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Abstract. It is well known that the state operator of an open quantum system can
be generically represented as the solution of a time-local equation – a quantum master
equation. Unraveling in quantum trajectories offers a picture of open system dynamics dual
to solving master equations. In the unraveling picture, physical indicators are computed as
Monte-Carlo averages over a stochastic process valued in the Hilbert space of the system.
This approach is particularly adapted to simulate systems in large Hilbert spaces. We
show that the dynamics of an open quantum system generically admits an unraveling in
the Hilbert space of the system described by a Markov process generated by ordinary
stochastic differential equations for which rigorous concentration estimates are available.
The unraveling can be equivalently formulated in terms of norm-preserving state vectors or
in terms of linear “ostensible” processes trace preserving only on average. We illustrate the
results in the case of a two level system in a simple boson environment. Next, we derive the
state-of-the-art form of the Diósi-Gisin-Strunz Gaussian random ostensible state equation
in the context of a model problem. This equation provides an exact unraveling of open
systems in Gaussian environments. We compare and contrast the two unravelings and their
potential for applications to quantum error mitigation.

“I have an equation; do you have
one too?”

Dirac’s first question to Feynman
according to [77] pag. 105

To the memory of
Göran Lindblad

who has an equation.

1. Introduction

A classical result in the theory of open quantum systems states that the
memory kernel equation obtained by means of the Nakajima-Zwanzig pro-
jection operator method [49, 79] is always amenable to the form of a master
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equation on a finite time interval [30, 58, 70, 35, 68, 69, 2, 18]. In finite dimen-
sional Hilbert spaces, the master equation also admits an unique canonical
form [37] which makes the analysis of the solution semi-group particularly
transparent. The necessary and sufficient conditions for a completely posi-
tive semi-group – whose derivation is the eternal glory of Lindblad [44] and
Gorini, Kossakowski, and Sudarshan [34]– translate into the positivity of the
scalar quantities that couple the decoherence operators to the canonical form
of the master equation. For this reason the couplings are often referred to
as canonical “rates”. The derivation of the general master equation, however,
does not impose any sign constraint on the canonical rates. It is an open
problem to determine the conditions guaranteeing that particular solutions
enjoy complete positivity [37, 17].

One avenue to analyze and numerically solve master equations is quantum
trajectory theory formulated in terms of the stochastic Schrödinger equation
[3, 14] or of quantum state diffusion [33, 32]. The avenue becomes especially
useful as the dimension of the system Hilbert space increases [19]. The gist
of the method is to compute the solution of the master equation –unravel
the master equation [14]– as a Monte-Carlo average over solutions of ordi-
nary stochastic differential equations in the Hilbert space of the system. So
far, quantum trajectories enjoying these properties appeared only as a “La-
grangian picture” in hydrodynamic sense (see e.g. § 11.2 [15]) of the Lindblad-
Gorini-Kossakowski-Sudarshan completely positive master equation. In this
contribution, we explain how the same stochastic differential equation as in
the completely positive case yields the unraveling of the most general canoni-
cal form of the master equation at the same computational cost [24, 25]. The
main point is to respect at the level of Monte-Carlo average the canonical
algebraic form of the solution semi-group. Namely, in the general case the
semi-group is only completely bounded [54] and as such is amenable to the
difference of two non-trace preserving completely positive maps at any instant
of time [76, 53]. This task is accomplished by the introduction of a martingale
process which we call the “influence martingale”[24]. The choice of the name
emphasizes that the result holds irrespective of the environment, including
of course a Gaussian one [29]. Gaussian, bosonic or fermionic, environments
linearly coupled to the system are, among other reasons, important because it
is in that case possible to derive an exact pair of random equations governing
the evolution of vectors unraveling the system state operator. The vectors
obey a linear evolution equation and preserve the norm squared only on av-
erage. For this reason, following [73] we refer to them as “ostensible” state
vectors. The result is a refinement [61, 60, 66] see also [45] of an approach
pioneered by Strunz [63], in collaboration with Diósi and Gisin [22, 21]. In
the second part of the paper we derive the state-of-the-art form of the Diósi-
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Gisin-Strunz random ostensible state vector equation in a model problem, yet
capturing all the features of the general case. By presenting in parallel the
derivation of these two unravelings, we hope to draw the interest of the reader
to the theory of unraveling in quantum trajectories and to its significance for
parameter estimation [71] and error mitigation [65]. This paper is, however,
not meant to be a comprehensive review of the theory.

The structure of the paper is as follows. In section 2. we recall the
properties of the canonical master equation. In section 3. we recall how
to unravel the canonical master equation under the hypotheses guaranteeing
the complete positivity of the semi-group. These two sections report well
known material. The reason to briefly reproduce it here is to highlight the
logic leading to the most general form of the unraveling. Readers familiar
with the topics can directly proceed to section 4. where we introduce the
influence martingale. In section 5. we discuss the generation of ostensible
statistics, a numerical application of quantum trajectory theory particularly
suited for quantum parameter estimation [31]. In section 6. drawing from
[59] we discuss an application to the spin boson model. For simplicity of
discussion we restrict the attention to the case when explicit formulas are
exact. The reference to [59] makes transparent how the general case can be
handled using time-convolutionless perturbation theory [51]. Section 7. is
devoted to a model problem illustration of the Diósi-Gisin-Strunz formalism
[21]. In section 8. we contrast the two unravelings. The last section is devoted
to conclusions and outlook.

2. The canonical master equation of open quantum dynamic

Under generic conditions [30, 58, 70, 35, 68, 69, 2, 18], the state operator of
an open system on a d-dimensional Hilbert space H obeys a master equation
amenable to the following unique canonical form

∂tρt = −ı [Ht ,ρt] +
d2−1∑
l=1

wl;tDLl;t
(ρt) (1a)

DLl;t
(ρt) =

1

2

([
Ll;t ,ρt L

†
l;t

]
+
[
Ll;t ρt ,L

†
l;t

])
(1b)

The properties of the canonical form are thoroughly investigated in [37]. Here
we only recall few facts that are essential for its unraveling (1).
i The canonical decoherence couplings

{
wl;t

}d2−1

l=1
are in general real, scalar

functions of the time variable t. Physically, one may conceptualize wl;t

as the time derivative of the probability that the open systems interacts
with its surrounding environment via the l-th decoherence operator Ll;t.
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As (1) holds without any reference to the van-Hove scaling limit, there is
no reason to expect the canonical couplings to be sign definite1.

ii At any instant of time t, the collection
{
Ll;t

}d2−1

l=1
of decoherence operators

together with a properly normalized identity matrix on H

L0 =
1d√
d

forms a complete basis of the space Md of complex matrices on H with
respect to the Hilbert-Schmidt inner product

Tr
(
L†
l;t Lk;t

)
= δl,k l,k= 0, . . . , d2 − 1 (2)

iii Ht is a self-adjoint element of Md, eventually also time dependent.
The orthonormality relations (2) are always emphasized in the literature while
discussing the derivation of the Lindblad-Gorini-Kossakowski-Sudarshan mas-
ter equation. Less well known is the following consequence of the fact that{
Ll;t

}d2−1

l=1
spans the sub-space of trace-less matrices:

PROPOSITION 1.
L∑
l=1

L†
l;t Ll;t = g1d (3a)

g =
d2 − 1

d
(3b)

Proof.
To prove the claim, we notice that each of the Ll;t’s must be connected
to a complete set of generators Tl of the SU(d) Lie algebra by a unitary
transformation

Ll;t =
d2−1∑
k=1

TkUk,l;t

Uk,l;t := Tr(TkLl;t)

The identity holds because each of the two collections of matrices forms a
complete orthonormal basis of the sub-space of trace-less elements of Md.
Unitarity implies that

d2−1∑
l=1

L†
l;t Ll;t =

d2−1∑
l=1

d2−1∑
i,j=1

TiTj Ūi,l;tUj,l;t =

d2−1∑
i=1

T2
i

1In [37, 25] they are referred as “canonical rates” and in [24] as “weights”. The termi-
nology is in both cases somewhat misleading because it is commonly applied to quantities
positive by definition
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Finally, we can invoke Schur’s lemma or, equivalently, use known properties
of the SU(d) Lie algebra (see e.g. formula (16) of [36]2)

T2
i =

1d
d

+
d2−1∑
j=1

di,i,jTj

d2−1∑
i=1

di,i,j = 0 ∀ j

to prove (3).

