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Abstract. We describe the physical relativity of light and matter quantum subsystems,
their correlations, and energy exchanges. We examine the most commonly adopted defini-
tions of atoms and photons, noting the significant difference in their localisation properties
when expressed in terms of primitive manifestly gauge-invariant and local fields. As a result,
different behaviours for entanglement generation and energy exchange occur for different
definitions. We explore such differences in detail using toy models of a single photonic
mode interacting with one and two dipoles.

Dedication: Two of us gave lectures in Stockholm in November 2022, about
a week before Göran Lindblad’s passing away. We would like to think that
he would have found the topics we address interesting, and we regret never
having had the opportunity to discuss them with him. We dedicate this con-
tribution to Lindblad’s memory.

1. Introduction

Elementary microscopic systems possess wavelike nature so their physical
states are represented using vectors, which can be superposed. A bipartite
quantum system possesses superpositions that are not separable into pure
states of the individual parts. These entangled states are one of quantum
theory’s most notable distinguishing features, but for the same reason that
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such states exist, the quantum systems between which entanglement occurs
are inherently relative.

In a theory built using a linear (vector) space, relativity occurs whenever
the meaning assigned to elements of the space depends on the chosen basis
(frame). In different frames a quantum subsystem of a bipartite composite
generally constitutes distinct sets of physical states and observables [1]. The
most relevant quantum subsystems are determined by the set of operationally
available interactions and measurements [1, 2, 3, 4, 5, 6, 7, 8].

In quantum electrodynamics (QED), gauge changes are implemented by
unitary transformations between frames that do not preserve the state space
partition into subsystems. The ensuing physical relativity of quantum light
and matter can only be ignored in the calculation of (non-dynamical) scat-
tering matrix (S-matrix) elements and in certain dynamical predictions that,
within standard weak-coupling and Markovian regimes, are found to depend
solely on S-matrix elements. An example is the Lindblad master equation
for a dipole in a photonic environment [1].

In all other situations, quantum subsystem (gauge)-relativity is a funda-
mental feature that cannot be ignored. In particular, both atom-photon and
atom-atom entanglement are, by definition, gauge relative. This aspect of
QED will be the focus of the present study. In Sec. 2., we discuss the physical
differences between quantum subsystems defined relative to different gauges.
We find that the quantum information-theoretic notion of locality based on
tensor-product structure is generally distinct to the field-theoretic notion in
which local properties in spacetime are assigned using physical fields. As
such, distinct definitions of an atom as a quantum subsystem generally differ
markedly in their field-theoretic spacetime localisation properties. In Sec. 3.
we discuss the implications of this for interatomic entanglement, with rele-
vance to the electromagnetic analog of gravitationally induced entanglement
between two masses. The latter has been proposed as a witness for the quan-
tisation of gravity and the existence of an associated mediating massless field
(gravitons) [9, 10, 11].

In order to begin to explore the significance of subsystem gauge-relativity
for interatomic entanglement, information, and energy exchanges, we study
simple toy models consisting of a single-mode interacting with one and two
dipoles. We compare entropies and populations for atomic and photonic
subsystems defined relative to a gauge that varies continuously with a single
real parameter. While fundamentally gauge-invariant, subsystems proper-
ties, including entanglement, are found to be strongly gauge-relative for suf-
ficiently large coupling strengths. The different underlying mechanisms lead-
ing to entanglement between different physical subsystems are contrasted.
We summarise our findings in Sec. 4. Throughout we use natural units with
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ℏ = c = ϵ0 = 1.

2. Relativity of quantum systems

2.1. Composite quantum systems and Hilbert space frames

To understand the relativity of quantum subsystems an analogy with spe-
cial relativity proves most useful. Any two inertial frames A and B in space-
time M are connected by a Lorentz transformation Λ. For two events Y and
Z with coordinate representations y and z inM , the Minkowski inner-product
g satisfies g(y, z) = g(Λy,Λz). Yet, the spatial (temporal) intervals between
Y and Z found using frames A and B are generally distinct; ∆xA ̸= ∆xB
(∆tA ̸= ∆tB). The intervals ∆xA and ∆tA (∆xB and ∆tB) are respectively
measured using a ruler and a clock at rest in frame A (B). Each frame yields
a set of unique and meaningful physical predictions, but the two sets of pre-
dictions refer to different experiments. It is evident that, operationally, the
partition M = T ⊕ S of spacetime into “space” S and “time” T can only be
defined relative to an inertial frame.

In quantum theory the pure states of a physical system are represented by
vectors in a Hilbert space H and the observables are represented by operators
in the algebra A = {O : H → H | O = O†}. Mixed states are represented by
operators in the subspace D of positive Hermitian operators with unit trace.
All physical predictions are obtained using the Hilbert space inner-product,
and a unitary transformation U between two frames (orthonormal bases) A
and B in H leaves the inner-product between any two vectors unchanged;
⟨ψ|ϕ⟩ = ⟨Uψ|Uϕ⟩.

The question arises as to whether, in quantum theory, there might occur
a division of a Hilbert space into parts that is not left invariant by certain
unitary transformations, such that the physical meanings of the individual
parts become inherently relativised. The answer is affirmative. The partition
of a composite quantum system into subsystems, which is the basic means by
which we understand energy and information exchanges, is of precisely this
nature.

Composite quantum systems are constructed using the tensor product,
because it extends the inner-product in a way that is consistent with the
probabilistic postulates of quantum theory (Born rule). Probabilities as-
sociated with independent subsystems, 1 and 2, are those associated with
independent events, that is, (⟨ψ1| ⊗ ⟨ψ2|)(|ϕ1⟩ ⊗ |ϕ2⟩) = ⟨ψ1|ϕ1⟩ ⟨ψ2|ϕ2⟩. If
(Hi,Di,Ai), i = 1, 2 denotes a pair of quantum systems, then a composite
system can be constructed with Hilbert space H = H1⊗H2, density operator
space D = D1 ⊗D2, and observable algebra A = A1 ⊗A2. Conversely, given
a Hilbert space H that can be divided as H = H1 ⊗ H2, each Hi defines
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a quantum (sub)system. An observable of subsystem 1 represented by an
operator O ∈ A1 is represented within A by the operator O ⊗ I2 where I2
is the identity in A2. If ρ ∈ D represents the state of the composite then
ρ1 = tr2ρ ∈ D1 can be said to represent the state of subsystem 1, because it
suffices to compute the physical predictions for any observable of subsystem
1, that is, tr(O ⊗ I2ρ) = tr(Oρ1).

