interaction term are always yielding zero on
the state |0 0 0 ... 0⟩, and thus they do not modify the ground state.

If we instead consider a more complete form of the perturbation, V̂ = g(â1 + â†1)(â2 + â†2), the Hamiltonian in the
same basis as above is given by  0 0 0 g

0 ℏω1 g 0
0 g ℏω2 0
g 0 0 ℏω1 + ℏω2

 , (B2)

which then gives us hybridized eigenstates as expected.
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