In consequence of i-iii, the canonical master equation is readily trace and
self-adjoint preserving. Under reasonable regularity of assumptions on the
dependence of canonical couplings, Hamiltonian, and decoherence operators,
solutions of (1) exist and are unique, globally. This result is better appreciated
if we lift (1) to a linear system of differential equations by means of the
channel-state isomorphism see e.g. [17] or § 4.2 of [38]. To this goal, we
introduce the lexicographic map (see e. g. chapter 9 of [8])

ℓ : N × N 7→ N

defined as

ℓ(i, j) = d (i− 1) + j

and we use it to establish a one-to-one correspondence between elements of
Md and vectors in Cd2 by reshaping [47]〈

e
(d2)
ℓ(i,j) , res(ρt)

〉
=
〈
e
(d)
i ,ρt e

(d)
j

〉
where

{
e
(d)
i

}d
i=1

and
{
e
(d2)
i

}d2
i=1

are respectively the canonical bases of the
complex Euclidean spaces Cd and Cd while ⟨ ·, ·⟩ denotes the natural inner
product. Once equipped with these definitions we see that (1) becomes

d

dt
res(ρt) = Ltres(ρt)

where L is the d2 × d2 matrix

Lt = −ı
(
Ht ⊗ 1d− 1d ⊗ H⊤

t

)
+

d2−1∑
l=1

wl;tDLl;t

DLl;t
= Ll;t ⊗ L̄l;t −

L†
l;t Ll;t ⊗ 1d+1d ⊗ L⊤

l;t L̄l;t

2
2note, however, that our choice of normalization of the Ti’s differs from [36] by a factor√

2
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It becomes then evident how to apply the standard theorems of existence and
uniqueness of linear ordinary differential equations [15]. Furthermore, we can
always write the solution of (1) as

res(ρt) = Ft,sres(ρs)

where Ft,s ∈ Md2 is a linear flow solution of

d

dt
Ft,s = LtFt,s

Ft,t = 1d2 ∀ t

An important consequence of reshaping stems from a paramount observation
made by Sudarshan, Mathews and Rau in [64]. Self-adjoint preservation
translates into the condition

F
(R)†
t,s = F

(R)
t,s

where F
(R)
t,s is the reshuffled (or Choi) matrix whose components are related

to that of the flow by the relations〈
e
(d2)
ℓ(i,j) ,F

(R)
t,s e

(d2)
ℓ(m,n)

〉
=
〈
e
(d2)
ℓ(i,m) ,Ft,se

(d2)
ℓ(j,n)

〉
(4)

The reshuffled matrix is also adapted to analyze positivity of the dynamics:
being self-adjoint, it has real eigenvalues {fn}d

2

n=1 and admits the spectral
decomposition

F
(R)
t,s =

d2∑
n=1

sign(fn)vnv
†
n

having reabsorbed the absolute value of the fn’s in the normalization of the
corresponding eigenvectors vn. We thus arrive at

〈
e
(d2)
ℓ(i,m) ,Ft,se

(d2)
ℓ(j,n)

〉
=

d2∑
n=1

sign(fn;t)
〈
e
(d2)
ℓ(i,j) ,vn;t

〉〈
vn;t , e

(d2)
ℓ(m,n)

〉
which projected back to Md yields the operator sum representation of the
(semi)-group solution of (1)

ρt =
d2∑
n=1

sign(fn;t)Vn;t,s ρsV
†
n;t,s (5)
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Trace preservation corresponds to the additional condition

d2∑
n=1

sign(fn;t)V
†
n;t,sVn;t,s = 1d

Choi theorem [16] shows that complete positivity in the finite dimensional
case reduces to the condition that the reshuffling of flow matrix F

(R)
t,s has a

positive spectrum. It becomes then manifest that complete positivity is a
sufficient condition to map arbitrary positive operators into positive ones.
We also learn that in general solutions of (1) can be written as the difference
of two completely positive operator sums individually non-trace preserving.
The derivation of (5) takes advantage of the hypothesis of a finite dimensional
operator space. In fact, a result in abstract linear operator algebra due to
Wittstock [76] and Paulsen [53] allows us to identify (5) with the canonical
decomposition of a “completely bounded” operator [41]. For our purposes,
it is sufficient to observe that an element of Md is completely bounded if
it is bounded [41]. We refer to this latter reference together with [17] and
chapters 10-11 of [8] for further details.

3. Unraveling of the Lindblad-Gorini-Kossakowski-Sudarshan
(completely positive) master equation

Lindblad [44] and Gorini, Kossakowski and Sudarshan [34] proved that
the flow matrix Ft,s with t ≥ s ≥ 0 is completely positive if and only if the
canonical couplings are positive. In such a case, we can identify the canonical
couplings with the rates of a counting process

wl;t = rl;t ≥ 0 ∀ t ∈ R+ & l= 1, . . . , d2 − 1 (6)

When the conditions (6) hold true, we write the master equation as

∂tρt = −ı [Ht ,ρt] +

d2−1∑
l=1

rl;tDLl;t
(ρt) (7)

and we are in the position to prove [3, 14, 19]

PROPOSITION 2. The solution of (7) admits the Monte-Carlo representa-
tion

ρt = E(ψtψ
†
t ) (8)
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where E is the expectation over the solution paths of the Itô [43] stochastic
differential equations

dψt = dtft +

d2−1∑
l=1

dνl;t

(
Ll;tψt∥∥Ll;tψt

∥∥ −ψt

)
(9a)

ft = −ı Htψt −
d2−1∑
l=1

rl;t
L†
l;t Ll;t−

∥∥Ll;tψt

∥∥2 1d
2

ψt (9b)

ψt0 = z (9c)

and of those (obviously related) for adjoint dual ψ†
t . The Itô stochastic dif-

ferential equations (9) are driven by d2 − 1 counting processes

dνl;tdνk,t = δl,kdνl;t (10a)

E
(
dνl;t

∣∣{ψt ,ψ
†
t

}
∩ Ft

)
= rl;t

∥∥Ll;tψt

∥∥2 dt (10b)

adapted to the natural filtration [43] {Ft}t≥ t0
of the process

{
ψt,ψ

†
t

}
t≥ t0

.