Now consider a unitary transformation of a composite quantum system,
U : H → H. If we begin by representing a physical state S and observable
O by a density operator ρ ∈ D and Hermitian operator O ∈ A respectively,
then we immediately discover that it must be equally valid to represent the
same state and observable by the operators ρ′ = UρU † and O′ = UOU †.
This is because the physical prediction ⟨O⟩S for the average value of O in
the state S can be found using either pair, that is,

tr(Oρ) = ⟨O⟩S = tr(O′ρ′). (1)

If we label the frames connected by U by A and B, then we can conclude
that ρ (ρ′) and O (O′) are the representations of S and O with respect to
the frame A (B). Let us suppose however, that U does not possess the form
U = U1 ⊗ U2, then although ρ is unitarily equivalent to ρ′ and so both of
these operators represent the same physical state, it is not the case that
ρ1 = tr2ρ is unitarily equivalent to ρ′1 = tr2ρ

′. Therefore ρ1 and ρ′1 must,
in general, represent different physical states. Similarly, if in frame A an
observable O is represented by an operator of the form O⊗I2 belonging to the
quantum subsystem 1, then in frame B it is represented by the operator O′ =
UO1 ⊗ I2U

† ̸= O′ ⊗ I2, which does not belong to the quantum subsystem 1.
We conclude that quantum subsystems are physically relative. The quantum
system (Hi,Di,Ai) must represent a different collection of physical states
and observables in any two frames A and B of H that are connected by a
transformation U ̸= U1 ⊗ U2.

In the same way that the parts T and S of M cannot be assigned phys-
ical (operational) meaning independent of the considered inertial frame in
M , the parts H1 and H2 cannot be assigned physical (operational) meaning
independent of the considered frame in H. We may continue to speak of the
quantum subsystems 1 and 2 in every frame of H, in the same way that we
continue to use the same labels “space” and “time” in every inertial frame of
M . But in the same way that measurement of “space” refers to two different
operational procedures in frames A and B (holding a ruler at rest in frame
A versus holding a ruler at rest in frame B) we must recognise that the label
1 generally refers to different states and observables and thereby different
operational procedures in frames A and B of H.
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2.2. The relativity of atoms and photons

2.2.1. Gauss’ law and electric field decompositions

The importance of quantum subsystem relativity is especially evident in
quantum electrodynamics, which is a constrained theory that already pos-
sesses a fundamental mathematical redundancy in the form of gauge-freedom.
Gauss’ law, ∇ · E = ρ, stating that material electric charges with density ρ
are sources (or sinks) of an electric field E, is a non-dynamical constraint.
It makes a complete separation of material and electromagnetic degrees of
freedom into distinct subsystems impossible, because it implies that some
part of the electric field must be material.

Recall that every 3-vector field V that decays sufficiently fast at infinity
admits a unique (Helmholtz) decomposition, V = VT+VL, into a transverse
part (such that ∇·VT = 0) and a longitudinal part (such that ∇×VL = 0).
Adding any transverse field to a particular solution of Gauss’ law, yields
a second solution. The most general decomposition of the electric field is
therefore E = −Π−P where −∇·P = ρ and Π = −ET−PT. The Helmholtz
decomposition of E is a special case obtained by choosing PT = 0, such
that P = −EL = −∇(∇−2ρ). More generally, any P that depends only on
material charge and current densities can be said to be the material part of the
electric field, of which PL is merely one (highly non-local) possible definition.
As will be seen in what follows, the remaining transverse component Π is
photonic.

2.2.2. Lorenz gauge

Writing the electric and magnetic fields as E = −∂tA−∇A0 and B = ∇×A,
where A0 and A are scalar and vector potentials, implies that the homo-
geneous Maxwell equations are automatically satisfied, but under a gauge
transformation Aµ → Aµ − ∂µχ the fields are invariant. The redundancy
within the formalism is eliminated by fixing a gauge, that is, by fixing each
potential component as a specified function of physical degrees of freedom
that cannot be freely chosen. A common choice in high-energy physics is the
Lorenz gauge, which maintains manifest covariance and is defined classically
by the condition L = ∂µA

µ = 0. At least ostensively, this gauge retains com-
plete separation between material and electromagnetic degrees of freedom.
Scalar photons (associated with A0), longitudinal photons (associated with
AL and EL), transverse photons (associated with AT = (∇×)−1B and ET),
and matter, each define a separate quantum subsystem. Separation is not
truly achieved however, because the theory is constrained.

The classical Lorenz gauge condition L = 0 implies □A0 = ρ where
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□ = ∂2t − ∇2. When substituted into G = −∇ · E + ρ one obtains G =
∂tL, showing that Gauss’ law is satisfied if and only if the Lorenz gauge
condition is stable in time. Scalar and longitudinal electromagnetic degrees
of freedom cannot be truly independent of matter. In the quantum theory,
the Lorenz gauge choice must define a subsidiary condition that the vectors
|ψ⟩ representing physical states have to satisfy and that is stable in time,
namely [aL(k) − as(k) − λ(k)] |ψ⟩ = 0 [12]. The operators aL(k) and as(k)
annihilate longitudinal and scalar photons (of momentum k) respectively,
and λ(k) = −ρ̃

(
k)/(ω

√
2ω

)
where ω = |k| and a tilde denotes the Fourier

transform. It follows that in the Lorenz gauge a state represented by a vector
|0L⟩ ⊗ |0s⟩ ⊗ |ψm⟩ with no scalar or longitudinal photons and an arbitrary
material part |ψm⟩, is not physical. The subsystem we have called “matter”
in this gauge cannot be separated from the subsystems that we have called
scalar and longitudinal photons.

Imposing the Lorenz subsidiary constraint within the average electric field
in a physical state yields the Helmholtz decomposition ⟨E⟩ = ⟨ET+EL⟩ where
EL := ∇(∇−2ρ) and ET := −ȦT. As will be seen below, this decomposition
is automatically obtained at the operator level within the Coulomb gauge de-
fined by ∇·A = 0. Transformation to the Coulomb gauge is implemented us-
ing a unitary operator T , which displaces as(k) as Tas(k)T

−1 = as(k)+λ(k),
but leaves aL(k) and λ(k) unchanged [12]. A physical state represented by
|ψ⟩ in the Lorenz gauge is represented by T |ψ⟩ = |ψ′⟩ in the Coulomb gauge,
and it must satisfy T [aL(k)− as(k)− λ(k)] |ψ⟩ = [aL(k)− as(k)] |ψ′⟩ = 0. In
the Coulomb gauge, restricting ones attention to physical states amounts to
ignoring scalar and longitudinal photons completely [12].

The gauge-fixing transformation T is not of product form, but it leaves
the Hilbert space bipartition into photons of the transverse electric field and
the corresponding definition of physical matter unchanged. In the Coulomb
gauge this matter constitutes a single unconstrained physical system whereas
in the Lorenz gauge it constitutes a constrained tripartite system. The two
gauges are strictly equivalent and while no non-relativistic approximation of
the Maxwell field exists, any gauge can be considered with either relativistic
or non-relativistic matter.

2.2.3. Coulomb gauge

Separating the longitudinal electric field from the transverse field and defining
the former as a material operator is advantageous if one seeks to describe
stable bound systems of charges, such as atoms and molecules. The Coulomb
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energy

V Coul =
1

2

∫
d3xEL(x)

2 =
1

2

∫
d3x

∫
d3x′

ρ(x)ρ(x′)

4π|x− x′|
(2)

offers an excellent approximation of the retarded near-field interaction that
is dominant in binding opposite charges together at atomic length scales.
It can be used to define a material energy operator that possesses discrete
eigenvalues and eigenvectors. The remaining electromagnetic interactions are
treated as a perturbation that results in transitions between material energy
levels when transverse photons are emitted and absorbed. This basic idea
is the fundamental means by which we understand quantum light-matter
physics.

We will make a non-relativistic approximation of the motion of charges for
simplicity, but all results carry over to the case of possibly relativistic charge
motion. We consider a single atom consisting of a charge q at a point r bound
to a charge −q stationary at the origin. The charge and current densities are
ρ(x) = qδ(x−r)−qδ(x) and J(x) = q[ṙδ(x−r)+δ(x−r)ṙ]/2. Ignoring infinite
Coulomb self-energies the Coulomb energy is V Coul = V (r) = −q2/(4πr).
The energy of the atom is Hm = p2/(2m) + V (r) where p is canonically
conjugate to r, i.e., [ri, pj ] = iδij . The canonical operators r and p, and
the energy Hm belong to a material algebra Am. The eigenvalue equation
Hm |n⟩ = ωn |n⟩ defines vectors {|n⟩} that span a Hilbert space Hm and that
can also be used to write down arbitrary density operators comprising a space
Dm.

Photons are defined using the gauge-invariant transverse vector potential
AT and the canonically conjugate momentum Π by

aλ(k) =
eλ(k)√

2ω
·
[
ωÃT(k) + iΠ̃(k)

]
. (3)

The eλ(k), λ = 1, 2 are mutually orthogonal unit vectors orthogonal to k
and a tilde is used to denote the Fourier transform. The canonical operators
belong in an algebra Aph and satisfy [AT,i(x),Πj(x

′)] = iδTij(x − x′) while

the photonic operators satisfy [aλ(k), a
†
λ′(k′)] = δλλ′δ(k− k′). The photonic

energy is

Hph =
1

2

∫
d3x

[
Π(x)2 +B(x)2

]
=

∫
d3k

∑
λ

ω

(
a†λ(k)aλ(k) +

1

2

)
(4)

Photon states span a Hilbert space denoted Hph, and can be used to write
down an arbitrary density operator in a space Dph.
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The Hilbert space, operator algebra, and density operator space of the
composite theory are H = Hm ⊗ Hph, A = Am ⊗ Aph, and D = Dm ⊗ Dph

respectively. To understand the meaning of the light and matter subsystems
it is necessary to determine the meaning of the canonical operators by writing
them in terms of operators whose physical meaning is known.

To this end we begin by noting that, as a postulate of electrodynamics
(classical or quantum), the fieldsE andB exhaustively assign electromagnetic
properties to each individual event in spacetime. These fields are therefore
said to be local. Similarly, ρ and J assign local material properties via the
positions and velocities of charges, such as r and ṙ. A function of local fields
and of their spacetime derivatives at a single point in space and time is also
local. An electromagnetic example is the energy density [E2 +B2]/2, and a
material example is the source of electric waves, µ = −J̇−∇ρ, which is such
that □E(t,x) = µ(t,x). Any functional of local fields that depends on local
fields over a finite region of space at the same time, is non-local. Examples
include the gauge-invariant transverse potential

AT(t,x) = [(∇×)−1B](t,x) =

∫
d3x′

∇′ ×B(t,x′)

4π|x− x′|
, (5)

and the Coulomb potential and longitudinal electric field

ϕ(t,x) = [−∇−2ρ](t,x) =

∫
d3x′

ρ(t,x′)

4π|x− x′|
, (6)

EL(t,x) = −∇ϕ(t,x). (7)

A fundamental non-local observable of an atom-field system is the total en-
ergy

H =
1

2
mṙ2 +

1

2

∫
d3x

[
E(x)2 +B(x)2

]
=
1

2
mṙ2 + V (r) +

1

2

∫
d3x

[
ET(x)

2 +B(x)2
]
, (8)

where in writing the second equality we have ignored the infinite Coulomb
self-energies of the charges. When written in terms of canonical operators in
the Coulomb gauge the energy becomes the Coulomb-gauge Hamiltonian

H =
1

2m
[p− qAT(r)]

2 + V (r) +
1

2

∫
d3x

[
Π(x)2 +B(x)2

]
=Hm +Hph −

q

m
p ·AT(r) +

q2

2m
AT(r)

2, (9)



[Author and title] 9

which it is easily verified yields the correct Maxwell-Lorentz equations. The
Hamiltonian can be used to determine the meaning of the canonical momenta
p and Π in the Coulomb gauge as

mṙ = −i[r, H] = p− qAT(r), (10)

ȦT(x) ≡ −ET(x) = −i[AT(x), H] = Π(x). (11)

For notational economy the time argument t of Heisenberg picture operators
is omitted. Note that when substituted back into Eq. (9) these equations
give Eq. (8) as required. Immediately we see that the photonic momentum
is the non-local transverse electric field

−Π(x) = ET(x) =

∫
d3x′δT(x− x′) ·E(x′)

= E(x) +∇
∫
d3x′

ρ(x′)

4π|x− x′|
. (12)

The material momentum p can be written using Eqs. (5) and (7) as

p = mṙ+ qAT(r) = mṙ+ Plong (13)

where

Plong =

∫
d3xELr(x)×B(x) (14)

is the electromagnetic momentum associated with the longitudinal electric
field generated by the dynamical charge at r with density ρr(x) = qδ(x− r);

ELr(x) = −∇
∫
d3x′

ρr(x
′)

4π|x− x′|
. (15)

We have specified precisely what is meant by a quantum system, and also
precisely what is meant by locality. Notice that the current J and associated
mechanical momentum mṙ are local, but by definition they are not “mate-
rial” system observables, that is, they do not possess the form O ⊗ Iph. The
canonical momentum p is by definition “material” but according to Eq. (13),
it may be highly non-local. Similarly the total electric field is local, but
according to Eq. (12) it is certainly not “photonic”. The canonical momen-
tum Π is by definition photonic, of the form Im ⊗ O, but again according
to Eq. (12) it may be highly non-local. It is remarkable that the quantum
information-theoretic notion of locality based on tensor-product structure,
according to which any unitary operation performed on a subsystem is said
to be “local”, is generally different to that based on the field concept. When
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this is relevant, the terminology “local operation” used in quantum informa-
tion theory should be replaced with the term “subsystem operation” and it
must be recognised that such operations may be highly non-local in space.