Proof.
The proof is an immediate consequence of Itô lemma applied to counting
processes. Namely, when we insert (9a) and its adjoint dual in

d(ψtψ
†
t ) = (dψt)ψ

†
t +ψtdψ

†
t + (dψt)dψ

†
t

straightforward algebra using (10a) yields

d(ψtψ
†
t ) = (ftψ

†
t +ψtf

†
t )dt+

d2−1∑
l=1

dνl;t

(
Ll;tψtψ

†
t Ll;t∥∥Ll;tψt

∥∥2 −ψtψ
†
t

)
Next, we can invoke the telescopic property of conditional expectations to
evaluate the expectation value of the stochastic differential

E

(
dνl;t

(
Ll;tψtψ

†
t Ll;t∥∥Ll;tψt

∥∥2 −ψtψ
†
t

))

= E

(
E
(
dνl;t

∣∣{ψt ,ψ
†
t

}
∩ Ft

)(Ll;tψtψ
†
t Ll;t∥∥Ll;tψt

∥∥2 −ψtψ
†
t

))
= rl;t E

(
Ll;tψtψ

†
t Ll;t−

∥∥Ll;tψt

∥∥2ψtψ
†
t

)
dt

We thus arrive at

dE
(
ψtψ

†
t

)
= −ı

[
Ht ,E

(
ψtψ

†
t

)]
dt+

d2−1∑
l=1

rl;tDLl;t

(
E
(
ψtψ

†
t

))
dt
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The interpretation of the stochastic process ψt as state vector is substantiated
by the fact that for any initial data assigned on the Bloch hyper-sphere

∥z∥2 = 1

we get at any later time

d ∥ψt∥2 = 0 (11)

Namely, the trace the of the stochastic increment

d2−1∑
l=1

dνl;tTr

(
Ll;tψtψ

†
t Ll;t∥∥Ll;tψt

∥∥2 −ψtψ
†
t

)
=

d2−1∑
l=1

dνl;t

(
1− ∥ψt∥2

)
vanishes if a jump occurs when the process has unit norm. Similarly, the
trace of the drift

Tr
(
ftψ

†
t +ψtf

†
t

)
=

− ıTr
[
Ht ,ψtψ

†
t

]
+

d2−1∑
l=1

rl;t

(∥∥Ll;tψt

∥∥2 − ∥∥Ll;tψt

∥∥2 ∥ψt∥2
)

identically vanishes for realizations of the process with unit norm. The path-
wise preservation of the Bloch hyper-sphere plays an important role for the
interpretation of the stochastic Schrödinger equation as a mathematical model
of an indirect measurement record [4, 73, 5].

4. Unraveling of the general canonical (completely bounded)
master equation

We now turn to the main result that we want to illustrate. We distinguish
between the completely bounded (1) and the completely positive (7) master
equations both being in canonical form – the conditions (2) hold in both
cases – but differing because the rates rl;t’s are positive functions whereas
the canonical couplings wl;t may have arbitrary sign. We prove [24, 25]

PROPOSITION 3. The solution of the canonical completely bounded master
equation (1) admits the Monte-Carlo representation

ρt = E
(
µtψtψ

†
t

)
(12)

where
{
ψt ,ψ

†
t

}
t≥ t0

are stochastic state vectors unraveling a completely posi-
tive master equation as in proposition 2. The rates of entering the stochastic
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Schrödinger equation (9) are related to the canonical couplings of the master
equation (5) by the unraveling conditions

wl;t = rl;t − ct (13)

where ct : R+ 7→ R+ is any real positive function satisfying the condition

ct > − min
l=1,...,d2−1

wl;t ≡
∣∣wl⋆;t

∣∣ (14)

The weighing term µt in the expectation value (12) is a scalar martingale –
the influence martingale – obeying the Itô stochastic differential equation

dµt = µt

d2−1∑
l=1

(
wl;t

rl;t
− 1

)
dιl;t (15a)

dιl;t = dνl;t − rl;t
∥∥Ll;tψt

∥∥2 dt (15b)
µt0 = 1 (15c)

driven by the innovation processes (15b) (martingale part or compensated in-
crements [43]) of the increments of counting processes (10).

Proof.
Owing to (11) the dynamics preserves the Bloch hyper-sphere. Hence, for
any initial data on the Bloch hyper-sphere, the insertion of the unraveling
conditions in (13) combined with (3) leads to the chain of identities

d2−1∑
l=1

rl;t
L†
l;t Ll;t−

∥∥Ll;tψt

∥∥2 1d
2

ψt =

d2−1∑
l=1

(wl;t + ct)
L†
l;t Ll;t−

∥∥Ll;tψt

∥∥2 1d
2

ψt =

d2−1∑
l=1

wl;t

L†
l;t Ll;t−

∥∥Ll;tψt

∥∥2 1d
2

ψt

The conclusion is that (9b) ensures that

ft = −ı Htψt −
d2−1∑
l=1

wl;t

L†
l;t Ll;t−

∥∥Ll;tψt

∥∥2 1d
2

ψt (16)

Next, we turn to analyze the role of the influence martingale. We apply Ito
Lemma again

d(µtψtψ
†
t ) = (dµt)ψtψ

†
t + µtd(ψtψ

†
t ) + (dµt)d(ψtψ

†
t )
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The last term – the stochastic quadratic variation– changes the intensity of
the counting process

(dµt)d(ψtψ
†
t ) =

d2−1∑
l=1

dνl;t

(
wl;t

rl;t
− 1

)
µt

(
Ll;tψtψ

†
t Ll;t∥∥Ll;tψt

∥∥2 −ψtψ
†
t

)

We arrive at

d(µtψtψ
†
t ) = (dµt)ψtψ

†
t + µt

(
ftψ

†
t +ψtf

†
t

)
dt

+
d2−1∑
l=1

dνl;t
wl;t

rl;t
µt

(
Ll;tψtψ

†
t Ll;t∥∥Ll;tψt

∥∥2 −ψtψ
†
t

)

The right hand side non-linearly depends on the state vector process. The
non-linearity cancels when averaging over the realizations of the process. Us-
ing again the telescopic property of the conditional expectation we get

E
(
(dµt)ψtψ

†
t

)
= E

(
E
(
dµt

∣∣{ψt ,ψ
†
t

}
∩ Ft

)
ψtψ

†
t

)
= 0

because of the martingale property and

d2−1∑
l=1

E

(
dνl;t

wl;t

rl;t
µt

(
Ll;tψtψ

†
t Ll;t∥∥Ll;tψt

∥∥2 −ψtψ
†
t

))

=
d2−1∑
l=1

wl;t

rl;t
E

(
E
(
dνl;t

∣∣{ψt ,ψ
†
t

}
∩ Ft

)
µt

(
Ll;tψtψ

†
t Ll;t∥∥Ll;tψt

∥∥2 −ψtψ
†
t

))

=

d2−1∑
l=1

wl;t E
(
Ll;t µtψtψ

†
t Ll;t−

∥∥Ll;tψt

∥∥2 µtψtψ
†
t

)
dt

Upon recalling the expression of the drift (16) we see that the dependence
upon the rates of the state vector process cancels out. We thus have proven
that

dE
(
µtψtψ

†
t

)
= −ı

[
Ht ,E

(
µtψtψ

†
t

)]
dt+

d2−1∑
l=1

wl;tDLl;t

(
E
(
µtψtψ

†
t

))
dt

as claimed.

The construction of the influence martingale in proposition 3 differs from the
original derivation in [24]. There, the proof holds for master equations not
necessarily in canonical form: the conditions (2) do not hold by hypothesis
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and their consequence (3) cannot be immediately invoked. In [24], however,
the drift of the state vector stochastic differential equation satisfies (16) by
hypothesis implying that the unraveling conditions (13) become dispensable.
The dynamics of the state vector still pathwise preserves the Bloch hyper-
sphere. The drawback is that the average (8) does not satisfy a completely
positive master equation. As a matter of fact, we show in [25] that the con-
ditions (2) are sufficient but not necessary to guarantee that (8) and (12) si-
multaneously satisfy a completely positive and a completely bounded master
equations. Mathematically, master equations are always amenable to canon-
ical form. Physically, a non-canonical form may be preferable to describe
actual indirect-measurement experimental setups [12, 75].