In the Coulomb gauge, the matter subsystem is defined not as comprising
bare mechanical charges, but as non-local charges dressed by their electro-
static fields. This dressed matter produces transverse electromagnetic waves
that propagate at the speed of light via solutions of the wave equation

□AT(t,x) = JT(t,x), (16)

together with ET = −ȦT and B = ∇×AT. Since the wave operator □ can
be applied to any suitably differentiable electromagnetic field, it is clear that
what distinguishes electromagnetic waves are the sources that produce them,
and in Eq. (16) JT is not a field of a localised source. Indeed, JL = −ĖL

and so JT = J + ĖL. The local current J is that of bare charges, while ĖL

is the non-local “current” of the electrostatic dressing field. The field EL

decays polynomially away from a charge and so strictly speaking, even in
a theory that considers point charges, Coulomb gauge “matter” extends to
spatial infinity.

2.2.4. Multipolar gauge

A second commonly used gauge in atomic physics is the multipolar gauge, also
variously called the Poincaré gauge, and the Power-Zienau-Woolley gauge. It
defines an atom as a localised bound charge system acting as a whole, and
concurrently defines photons via a causal field produced by these localised
sources.

The general decomposition E = −Π−P is obtained by means of a unitary
gauge-fixing transformation of the Coulomb gauge theory using

R = exp

[
−i

∫
d3xP(x) ·AT(x)

]
, (17)

which is such that RΠR† = Π + PT. The electric field observable is rep-
resented in the new frame by E = −RΠR† − PL = −Π − P. Since the
transformation is not of product form the light and matter subsystems corre-
sponding to each different electric field decomposition are physically distinct,
but in every frame purely transverse photons can be defined using Π via
Eq. (3).

If, unlike in the Coulomb gauge wherein P = PL, we define the material
part P to be localised inside the bare atom, then at all points outside the
atom we will have PT = −PL = EL. Although we cannot represent E exactly
using a transverse photonic momentum Π, we will have successfully found
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a new frame (gauge) in which the physical meaning of the operator Π is
−ET −PT = −E−P, which equals −E at every point outside the atom.

A local choice of P becomes immediately apparent by noting that PL =
−EL can be written

PL(x) = q

∫ r

0
ds · δL(x− s) =

∫ 1

0
dλd · δL(x− λr) (18)

where d = qr and s = λr, 0 ≤ λ ≤ 1 is the straight line from the charge −q
at the origin to the dynamical charge q at r. “Completing” the longitudinal
δ-function in Eq. (18) by adding the same line-integral of the transverse δ-
function, yields a much more localised solution of Gauss’ law first used by
Power and Zienau [13], namely

P(x) = q

∫ r

0
dsδ(x− s) =

∫ 1

0
dλdδ(x− λr). (19)

The Power-Zienau-Woolley transformation is defined by using this choice
of P in Eq. (17). The meaning of the light and matter subsystems in the
multipolar gauge can be deduced using the multipolar Hamiltonian

H ′ = RHR† =
1

2m
[p− qA(r)]2 + V (r)

+
1

2

∫
d3x

[
[Π(x) +PT(x)]

2 +B(x)2
]

(20)

where

A(x) = −
∫ 1

0
dλλx×B(λx) (21)

is the Poincaré gauge potential satisfying x · A(x) = 0. The Heisenberg
equation yields the expected result ȦT = −ET = Π+PT such that Π now
represents a much more localised observable, Π = −ET − PT = −E − P.
The mechanical momentum is found similarly to be mṙ = p− qA(r) so that
p = mṙ+ qA(r). Eq. (21) reveals that A(r) depends on the local magnetic
field only at points inside the atom, implying that p also represents a much
more localised observable in this gauge.

The multipolar gauge is amenable to a multipole expansion that mirrors
classical multipolar radiation theory. To the leading (electric dipole) order,
the multipolar polarisation field is that of a dipole at the origin; P(x) =
dδ(x). At this order, the potential A vanishes at the point r, so the material
canonical momentum is bare, p = mṙ. We have arrived at a theory in
which “matter” is a fully localised bare dipole, and “photons” are defined
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using a field Π which equals the local electric field −E except at the dipole’s
position 0. We note that the Coulomb gauge theory in the electric dipole
approximation (EDA) is obtained by replacing AT(r) with AT(0) in Eq. (9).
It is connected to the dipole gauge through

R = e−id·AT(0), (22)

which is the EDA of R in Eq. (17).

2.3. Gauge-nonrelativistic predictions

We have seen that light and matter subsystems in QED can only be as-
signed physical meaning relative to a choice of gauge. Unitary gauge-fixing
transformations are not of product form. It is however, important to con-
sider whether and when this relativity can be ignored. In special relativity,
for example, when the relative velocity between inertial frames A and B is
sufficiently small, the associated space and time intervals between any two
events are approximately the same; ∆xA ≈ ∆xB and ∆tA ≈ ∆tB. The
relativity of space and time, i.e., the mixing effect of the Lorentz transfor-
mation Λ from A to B, can then be ignored completely, such that space and
time emerge as approximately absolute (frame-independent) concepts, as is
assumed from the outset in Galilean relativity.

Consider the case of spontaneous emission of a dipole. The eigenvector
|e, 0⟩ of h = Hm +Hph with an excited dipole and no photons represents a
different physical state in the Coulomb and multipolar gauges. If we denote
the state that it represents in the Coulomb (multipolar) gauge by S (S ′),
then in the multipolar (Coulomb) gauge this same state is represented by
R |e, 0⟩ (R† |e, 0⟩), which is entangled. Physically, S ′ is an excited state of
a bare dipole, whereas S is an excited state of an electrostatically dressed
dipole. Similarly, the vector |g,kλ⟩ with a ground level dipole and a photon of
momentum kλ represents different physical states F and F ′ in the Coulomb
and multipolar gauges respectively.

However, if we suppose that the atom-field interaction vanishes in the
remote past t = −∞ and the distant future t = +∞, then at these times
h = H and each unperturbed eigenvector uniquely represents a physical state
(the transformation R becomes the identity). If the interaction is switched
on and then off over an infinite amount of time (a scattering process) then
we can define the total rate of spontaneous emission for the transition e→ g
by

Γeg = 2π

∫
d3k

∑
λ

| ⟨g,kλ|V |e, 0⟩ |2δ(ω − ωeg) =
ω3
eg|deg|2

3π
. (23)
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Here ω = |k| is the energy of the emitted photon, ωeg = ωe−ωg is the energy
of the atomic transition, and the δ-function imposes the condition that these
energies are the same. The rate Γeg is the same whether the interaction
V = H − h of the Coulomb gauge is used, or the interaction V ′ = H ′ − h of
the multipolar gauge is used.

This gauge non-relativistic property of the QED S-matrix is general
[1, 12, 14, 15], but it must be distinguished from gauge-invariance, which
is merely a special case of Eq. (1). The amplitude of the process S → F is
immediately calculable in the Coulomb gauge as bkλ;eg = ⟨g,kλ|U(t) |e, 0⟩
and the same prediction is obtained in the multipolar gauge as bkλ;eg =
⟨g′, (kλ)′|U ′(t) |e′, 0′⟩ where |ψ′⟩ = R |ψ⟩ and U ′ = RUR†. This prediction is
therefore gauge-invariant. Similarly, the amplitude b′kλ;eg = ⟨g,kλ|U ′(t) |e, 0⟩
of the process S ′ → F ′ is a gauge-invariant prediction. Under the conditions
that define the S-matrix, the total rates associated with these generally dis-
tinct physical processes are actually the same. In this context we can speak
of “spontaneous emission” as a unique process.

Another important example of a gauge non-relative prediction is the quan-
tum optical Lindblad master equation [1]. In general the master equations
ρ̇m(t) = itrph[ρ(t), H] and ρ̇′m(t) = itrph[ρ

′(t), H ′] describe the dynamics of
physically distinct atomic subsystems. However, letting Hm =

∑
n ωn |n⟩ ⟨n|

and assuming for simplicity that the ωn are non-degenerate, the Born-Markov
and secular approximations mimic the assumptions that define the S-matrix,
such that both master equations reduce to the same Lindblad equation of
the form

ρ̇m(t) = −i[Hm +HLS, ρ(t)] +D[ρm(t)] (24)

where

D(ρm) :=
∑

n,p,q,r
ωnp=ωqr>0

γnpqr

(
LnpρL

†
qr −

1

2

{
L†
qrLnp, ρ

})
(25)

with Lnp := |p⟩ ⟨n|, and

Hm +HLS =
∑
n

(ϵn +∆n) |n⟩ ⟨n| . (26)

The rates γnpqr and shifts ∆n are, like Γeg, defined in terms of the unper-
turbed atom-photon states, but they are likewise independent of the chosen
interaction Hamiltonian, because they are on-energy-shell matrix elements.
The approximations that lead to the final result in Eq. (24) can therefore be
said to define the gauge non-relativistic regime [1].
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3. Gauge relativity of information in toy models

3.1. Motivation

The significance of subsystem (gauge) relativity in QED is brought into
focus when considering the most fundamental aspects of energy and informa-
tion exchange between multiple material systems. Current interest in such
topics extends beyond the confines of QED itself. A consideration of elec-
tromagnetic interactions has been used to shed light on the quantum nature
of gravitational interactions. A question of major importance is whether
confirmation of entanglement between two masses can be taken to infer the
quantisation of gravity and the existence of mediating quanta (gravitons)
[9, 10, 11].

The simplest scenario consists of two stationary hydrogen atoms at R1 =
0 and R2 = R with charge density

ρ(x) =ρ1(x) + ρ2(x)

≡q[δ(x− r1)− δ(x)] + q[δ(x− r2)− δ(x−R)]. (27)

The Coulomb gauge Hamiltonian is

H = H1
m +H2

m +Hph + V 1 + V 2 + V inter (28)

where H i
m and V i are the individual atom Hamiltonians and atom-field in-

teractions respectively, defined for each atom as in Eq. (9). The additional
term now appearing

V inter =

∫
d3xPL1(x) ·PL2(x) (29)

where PLi = −∇(∇−2ρi), is the interatomic Coulomb interaction. It is the
energy contained in the overlapping electrostatic dressing fields of two non-
local atoms defined relative to the Coulomb gauge. It results in correlations
between the atoms even before a causal signal can traverse the distance R,
and is of course the direct electromagnetic analog of the Newtonian gravita-
tional interaction between masses.

We see that photon mediated interactions are not the only possibly cause
of entanglement between atoms defined relative to the Coulomb gauge, be-
cause such atoms are extended objects that overlap. It should be noted
however, that a Coulomb gauge theory without photons, that is, one that
includes only the term V inter, is incomplete and exhibits important kinemat-
ical differences. In particular, the atomic canonical momenta within such a
theory are the localised mechanical momenta, pi = mṙi, whereas within the
complete theory these momenta are given by Eq. (13).
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In the multipolar gauge the material part of the electric field is a sum
of multipolar polarisation fields for each atom, P = P1 + P2, and each
component is localised inside the corresponding atom. Unlike Eq. (29), the
overlap integral between P1 and P2 vanishes, so there is no direct interatomic
interaction in the multipolar Hamiltonian, which is of the form

H ′ = RHR† = H1
m +H2

m +Hph + V ′1 + V ′2. (30)

All interactions are mediated by a causal field that equals the local electric
field outside the localised atoms defined relative to this gauge. Correlations
between these atoms cannot occur in the absence of photons defined relative
to the multipolar gauge.

The multipolar and Coulomb gauges are of course equivalent and all pre-
dictions obtained from the theory are gauge-invariant. Beyond scattering
theory, however, questions concerning the physics of atoms and photons are
ill-posed without an unambiguous specification of the physical degrees of free-
dom that have been used to define these concepts. Two opposite (but not
contradictory) conclusions regarding the necessary conditions for entangle-
ment to arise between atoms have been arrived at above because the atoms
and therefore the entanglement referred to within these conclusions is differ-
ent.

It must be recognised that entanglement occurs between observables. An
eigenvector of an operator representing an observable represents a state in
which the observable possesses the corresponding eigenvalue with certainty.
Eigenvectors provide orthonormal bases for the Hilbert state space of a quan-
tum system. When expanded in such a basis the vector representing a given
quantum state may or may not be entangled. The term “atom” or “pho-
ton” should merely be considered an occasionally convenient abbreviation
for a certain observable or collection of observables. The latter can always
be specified in terms of primitive local and manifestly gauge-invariant fields
whose physical meaning is immediate, and which are not defined in terms of
prior concepts (save for spacetime itself). Examples are given by Eqs. (12)-
(15).