4.1. Relation of the influence martingale with the canonical
form of completely bounded linear maps.

From the mathematical point of view, the influence martingale is an ex-
tension of the Girsanov martingale for jump processes [43]. The extension
consists of removing the restriction to positive values. Thus, the influence
martingale does not describe a change of probability measure. Together, the
state vector process, its adjoint dual, and the influence martingale specify a
Markov process. This means that at any instant of time it is always possible
to evaluate along a path of the state vector

µ
(±)
t = max (0 ,±µt)

and to couch (12) into the form

ρt = E
(
µ
(+)
t ψtψ

†
t

)
− E

(
µ
(−)
t ψtψ

†
t

)
(17)

It is possible to show [24] that each of the two expectations values on the right
hand side of (17) are always individually amenable to completely positive yet
non-trace preserving operator sums. Rather than repeating the analysis of
[24] in the following section we present an equivalent result using the equation
generating ostensible statistics [73].

5. Ostensible statistics

The stochastic Schrödinger equation (9) is necessarily non-linear in order
to pathwise preserve the Bloch hyper-sphere

∥ψt∥2 = 1 ∀ t ≥ t0
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Similarly, the µt needs to be a martingale in order to ensure trace preservation

1 = Trρt = E
(
µt Tr(ψtψ

†
t )
)
= Eµt

Thus, the need for non-linearity of the state vector evolution and for the
martingale property are connected. They both originate if we insist on path-
wise enforcement of probability conservation. The picture simplifies, if we
regard the state vector only as a numerical tool to compute the state opera-
tor, the latter being the only physically relevant quantity as it has also been
prominently advocated in [72]. In such a case, the only requirement on the
unraveling Markov process is that of generating an ostensible statistics [31]
whose second order moments average to the solution of the master equation.
We refer to [7] for a thorough analysis of the mathematical connection of
ostensible statistics with the stochastic Schrödinger equation and quantum
state diffusion unraveling a completely positive master equation. We proceed
here as in [24]: the couplings in (1) are non positive definite but we do not
invoke (3). We also release the hypothesis that the number of decoherence
operators is equal to d2 − 1. We thus consider the linear system of stochastic
differential equations for the ostensible state vector

dϕt = Atϕtdt+

L∑
l=1

dϖl;t

(
Ll;tϕt − ϕt

)
(18a)

dλt = λt

L∑
l=1

dϖl;t

(
wl;t

rl;t
− 1

)
(18b)

driven by L independent Poisson processes specified by

dϖl;tdϖk;t = δl,kdϖk;t (19a)
E
(
dϖl;t

∣∣ϖl;t

)
= rl;tdt (19b)

In (18a) At : R+ 7→ Md is a time dependent matrix independent of ϕt, ϕ
†
t

and the Poisson processes. We determine the explicit form of At at the end
of the calculation by requiring that

ρt = Eλtϕtϕ
†
t

solves a master equation of the form (1). To (18a) and its dual adjoint we
associate initial data z, z̄ on the Bloch hyper-sphere whereas

λt0 = 1
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As always, Itô lemma is our friend:

d(λtϕtϕ
†
t) = λt(Atϕtϕ

†
t + ϕtϕ

†
t A

†)dt+

L∑
l=1

dϖl;t

(
wl;t

rl;t
− 1

)
λtϕtϕ

†
t

+

L∑
l=1

wl;t

rl;t
dϖl;t

(
Ll;t λtϕtϕ

†
t L

†
l;t−λtϕtϕ

†
t

)
Therefore if we choose

At = −ıHt−
L∑
l=1

wl;t L
†
l;t Ll;t−rl;t 1d

2

we obtain

d(λtϕtϕ
†
t) = −ı

[
H , λtψtψ

†
t

]
dt

+
L∑
l=1

wl,t

[
Ll;t , λtϕtϕ

†
t L

†
l;t

]
+
[
Ll;t λtϕtϕ

†
t ,L

†
l;t

]
2

+
L∑
l=1

(
dϖl;t − rl;t dt

)(wl;t

rl;t
Ll;t λtϕtϕ

†
t L

†
l;t−λtϕtϕ

†
t

)
(20)

The sum on the last row runs over the innovation processes (mean compen-
sated increments) of the increments of the Poisson processes. Hence, upon
taking the expectation value of (20) we recover (1). We may also regard (20)
as an Itô stochastic differential equation for the Markov process

σt = λtϕtϕ
†
t (21)

which is, however, trace preserving only on average. It is straightforward
now to verify that the expectation value of (21) takes the canonical form
of a completely bounded linear map. Namely, (18a) is exactly integrable in
between jumps. If we introduce

Kt,s = e
∑L

l=1

∫ t
s du

rl;u
2 Gt,s

Gt,s = Texp

(
−
∫ t

s
du

(
ı Hu+

L∑
l=1

wl;u

L†
l;u Ll;u

2

))

where “Texp” is the time ordered exponential, then

ϕτ−i+1
= Kτ−i+1,τ

+
i
ϕτ+i
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having denoted by τi the random time when the i-th jump occurs and by ϕτ−i
(ϕτ+i

) the state immediately before (after) the jump. The influence process
(18b) is a pure stochastic step function: if the jump is caused by the l-th
Poisson process we get

λτ+i
=

wl;τi

rl;τi
λτ−i

Thus, the change of (21) in a finite time interval including exactly one jump
of type l is

στ−i+1
=

wl;τi

rl;τi
e
∑L

l=1

∫ τi+1
τi

du rl;u Gτi+1,τi Ll,τi στ−i
L†
l,τi

G†
τi+1,τi

In writing this expression we assumed continuity of canonical rates and cou-
plings. We recognize that the exponential prefactor is exactly the inverse of
the probability that no jump occurs in

[
τ+i , τ−i+1

]
: when evaluating the expec-

tation value it cancels with the probability that the trajectory is continuous
in between jumps. Hence, in order to compute the expectation value of (21)
conditional upon the event that exactly one jump occurs in the interval [t0, t],
we only need to recall expression of the jump rate (19b). The result is

E(σt

∣∣ω) = L∑
l=1

∫ t

t0

duwl;uGt,u Ll,uGu,t0 zz
†G†

u,t0 L
†
l,uG

†
t,u

As to be expected the result is independent of the rl;τi ’s. Inspection of the
result shows that the integral can always be couched into the form of a dif-
ference between two completely positive contributions if one of the canonical
couplings wl;· changes sign in [t0, t]. The same considerations can be straight-
forwardly extended at the price of a somewhat more cumbersome notation
to prove that the unconditional expectation value of σt yields a completely
bounded map [24].

6. Application to a two-level system in a boson environment

Gaussian environments linearly coupled to an open system are important
mathematical models for multiple reasons. The influence functional [29] de-
fined by the exact evaluation of the partial trace constitutes a paradigm of an
effective potential felt by an open system. The paradigm is also directly de-
scriptive of realistic situations when the correlation time of the environment
is much faster than the system dynamics [13]. It is therefore interesting to
compare the unraveling generated by the Markov process associated with the
influence martingale with that generated by the random process derived for
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systems in contact with a Gaussian environment [63, 22, 21, 61, 60, 20, 66].
For this purpose, we consider here a two level system in a boson environ-
ment drawing from [59]. There, Smirne and Vacchini derived and analyzed
the description of the dynamics given by the master equation and by the
Nakajima-Zwanzig memory kernel. Depending upon the number of bosons in
the environment the expression of the master equation can be derived exactly
or within fourth order time-convolutionless perturbation theory [51] accuracy.