A mediating field, by which we mean the field of a non-material (photonic)
quantum subsystem, is necessary to produce entanglement between localised
atomic quantum subsystems. Yet, such a mediating field is unnecessary to
produce entanglement between non-local (overlapping) atomic quantum sub-
systems. Only an analysis of the specific operational procedures used in an
experiment can determine which observables are accessed and thereby which
definitions of atoms and photons are relevant. As we remarked at the outset,
the relevant partition of a quantum system into subsystems is determined
by the operationally available interactions and measurements. In practice
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any operational procedure will possess finite extent in space and time, which
one might plausibly suggest must somehow be correlated with the spatio-
temporal localisation properties of the quantum system it grants access to.

It should be noted however, that distinct definitions of atom are not
necessarily independent. A change in the degree of entanglement between
non-local atoms will generally imply a change in the degree of entanglement
between localised atoms. Moreover, different definitions of atom should not
be considered indistinguishable experimentally. Indeed, it is in terms of the
observables that define them that any two conceptions of atom differ. Like
gauge invariance, subsystem gauge relativity is fundamental. Gauge non-
relative predictions of atomic and photonic properties, that is, those inde-
pendent of the considered observables, will generally only be obtained when
idealisations (as in scattering theory) and approximations (such as Born-
Markov and secular/rotating-wave approximations) are employed.

Even within scattering theory subsystem relativity is apparent. The ma-
trix element describing resonance energy transfer in the vacuum between
identical dipoles that are respectively in excited and ground states repre-
sented by |e1⟩ and |g2⟩, is to second order in the interaction given by

M = ⟨f |V |i⟩+
∑
I

⟨f |V |I⟩ ⟨I|V |f⟩
Ei − EI

(31)

where |f⟩ = |g1, e2, 0⟩, |i⟩ = |e1, g2, 0⟩, and En is the energy associated with
the state represented by |n⟩. The sum in Eq. (31) extends over all interme-
diate eigenvectors of h = H1

m + H2
m + Hph. In the dipole gauge, the first

term in Eq. (31) does not contribute, because there are no direct interatomic
interactions between localised dipoles. From the second term in Eq. (31) one
obtains (latin indices denote cartesian components and repeated indices are
summed)

M =
ω3
egdidj

4π

[
βij

(
cos ξ

ξ3
+

sin ξ

ξ2

)
− γij

cos ξ

ξ

]
(32)

where ξ = ωegR, βij = δij − 3R̂iR̂j , and γij = δij − R̂iR̂j . In the Coulomb
gauge the first term in Eq. (31) is non-zero due to the overlap V inter, which
however, does not contribute to the second term in Eq. (31). The latter
is found to be M − ⟨f |V inter |i⟩ where M is given in Eq. (32) [15]. In the
Coulomb gauge then, the atom-field interaction implicitly includes a static
contribution that exactly cancels the contribution of the inter-dipole electro-
static overlap.

Energy transfer involving the same initial and final states was considered
early on by Fermi, in order to demonstrate that inter-atomic interactions via
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photon exchange do not violate causality [16]. Such dynamical considerations
are beyond the scope of the stationary perturbation theory giving Eq. (31).
Fermi considered atoms that were not directly coupled and obtained a causal
result for the excitation probability at time t of the initially unexcited atom.
The problem received renewed interest much later on however, when it was
noted that Fermi made Markovian type approximations without which an
apparently acausal result would be obtained [12, 17, 18, 19, 20, 21]. Indeed,
an (in)famous result due to Hegerfeldt [21] found that under very mild as-
sumptions, the probability of excitation of the second atom is necessarily
non-zero for times less than R. The apparent contradiction is resolved by
noting that even a single atom in the vacuum immediately possesses a non-
zero excitation probability due to virtual photon absorption; the vector |g, 0⟩
is not an eigenvector of the total atom-field Hamiltonian. In the two atom
problem the excitation probability of atom 2 at time t can be partitioned as

P (t) = P0(t) + P1(t) (33)

where P0 and P1 are independent and dependent on atom 1 respectively. If
the dipoles envisaged by Fermi are defined relative to the multipolar gauge
then P1(t) is necessarily zero for t < R as required by causality. This becomes
immediately apparent by noting that the fieldΠ to which the dipole 2 couples
at it’s own position R, is a superposition Π = Π2 + Πvac + Π1 consisting
of it’s own reaction field, the vacuum field, and the source field Π1 of atom
1. The contribution P1(t) in Eq. (33) results directly from the source field
Π1. In the multipolar gauge this source field at any point x ̸= 0 (including
x = R) is (minus) the well-known causal electric source field of a point dipole
[22];

−Π1(t,x) = Es(t,x) = θ(tr)∇×
[
∇× d(tr)

4πx

]
(34)

where tr = t−x, θ is the Heaviside step function, and d is the dipole moment
operator of dipole 1. Clearly dipole 1 cannot influence dipole 2 for times
t < R. This same conclusion holds at every multipole order, i.e., for atoms
that are not approximated as dipoles.

If one considers dipoles defined relative to the Coulomb gauge then dipole
2 immediately exhibits a non-zero excitation probability that does depend on
dipole 1, behaviour that lies in stark contrast to that of dipoles defined rela-
tive to the dipole gauge. The kind of exact cancellation of terms that occurs
in the Coulomb gauge to give Eq. (32) and thereby eliminate gauge-relativity,
can only generally occur within the confines of stationary perturbation the-
ory. The immediate excitation occcuring in the Coulomb gauge is however
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not a violation of causality, because the atoms involved cannot strictly be
considered spatially disjoint. The term V inter appearing in Eq. (29) is what
describes their overlap. Indeed, the electric source field produced by a single
atom defined relative to the Coulomb gauge is

Es(t,x) = θ(tr)∇×
[
∇× d(tr)

4πx

]
+ θ(−tr)EL(0,x), (35)

which is not the same as Eq. (34). This difference is not contradictory, be-
cause the total electric field is E(t,x) = Evac(t,x)+Es(t,x) and the vacuum
parts Evac(t,x) differ between the two gauges by the exact negative of the
difference in source parts. The total field E is unique (gauge non-relative)
but its partitioning into vacuum (photon) and source (atom) parts is, as
expected, gauge-relative. The final term θ(−tr)EL(0,x) in Eq. (35) again
demonstrates that Coulomb gauge matter includes the electrostatic field by
definition.

One might conclude that atoms defined relative to the Coulomb gauge are
somewhat unphysical, but it should be born in mind that for sufficiently large
R the overlap V inter will become exceedingly small and negligible in practice.
Operationally, it is also not clear that the opposite extreme of point-localised
dipoles, as are defined relative to the multipolar gauge, are necessarily the
most relevant definition to consider. For these dipoles, returning to Eq. (33),
Hegerfeldt’s theorem states that P (t) ̸= 0 for t < R, which implies that a
nonzero P0(t) is necessary to preserve causality between localised dipoles, and
yet such immediate vacuum excitations may also be viewed as unphysical.
A successful renormalisation procedure might be viewed as one that absorbs
these virtual excitations within a new definition of the subsystems for which
|g, 0⟩ is the true ground state of H, in which case P0(t) = 0. For simple
dipolar systems, such a gauge does indeed exist and possesses an interaction
Hamiltonian that symmetrically mixes the linear Coulomb and multipolar
gauge couplings [1, 24, 25, 26, 31, 32, 33]. The resulting definition of matter
must be non-local otherwise P0(t) = 0 would imply a violation of causality.
Indeed, this definition of matter incurs a level of material dressing that is
in between that of the Coulomb gauge (total electrostatic dressing) and the
dipole gauge (no dressing). This is discussed further in Sec. 3.2.2.

It is clear that subsystem gauge relativity is a fundamental feature that
cannot in general be ignored. The observables defining light and matter quan-
tum subsystems are in general non-local, as is revealed by expressing them
in terms of manifestly gauge-invariant and local fields. It is not immediately
obvious which definitions of quantum subsystems are the most operationally
relevant, and how the answer to this question might depend on experimental
context. Motivated by this observation, below we turn our attention toward
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understanding the different behaviours of energy and information when dif-
ferent subsystem definitions are adopted. To this end, we focus on two simple
and transparent toy models.

3.2. One dipole and one mode

3.2.1. Model

If we suppose that a dipole-field system is enclosed inside a box with pre-
scribed boundary conditions then the allowed photonic wavevectors become
discrete. In the multipolar gauge, because the photonic field is locally defined,
the boundaries can be described entirely using appropriate mode-functions
{fkλ(x)}, without having to introduce image charges [29, 30]. We therefore
begin in this gauge and assume that the dipole couples appreciably to only
one photonic mode with polarisation vector e and wavevector k, tuned such
that ω = |k| is very near to the lowest atomic transition energy. Assuming
that the dipole is located at a field maximum, f(0) = e, we can write the
photonic canonical momentum at this position as [23]

Π(0) = i

√
ω

2v
ea† +H.c. (36)

where [a, a†] = 1, and

v =

∫
box

d3x|f(x)|2 (37)

is the effective mode volume with f(x) = e · f(x). In a periodic cavity, for
example, we have f(x) = eik·x.

In practice multiple modes may need to be considered in order to obtain
an accurate model. In principle, additional modes could be included one-
by-one until convergence is reached within the envelope of a natural cut-off
function that is consistent with the EDA and the non-relativistic treatment of
charges. The single mode theory has the benefit of simplicity while possessing
essentially the same physical structure, so it is better suited to our purpose.
If we assume for further simplicity that d·e = d, then we obtain an essentially
one-dimensional model

H ′ = Hm +Hph + V ′ (38)
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where

Hm =
p2

2m
+ V (r) =

∑
n

ωn |n⟩ ⟨n| , (39)

Hph =ω

(
a†a+

1

2

)
, (40)

V ′ =
d2

2v
+ id

√
ω

2v
(a† − a) ≡ ϵdip + Ṽ ′. (41)

A corresponding model in an arbitrary gauge controlled using a parameter α
can be constructed as Hα = R1αH

′R†
1α where [cf. Eq. (22)]

Rαα′ = ei(α−α′)d·AT(0) (42)

is a gauge-fixing transformation from the gauge α to the gauge α′, in which

AT(0) =
ea†√
2ωv

+H.c. (43)

is conjugate to Π(0) in Eq. (36). The extremal choices α = 0 and α = 1
yield the Coulomb and dipole gauges respectively.

If ρ′ = ρ1 represents the state of the system in the dipole gauge then
ρα = R1αρ1R

†
1α represents the same state in the gauge α. The reduced states

of the atomic and photonic subsystems defined relative to the gauge α are
then represented by ραm = trphρα and ραph = trmρα respectively. The Von
Neumann entropy of a density matrix ρ is defined by S(ρ) = −ρ ln ρ. The
subsystem entropy SEα = S(ραm) = S(ραph) quantifies the degree of light-
matter entanglement in any pure state of the composite. We consider the
ground state represented in the gauge α by a vector |Gα⟩.

3.2.2. Results and discussion

To make contact with the underlying physics discussed in Sec. 3.1. it is useful
to isolate the contribution of the static field to the quantities of interest. Let
us begin by considering the evolution of the photon annihilation operator akλ
in a periodic cavity with mode functions fkλ(x) = ekλe

ik·x/
√
2v. Assuming

a dipole source at 0, in the gauge α integration of the Heisenberg equation
ȧkλ = −i[akλ, Hα] yields a solution that is the sum of free (vacuum) and
source parts as

akλ(t) = akλ(0)e
−iωt + aαkλ,s(t), (44)

aαkλ,s(t) = (1− α)a0kλ,s(t) + αa1kλ,s(t), (45)
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with

a0kλ,s(t) =
i√
ω

∫ t

0
dt′eiω(t

′−t)fkλ(0)
∗ · ḋ(t′) (46)

and

a1kλ,s(t) =
√
ω

∫ t

0
dt′eiω(t

′−t)fkλ(0)
∗ · d(t′). (47)

Upon integrating Eq. (46) by parts the Coulomb and dipole gauge source
operators are found to be related as

a0kλ,s(t)− a1kλ,s(t) =
i√
ω
f∗kσ(0) ·

[
d(t)− d(0)e−iωt

]
=:∆kλ(t), (48)

from which it follows using Eq. (45) that

aαkλ,s(t) = a1kλ,s(t) + (1− α)∆kλ(t). (49)

When substituted into the mode expansion for Π the multipolar source op-
erator a1kλ,s(t) gives, in the mode continuum limit, minus the well-known

causal electric source field of a point dipole, Eq. (34). Unlike a1kλ,s(t), the

Coulomb gauge source operator a0kλ,s(t) is singular at ω = 0 and its singu-
lar part is nothing but the difference ∆kλ(t), which gives additional static
contributions. Substituting a0kλ,s(t) into the mode expansion for Π gives mi-
nus the transverse electric source field. Eq. (35) implies that the difference
between the Coulomb gauge and multipolar source parts of Π is therefore
−EL(t,x) + θ(−tr)EL(0,x). These two electrostatic terms result from the
d(t)-dependent and d(0)-dependent parts of ∆kλ(t) respectively. Eq. (49)
shows that in the gauge α they are weighted by 1 − α. By continuously
varying α from 1 to 0 we vary the degree of electrostatic dressing from no
dressing to full dressing.