In the simplest set-up the environment consists of a single boson either
in the vacuum or in the thermal state at the instant of time t0 = 0 when the
system environment state operator is assumed in tensor product form. We
follow [59] and adopt the convention that the first element of the canonical
basis of C2 corresponds to the excited state of the two level states. The
unitary evolution of the microscopic model is generated by the Hamiltonian
operator

H = ω0 σ+σ− ⊗ 1HE
+12 ⊗ (ω0 +∆)b† b+g

(
σ+ ⊗ b+σ− ⊗ b†

)
(22)

where ∆ is detuning, b , b† are the ladder operators in the Hilbert space HE

of the boson and

σ± =
σ1±ı σ2

2

where σi for i = 1, 2, 3 are the Pauli matrices.
The family of matrices in M4 describing the evolution of the reshaped

system state operator in the interaction picture has the form

Ft,0 =


βt 0 0 1− αt

0 γt 0 0
0 0 γ̄t 0
αt 0 0 1− βt

 (23)

The real scalar functions αt, βt : R+ 7→ R and the complex γt : R+ 7→ C
are specified by averages over the initial state operator of environment of
certain operators in operators in the Hilbert space of the boson. In general,
any dynamical map obtained by partial trace over unitary evolution from
an initial state in tensor product form enjoys complete positivity [12]. We
determine the conditions that (23) satisfies to ensure complete positivity. The
reshuffling of the flow matrix yields

F
(R)
t,0 =


βt 0 0 γt
0 1− αt 0 0
0 0 αt 0
γ̄t 0 0 1− βt
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The reshuffled matrix is readily self-adjoint with eigenvalues

SpF
(R)
t,0 = {f1;t, f4;t, f3;t, f4;t}

=

{
1− αt , 1− βt ,

αt + βt
2

+

√
(αt − βt)2

4
+ |γt|2 ,

αt + βt
2

−
√

(αt − βt)2

4
+ |γt|2

}

Complete positivity thus requires

0 ≤ αt , βt ≤ 1 & αt βt ≥ |γt|2 (24)

6.1. Derivation of the completely bounded master equation

In order to reconstruct the master equation from the reshaped dynamical
map we observe that

res(ρt+dt) =
(
14+ḞtF

−1
t dt

)
res(ρt)

It is sufficient to compute eigenvalues and eigenvectors up to the order dt of
the reshuffled matrix(
14+ḞtF

−1
t dt

)R
=

1− dt α̇t(βt−1)−αtβ̇t

αt+βt−1 0 0 1 + dt
(
Re γ̇t

γt
+ ı Im γ̇t

γt

)
0 β̇t(αt−1)−βtα̇t

αt+βt−1 dt 0 0

0 0 α̇t(βt−1)−αtβ̇t

αt+βt−1 dt 0

1 + dt
(
Re γ̇t

γt
− ı Im γ̇t

γt

)
0 0 1− β̇t(αt−1)−βtα̇t

αt+βt−1 dt


Straightforward algebra then yields

ρ̇t =
α̇t(βt − 1)− αtβ̇t

αt + βt − 1

(
σ−ρtσ+ − σ+σ−ρt + ρtσ+σ−

2

)
+

β̇t(αt − 1)− βtα̇t

αt + βt − 1

(
σ+ρtσ− − σ−σ+ρt + ρtσ−σ+

2

)
+

1

4

(
α̇t + β̇t

αt + βt − 1
− 2Re

γ̇t
γt

)
(σ3ρtσ3 − ρt) + ı Im

(
γ̇t
γt

)
[σ+σ− ,ρt]

If the environment is initially in the vacuum state we get [59]

αt = 1 & βt = |γt|2
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with

γt = eı∆ t

(
cos

t
√

∆2 + 2 g2

2
− ı

∆√
∆2 + 4 g2

sin
t
√

∆2 + 4 g2

2

)

The explicit form of the master equation becomes

ρ̇t =
2 g2

√
∆2 + 4 g2 sin(t

√
∆2 + 4 g2)

∆2 + 2 g2
(
1 + cos(t

√
∆2 + 4 g2

) (σ−ρtσ+ − σ+σ−ρt + ρtσ+σ−
2

)

+ ı∆
∆2 + 2 g2 cos(t

√
∆2 + 4 g2)

2∆2 + 4 g2
(
1 + cos(t

√
∆2 + 4 g2

) [σ+σ− ,ρt] (25)

We see that the above master equation is of the form (1) because the canonical
coupling

wt =
2 g2

√
∆2 + 4 g2 sin(t

√
∆2 + 4 g2)

∆2 + 2 g2
(
1 + cos(t

√
∆2 + 4 g2

)
changes sign at

tn =
π + 2π n√
∆2 + 4 g2

∀n ∈ N (26)

6.1.1. Analysis at vanishing detuning

At zero detuning, ∆ = 0, the coupling of the master equation changes sign
by passing through infinity:

wt|∆=0 = 2 g tan(g t)

As it is already evident from inspection of (23), the evolution of the state
operator remains well defined:

ρt =
12−σ3

2
+ cos(g t)

(x1σ1 + x2σ2) + x3 cos(g t)σ3
2

where x1, x2, x3 ∈ R specify the initial data. Singularities of the rate occurs
when the state operator reduces to a projector on the ground state. At first
glance, the divergence seems to be a problem for the unraveling. We notice,
however, that if we remove the drift in (18a) by setting

ϕt = e
∫ t
0 ds rs

2
(cos(g t) + 1) 12+(cos(g t)− 1)σ3

2
ξt
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then the stochastic process ξt satisfies the Itô stochastic jump equation

dξt = dϖt

(
(cos(g t) + 1) 12+(1− cos(g t))σ3

2
σ−ξt − ξt

)
= dϖt

([
0 0

cos(g t) 0

]
− 12

)
ξt

whose paths are suppressed when a jump exactly occurs at the times (26)
when the canonical rate diverges

∀ξt−n =⇒ ξt+n = 0

The analysis in this simple case supports the possibility to apply the unrav-
eling even when canonical couplings diverge on a countable set of times.

6.2. Numerical example

We numerically integrate the master equation (25) using the non-linear
stochastic Schrödinger equation and the influence martingale as in section 4..
Implementing Bloch hyper-sphere preserving dynamics is numerically conve-
nient in generic situations. It is immediately clear that the single decoherence
operator σ− in (25) does not satisfy (3a). As proven in [25], a situation of
this type can be easily mended by extending the sums (9a), (9a) to an ex-
tra decoherence channel with the following requirements. The addition of
the extra decoherence operator to the sum in (3a) must recover an operator
proportional to the identity. The rate of the extra counting process must be
exactly equal to ct. In this way by (13) the decoherence coupling of the extra
channel to the master equation equals zero. In the present case, we choose
the additional decoherence operator to be σ+.

Figures 1, 2 (a) and (b) show the results of the numerical integration of
the influence martingale for 10000 and 20000 trajectories for two different
initial states. The coloured (full) lines show the trace of the state and expec-
tation values normalised by the trace. The results of the influence martingale
are compared with the direct integration of the master equation, which is dis-
played by the dashed lines. We observe that doubling the amount of simulated
trajectories improves the estimation of the solution to the master equation.

Numerically integration of master equations using the influence martingale
is currently being implemented in Qutip version 5 [40, 1]
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Fig. 1: Numerical integration of master equation (25) using the influence
martingale. The full coloured lines show the estimations from the influence
martingale and the shaded regions show twice the estimated standard devi-
ation divided by the square root of the amount of trajectories. The dashed
black lines show the results of directly integrating the master equation. The
system parameters are ∆ = 0.4 and g = 0.4. The system initial state equals
|−⟩ with σz|−⟩ = −|−⟩.
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(a) 10000 trajectories
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(b) 20000 trajectories
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Fig. 2: Numerical integration of master equation (25) using the influence
martingale. The full coloured lines show the estimations from the influence
martingale and the shaded regions show twice the estimated standard devi-
ation divided by the square root of the amount of trajectories. The dashed
black lines show the results of directly integrating the master equation. The
system parameters are ∆ = 0.4 and g = 0.4. The system initial state equals
|−⟩+|+⟩√

2
with σz|±⟩ = ±|±⟩.
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6.2.1. Remark on the exponential growth of the influence martin-
gale

Upon decomposing the influence martingale into compensator and pure jump
parts [43] we can always write

µt = exp

(
g

∫ t

0
ds cs

)
γt (27)

with

dγt = γt

d2−1∑
l=1

(
wl;t

rl;t
− 1

)
dνl;t. (28)

We readily see that the presence of at least one negative coupling brings about
a deterministic exponential growth of the martingale. Yet, the presence of
this exponential prefactor is a consequence of our choice of representation of
the unraveling rather than an a property of the master equation. In fact, we
can take advantage of the chain of identities

ρt = E(µtψtψ
†
t ) =

E(µtψtψ
†
t )

E(µt)
=

E(γtψtψ
†
t )

E(γt)

and use the rightmost expression in numerical estimates of the state operator.
Thus, the exponential growth of µt does not pose a problem.

7. Diósi-Gisin-Strunz random (ostensible) state vector equation

In a series of remarkable papers Strunz [63] in collaboration with Diósi and
Gisin [22, 21] showed that the state operator of an open system in contact with
a Gaussian environment admits the representation as the expectation value
over realizations of ostensible pure states solution of a random differential
equation driven by time correlated complex-valued Gaussian processes. In
[21] via Girsanov’s change of measure method they also derived of a non-
linear norm preserving dynamics on the Bloch hyper-sphere. The derivation
of Gaussian random differential equation has been later refined in [20, 45]
and [61, 60, 66] where some essential improvement have been introduced that
greatly simplify actual applications of the method.

We analyze here the ostensible linear dynamics, which is the backbone
of the method. As our purpose is comparison with the influence martingale
approach, we focus here on the simplest possible example which captures the
general features of the method. We refer to [61, 60, 45] and especially [66] for
the general case.
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7.1. Influence functional of a simple boson environment

We consider an arbitrary system on a d dimensional Hilbert space coupled
by a decoherence operator L and its adjoint to the normal modes of the boson
environment

HSE = H ⊗ 1E +
N∑

n=1

(gn L ⊗ a†n+ḡn L
† ⊗ an) + 1S ⊗

N∑
n=1

ωn a
†
n an (29)

In what follows we make the simplifying but not too restrictive assumption
that at t = 0 the state operator of the bipartite system-environment is the
tensor product of the system state operator and of the state operators of the
individual normal modes of the environment.

The hypothesis of linear coupling has the consequence that in the path
integral representation system operators act as external sources. In the holo-
morphic (also referred to as Keldysh’s) representation [78, 42] the influence
functional [29]1 in a time interval [0, tf ] corresponds to the path integral

Z(j,j̄) =

∫
P

N∏
n=1

D[an, ān] e
An;tf

(an,ān,j,j̄) (30)

The action functional weighing each of the normal modes is

An;tf (a, ā,j,j̄) = ı

∫ tf

0
dt
(
ā⊤

t σ3(ı ∂t − ωn)at − ḡnj̄
⊤
t σ3at − gnā

⊤
t σ3jt)

)
where the coordinates of an individual normal mode and source terms asso-
ciated to the decoherence operators are C2-valued vectors

at =

[
al;t

ar;t

]
, āt =

[
āl;t

ār;t

]
, jt =

[
jl;t

jr;t

]
, j̄t =

[
j̄l;t

j̄r;t

]
and σi, i = 1, 2, 3 here and below are the Pauli matrices. Physically, the
vectors at, āt correspond to ladder operators of a normal mode: the l-
labeled (r-labeled) component corresponds to an operator acting from the
left (right) of the state operator. Mathematically, at , āt are independent
integration variables in C2 (see e.g. discussion in section 6.1.1 of [78]). To
emphasize this point and later use, we denote index vector contraction with
the algebraic transposition symbol “⊤”.

1We refer to [9] for the proof of the equivalence of the holomorphic influence functional
and its the position-momentum representation first introduced in [29]. We thank Erik
Aurell for commenting on this point.
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In (30), P means that the path-space is restricted by the boundary con-
ditions

P = ∪N
n=1

{{
an;t, ān;t

}
t∈[0,tf ]

∣∣An;ιan;0 + An;fan;tf = 0
}

which are most conveniently imposed by introducing a pair of matrices speci-
fying the linear subspace in C2 transverse to the boundary conditions. In the
case each of the normal modes is initially in a thermal state at temperature
β−1 we get

An;ι =

[
0 0
1 − e−β ωn

]
& An;f =

[
1 −1
0 0

]
(31)

Strictly speaking (30) should be regarded as a formal expression whose precise
definition is given by the limit of finite dimensional approximations on a
time lattice. We refer to chapter 2 of [42] for a detailed discussion of the
mathematical subtleties that may arise. Upon evaluating the Gaussian path
integrals and applying functional determinant theory (see e.g. [48]) arrive at
the explicit expression of the influence functional

Z(j,j̄) =
N∏

n=1

exp
(
−ıg2n

∫ tf
0 dt

∫ tf
0 dsj̄

⊤
t σ3Gn;t,sσ3js

)
det
(
An;fFn;tf ,0 + An;ι

) (32)

with Gn;t,s the Green function solution of

σ3 (ı ∂t − ωn)Gn;t,s = δt−s 12 (33a)
An;fGn;tf ,s + An;ιGn;0,s = 0 ∀ s ∈ (0, tf ) (33b)

and Fn;t,s solving

(∂t − ı ωn)Fn;t,s = 0 (34a)
Fn;t s = 12 ∀ s ∈ (0, t) (34b)

The determinant in the denominator of (32) is a pure function of time which
we can reabsorb in the normalization of the path integral over system degrees
of freedom. Thus, all the relevant information about the system environment
interaction is subsumed in the kernel [29]

Kt,s := −ı
N∑

n=1

|gn|2σ3Gn;t,sσ3 =

[
K

(1,1)
t,s K

(1,2)
t,s

K
(2,1)
t,s K

(2,2)
t,s

]
(35)

Once we insert the explicit solution of (33), we get

Kt,s =

[
−1(0)

t−s f
(1)
t,s − 1

(1)
s−t f

(2)
t,s f

(2)
t,s

f
(1)
t,s −1(1)

t−s f
(2)
t,s − 1

(0)
s−t f

(1)
t,s

]
(36)



[Author and title] 24

with

f
(1)
t,s =

∑N
n=1 e

−ı ωn (t−s) g2n
1− e−βωn

= f̄
(1)
s,t = f

(1)
t−s,0

f
(2)
t,s =

∑N
n=1 e

−ı ωn (t−s) g2ne
−β ωn

1− e−βωn
= f̄

(2)
s,t = f

(2)
t−s,0

(37)

The value of the Heaviside functions 1(x)
t for zero argument 1(x)

0 = x is fixed
to the identity by evaluating the path integral from finite dimensional ap-
proximations [42].

7.2. Construction of effective complex Gaussian processes

We now would like to relate (36) to the covariance of zero mean complex-
valued Gaussian processes. To this goal, it expedient to write the sources
as

ji;t =
r
(1)
i;t + ı r

(2)
i;t√

2

j̄i;t =
r
(1)
i;t − ı r

(2)
i;t√

2

i = l, r

The representation reflects the fact that any operator can be decomposed in
two self-adjoint components. Correspondingly, we introduce the vectors

r
(i)
t =

[
r
(i)
l;t

r
(i)
r;t

]
∈ R2, i = 1, 2 st =

[
r
(1)
t

r
(2)
t

]
∈ R4

We can now write the quadratic form in the influence functional as the sum
of three contributions:∫ tf

0
dt

∫ tf

0
dsj̄

⊤
t Kt,sjs =

2∑
i=1

∫ tf

0
dt

∫ tf

0
ds r

(i)⊤
t KS

t,sr
(i)
s +

∫ tf

0
dt

∫ tf

0
dss⊤t It,sss (38)

The first two integrals specify symmetric quadratic forms involving each a
distinct two component vector. Both quadratic forms depend upon the sym-
metrized kernel

KS
t,s =

Kt,s +K⊤
s,t

2
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The two quadratic forms describe the interaction of the system with the envi-
ronment mediated by the self-adjoint component of the Toeplitz decomposi-
tion of the decoherence operator L. The third integral describes interference
and is therefore associated to a symmetric quadratic form involving a single
four component vector.

The representation (38) paves the way for unraveling the influence func-
tional. To get there a little more algebraic analysis is needed. We observe that
the diagonal matrix elements of (36) transform under complex conjugation as

K̄
(1,1)
t,s = K

(2,2)
s,t

It is thus expedient to define

ft,s =
f̄
(1)
t,s + f

(2)
t,s

2
= f̄s,t

St,s = Re

(
K

(1,1)
t,s + K̄

(2,2)
t,s

2

)
= Ss,t

At,s = ı Im

(
K

(1,1)
t,s + K̄

(2,2)
t,s

2

)
= As,t

and to decompose the symmetrized kernel as

KS
t,s = Zt,s σ1 +Rt,s

where σ1 is as before the first Pauli matrix and

Zt,s =

[
ft,s −St,s
−St,s f̄t,s

]
= Z†

s,t (39)

and

Rt,s =

[
−At,s 0
0 At,s

]
= R⊤

s,t = σ1R̄t,sσ1 (40)

Thus, (39) and (40) respectively transform as the proper and complementary
covariance of a complex Gaussian problem. The last condition that we need
to verify is that the augmented covariance constructed using (39) and (40)
as blocks (see formula (A1) of Appendix A) is semi-positive definite. This is
generically the case based on (37). We can therefore write for i = 1, 2∫ tf

0
dt

∫ tf

0
ds r

(i)⊤
t KS

t,sr
(i)
s =∫ tf

0
dt

∫ tf

0
ds

(
r
(i)⊤
t Zt,s σ1r

(i)
s + r

(i)⊤
t

Rt,s+σ1R̄t,sσ1
2

r(i)
s

)
(41)
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We recognize (see Appendix A) that this is the logarithm of the generat-
ing function of a complex Gaussian process. In the absence of interference,
i.e. when the interaction with the environment is mediated by a single self-
adjoint decoherence operator this is the only contribution [61]. Turning to
the interference term, the kernel of the quadratic form has the bock structure

It,s =
1

4 ı

[
0 It,s
I⊤s,t 0

]
, It,s =

[
K

(1,1)
t,s − K̄

(2,2)
t,s −K

(1,2)
t,s + K̄

(2,1)
t,s

K̄
(1,2)
t,s −K

(2,1)
t,s −K̄

(1,1)
t,s +K

(2,2)
t,s

]
and therefore enjoys the properties of a complementary covariance of an im-
proper complex Gaussian process:

It,s = I⊤
s,t

It is therefore legitimate the interpretation of the interference term as the
logarithm of half the generating function of a complex Gaussian process. The
upshot is that we can couched the influence functional into the form

exp

(∫ tf

0
dt

∫ tf

0
dsj⊤

t Kt,sjs

)
=

2∏
i=1

EGi(r
(i), σ1r

(i))EG3(s, 0)

with EGi , i = 1, 2 the generating functions measures of the C2-valued inde-
pendent Gaussian processes ζ =

{
ζ
(i)
t

}
t≥ 0

, i = 1, 2

EGi(r
(i), σ1r

(i)) := EGi exp

(∫ t

0
ds
(
r(i)⊤
s ζ(i)s + r⊤(i)

s σ1ζ̄
(i)
s

))
and of the the C4-valued Gaussian process η =

{
ηt
}
t≥ 0

also independent
from the other ones:

EG3(σ, 0) := EG3 exp

(∫ t

0
dsσ⊤

s ηs

)
7.3. Ostensible state vector equations

The construction of the complex Gaussian process comes at a price. The
state operator is obtained from the expectation value

ρt = EG1,G2,G3 φtϕ
⊤
t (42)

of the outer product of solutions of random differential equations not related
by the adjoint operation [66]

φ̇t = −ı Hφt +
L+L†
√
2

(γ1;t + η1;t)φt +
L−L†
√
2 ı

(γ2;t + η3;t)φt

ϕ̇t = ı Hϕt +
L+L†
√
2

(γ̄1;t + η2;t)ϕt +
L−L†
√
2 ı

(γ̄2;t + η4;t)ϕt
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with γ =
{
γt
}
t≥ 0

the complex-valued Gaussian process in C2 whose com-
ponent are specified by those of the Gaussian processes introduced in the
unraveling:

γ1;t = ζ
(1)
1;t + ζ̄

(1)
2;t

γ2;t = ζ
(2)
1;t + ζ̄

(2)
2;t

We emphasize that the proper covariance of the Gaussian process η does not
play any role for the evaluation of the state operator. We also notice that if
in non-generic cases the augmented covariance (41) is not immediately semi-
positive definite, it can be always regularized by adding to the unraveling of φ
and ϕ a extra proper complex Gaussian process with imaginary prefactor. As
the two processes are not related by dual adjoint, the result is that dynamical
correlations are independent of the regularization.

The result (42) that the state operator is the expectation value of two
vectors one not the adjoint dual of the other is not too surprising. At arbitrary
coupling the canonical master equation is of the form (1) with couplings of
arbitrary sign. It therefore generates a completely bounded semi-group of
linear maps. It is always possible to couch a completely bounded linear map
as the off-diagonal block of a completely positive map on operators in an
embedding Hilbert space. Based on this observation, [11, 12, 10] showed that
solutions of (1) admit a representation of the form (42) with two vectors such
that their direct sum is solution of a stochastic Schrödinger equation.

Finally, a straightforward application of Gaussian integration by parts
[52], permits to write the equation for the state operator in terms of func-
tional derivatives of the ostensible vectors, hence giving a precise mathemat-
ical meaning to the equations originally found in [22] see also [20].

8. Comparison of the unravelings

The foregoing analysis of the Gaussian random differential equation high-
lights merits and differences with the unraveling via the influence martingale
[24, 25].

The most evident difference is that the influence martingale is an all-
encompassing existence result of the unraveling of open quantum systems.
Existence is granted under the same generic conditions which guarantee that
of the canonical master equation. The unraveling is naturally formulated in
terms of a stochastic state vector evolving on the system Bloch hyper-sphere
according to Itô ordinary stochastic differential equations. The evolution is
therefore inherently non-anticipating of collapse events. The fact makes avail-
able a mature set of numerical algorithms (see e.g. [55]) and concentration
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estimates [67] for efficient generation of the statistics. As in the case of the un-
raveling of the completely positive master equation, the expected computing
time scales as O(2d)2 times the number of realizations.

The non anticipating nature of the generated statistics also paves the way
to a measurement interpretation. This is possible by associating an instru-
ment [5] to the unraveling e.g. directly if the evolution preserves positivity or
by embedding in a C2 ⊗ H completely positive map as detailed in [25] draw-
ing from [10]. The main limitation of the unraveling is the same that applies
to the canonical master equation. The existence result is non constructive.
Actual applications of the influence martingale require the knowledge of the
canonical couplings. In general, canonical couplings can be determined via
time convolution-less perturbation theory [51] (see e.g. [59] for an applica-
tion).

The Gaussian random state vector has the advantage that it is always pos-
sible to exactly compute the augmented covariance of the driving Gaussian
processes. Genuine quantum effects as interference are handled by introduc-
ing a Gaussian process which affects the dynamics only via its complementary
covariance. As a consequence, the unraveling is in general not described by
an (ostensible) state vector and its adjoint dual but requires to generate the
realizations dynamics of the two vector-valued random processes φ and ϕ.
The fact that the unraveling is described by random differential equations
driven by time-correlated processes directly reflects the true nature of hid-
den Markov process (see e.g. [28]) of the open system. The time scales
involved in the system-environment interaction are not really resolved as it
is done in time-convolutionless perturbation theory but rather modeled by
the time correlations of significantly lower dimensional Gaussian processes
driving the effective random dynamics. The physical interpretation of these
correlations is also challenging. They appear to introduce anticipating ef-
fects that generically prevent a measurement interpretation [74] see however,
[46]. Finally, the estimation of computing time must take into account the
generation of the statistics of time-correlated complex-valued Gaussian pro-
cesses. This task can be accomplished by means of a set of auxiliary Itô
stochastic differential equations driven by Wiener processes. Furthermore,
the computing time depends upon the number of decoherence operators as
each of them requires two complex-valued time correlated Gaussian variables.
Algorithms and concentration estimates are not immediately available as for
Itô stochastic differential equations but are actively developed [56, 62].
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Random differential equation Influence martingale
Environment Gaussian Any
Evaluation of couplings Exact from path integral Via TCL-PT
Stochastic process type Hidden Markov Markov
Numerical methods Handling of time correlation ordinary Itô SDE
Measurement interpretation No Yes

Table 1: Summary of the comparison between the unravelings of section 8.
TCL-PT: time-convolutionless perturbation theory.
SDE: stochastic differential equation.

9. Conclusions and outlook

In this paper we reviewed the influence martingale unraveling [24, 25]
which to the best of our understanding provides the most general way to
unravel an open quantum system. We also derived in a model problem the
state-of-the art form [61, 60, 66] of the random differential equation [63, 22,
21, 20] which unravels the state operator of a system evolving in a Gaussian
environment. We believe that contrasting the derivations of the unraveling is
the most direct avenue to delve into their significance and use.

Unravelings have multifarious applications [73]. In our view, two of the
most promising are parameter estimation from measurement records [31],
especially in the context of solid state implementation of quantum integrated
circuits [71, 26, 23], and quantum error mitigation [27].

Near-term applications of quantum computing with noisy circuits require
methods to mitigate or cancel errors induced by decoherence or faulty gate
operations leading to the loss of quantum resources. Ideally, a quantum op-
eration is a pure unitary. We may conceptualize an error model in a given
environment as a completely positive map which steers the system state vector
away from desired target states. This way of reasoning leads to confront the
problem of inverting a non-unitary completely positive map. This is a task
that cannot be directly accomplished by means of another completely positive
operation. The trailblazing paper [65] proposed, among other contributions,
that error cancellation can be achieved by subsequent random application of
the completely positive maps entering the Wittstock-Paulsen decomposition
of the completely bounded map which yields the inverse of the faulty evo-
lution. In this way error mitigation is amenable to classical post-processing
without the use of additional quantum resources. The application of the
method requires a characterization of the sequence of completely positive op-
eration to be applied and corresponding concentration estimates [39]. In [27]
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we implement the idea, also outlined in [25], of accomplishing the same task
at the level of unraveling. Clearly, unravelings rely on the knowledge of the
possible decoherence channels affecting the system. Thus fidelity robustness
with respect to finite accuracy in the knowledge of the decoherence channels
has to be taken into account. Our preliminary results encourage us to think
that unraveling theory in general, and the influence martingale in particular
provide ductile novel tools for quantum error mitigation. Finally, we would
like to thank Miłosz Michalski for his assistance and patience in editing the
final version of the paper.
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Appendix

A Definition of complex-valued Gaussian processes

Let θ =
{
θt
}
t≥ 0

and ϑ =
{
ϑt

}
t≥ 0

two d-dimensional zero mean, real-
valued correlated Gaussian processes with covariance

Ct,s =
[
Eθtθ

⊤
s Eθtϑ

⊤
s

Eϑtθ
⊤
s Eϑtϑ

⊤
s

]
We may unambiguously define a zero mean complex-valued Gaussian process
via the unitary mapping T[

ζt
ζ̄t

]
= T

[
θt
ϑt

]
, T =

1√
2

[
1d ı 1d
1d − ı 1d

]
The transformation yields the covariance of the complex-valued process

Zt,s =

[
E ζtζ

†
s ζtζ

⊤
s

E ζ̄tζ
†
s ζ̄tζ

⊤
s

]
:= T Ct,sT† =

[
Zt,s Rt,s

R̄t,s Z̄t,s

]
(A1)
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and

Zt,s =
1

2
E
(
θtθ

⊤
s + ϑtϑ

⊤
s + ı (θtϑ

⊤
s − ϑtθ

⊤
s )
)

(A2a)

Rt,s =
1

2
E
(
θtθ

⊤
s − ϑtϑ

⊤
s + ı (θtϑ

⊤
s + ϑtθ

⊤
s )
)

(A2b)

In the information theory literature [50, 57] a matrix specified by (A1), (A2) is
called an “augmented” covariance. It is also customary to distinguish between
the two following cases.

• A Gaussian process is “proper” if

E(θtθ
⊤
s − ϑtϑ

⊤
s ) = E(θtϑ

⊤
s + ϑtθ

⊤
s ) = 0

In this case, the augmented covariance is fully specified by the “proper”
covariance matrix Zt,s. A proper process comes about when the real
Gaussian processes are independent.

• A Gaussian process is “improper” if the “complementary-covariance” (or
“pseudo-covariance” or “relation”) matrix Rt,s is non vanishing.

In conclusion, a complex matrix with the block structure (A1) is an aug-
mented covariance if and only if it enjoys the following properties

P.i is positive semi-definite.

P.ii diagonal blocks transform under complex conjugation as required by
the definition (A2a) of the proper covariance:

Z†
t,s = Zs,t

P.iii off-diagonal blocks as symmetric as required by the definition (A2b) of
the complementary covariance:

R⊤
t,s = Rs,t

The outlined construction allows us to straightforwardly determine the gen-
erating function of the complex-valued process. Given two arbitrary source-
fields a =

{
at
}
t≥ 0

, b =
{
bt
}
t≥ 0

we define

E(a, b) = E exp

(∫ t

0
dsa⊤s ζs + b

⊤
s ζ̄s

)
:=

E exp

(∫ t

0
ds

(as + bs)
⊤

√
2

θs +
ı (as − bs)⊤√

2
ϑs

)
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We are then in the position to apply the expression of the generating function
of real Gaussian random processes and hence to arrive at

E(a, b) = exp

(
1

2

∫ t

0
ds

∫ t

0
du

[
as
bs

]⊤
T Cs,uT⊤

[
au
bu

])

which defines the matrix

T Ct,sT⊤ = Zt,sTT⊤ =

[
Rt,s Zt,s

Z̄t,s R̄t,s

]
(A3)

A common trick in quantum field theory, see e.g. [77], uses the characteristic
function to compute expectation values with respect to the Gaussian measure
as a formal series of functional derivatives evaluated a zero field

EF(ζ, ζ̄) = E
(

δ

δa
,
δ

δb

) ∣∣∣
a=b=0

F(a, b)

Gaussian integration by parts [52] can be regarded as formal consequence of
this formula

E ζtF(ζ, ζ̄) = E
(

δ

δa
,
δ

δb

) ∣∣∣
a=b=0

atF(a, b̄)

=

∫ t

0
dsE

(
Z̄t,s ·

δ

δbs
+Rt,s ·

δ

δas

) ∣∣∣
a=b=0

F(a, b̄)
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