The difference ∆kλ(t) vanishes if we make the perturbative ansatz

d(t) =
∑
nm

dnm |n⟩ ⟨m| eiωnmt, (50)

and we assume the resonance condition ωmn = ωk. This imposes bare energy
conservation directly within the integrated equation of motion [Eq. (44)].
More generally, within the perturbative approximation, Eq. (50), separation
of the static contribution as in Eq. (48) is equivalently achieved using the
identity

1√
ω

ωnm

ω + ωnm
=

1√
ω
−

√
ω

ω + ωnm
(51)
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within the Coulomb gauge operator. The second term on the right-hand
side gives the multipolar source operator while the remaining term gives the
static (singular) part ∆kλ(t), which varies as 1/

√
ω. In this way, we can

isolate within each mode of the field, the static contributions that serve to
delocalise the dipole quantum subsystem. Precisely this kind of separation
was first used by Power and Zienau [13]. In so doing they discovered that
what is now known as multipolar QED (PZW theory) provides a photonic
subsystem whose canonical momentum equals the local electric source field
outside the atom.

Returning to the single mode theory, let us now restrict our attention
to the weak-coupling regime and also to a single dipolar transition with fre-
quency ωm and real transition dipole moment deg. The ground state vector
of the dipole-mode system in the gauge α is readily obtained using second
order perturbation theory. The reduced material density operator is found
subsequently to be diagonal in the bare dipole basis and reads

ραm =β2α |e⟩ ⟨e|+ (1− β2α) |g⟩ ⟨g| , (52)

βα =η

[
ωm

ω + ωm
− α

]
= (1− α)β0 + αβ1. (53)

Here η = deg/
√
2ωv is a dimensionless coupling parameter, and pα = β2α is

the population of the excited state. Note that η is singular as 1/
√
ω at ω = 0,

so β0 is similarly singular. We can again use the identity (51) to separate off
the singular part of βα [cf. Eq. (49)] as βα = β1 + sα in which the first term
β1 gives the non-singular excitation probability p1 = β21 of a bare localised
dipole, and the second term sα = (1 − α)η is the purely static deviation
from this excitation, which is weighted by 1 − α. Note that, at resonance
βα = η(1/2− α) and for α = 0 we obtain s0 = −2β1 = η, that is, the static
contribution is minus twice the “local” contribution. As a result β0 = −β1,
so the Coulomb and dipole gauge excited state populations are equal in the
perturbative limit; p0 = p1.

A non-zero probability pα = β2α in Eq. (52) results from absorption of a
photon from the virtual photon cloud dressing the bare dipole in the com-
posite ground state. A gauge which yields βα ≡ 0 is given by

α = αJC :=
ωm

ω + ωm
=

1

1 + δ
(54)

where δ = ω/ωm. This choice results in a Jaynes-Cummings model without
performing the rotating-wave approximation [1, 24, 25, 26, 31, 32, 33]. The
ground state of this model is the bare ground state |0, g⟩. The two-level dipole
defined relative to this gauge can be interpreted, within the approximations
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made, as subsuming the ground state virtual photon cloud surrounding the
bare dipole. At resonance the value of αJC is simply 1/2. More generally,
the αJC-gauge (Jaynes-Cummings gauge) symmetrically mixes the Coulomb
and dipole gauge couplings. For a mode with wavelength λ ≪ 2π/ωm, αJC

approaches 0, so with respect to such a mode the virtual cloud appears as
a static dressing field. For a mode with λ ≫ 2π/ωm, αJC approaches 1,
so the virtual cloud is relatively devoid of photons with such wavelengths,
suggesting some degree of localisation.

As an example we consider a double-well dipole with potential V (θ, ϕ) =
−θr2/2+ϕr4/4 where θ and ϕ control the shape of the double-well. The bare
Hamiltonian is [27]

Hm =
E
2

(
−∂2ζ − ιζ2 +

ζ4

2

)
(55)

where we have defined dimensionless dipolar operator ζ = r/r0 with r0 =
(1/[mϕ])1/6, along with E = 1/(mr20) and ι = θmr40. The difference be-
tween the ground energy of Hα and that of h = Hm + Hph is plotted in
Fig. 1, which is independent of α. Different gauges have therefore provided
the same numerical prediction for one and the same ground state observ-
able, demonstrating that our numerical treatment of ground state properties
yields gauge-invariant results. We subsequently turn our attention to com-
puting light and matter subsystem properties in the ground state. These
are generally α-dependent, but this does not constitute gauge non-invariance
because, as we have discussed in detail in Sec. 2.2., light and matter are quite
clearly defined in terms of different observables in different gauges.

The α-dependence of light and matter properties demonstrates the gauge
relativity of these concepts. For every different value of α, subsystem predic-
tions are gauge-invariant. For example, the population difference P between
the first and ground levels of a dipole defined relative to the dipole gauge
is represented in the dipole gauge by the operator δ′ = |e⟩ ⟨e| − |g⟩ ⟨g|, and
in a state S represented by density operator ρ′ its average value is calcu-
lated in the dipole gauge as ⟨P⟩S = tr(ρ′δ′). In the Coulomb gauge the
same state and observable are represented by the operators ρ = R†ρ′R and
δ = R†δ′R respectively, and the average is calculated in the Coulomb gauge
as ⟨P⟩S = tr(ρδ).

The ground state average population difference of a dipole defined rela-
tive to the gauge α is shown in Fig. 2. We assume resonance ω = ωm where
ωm is the transition energy between the lowest two dipole levels. For suffi-
ciently weak coupling the prediction is essentially gauge non-relativistic. In
particular the predictions of the second order theory restricted to only the
lowest two dipole levels match the numerically calculated predictions for the
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Fig. 1: The ground state energy shift, EG(η)−EG(0), where EG is the ground
state energy, is plotted as a function of η in the Coulomb and multipolar
gauges. The inset shows a the same energy as function of α for two values of
η.

full Hamiltonian Hα, which retain enough levels for convergence and are also
non-perturbative.

The population of the excited state drops significantly for intermediate
values of α near to αJC wherein the reduced dipole state is closer to the
unperturbed ground state (Fig. 2 b). For this reason the entropy of entan-
glement exhibits similar behaviour (Fig. 3). For larger couplings the effect
of the A2-term becomes more important and when absorbed into a redefi-
nition of the photonic modes it renormalises the mode frequency. This in
turn shifts the value of α ∼ αJC for which entanglement is minimised, to-
wards the Coulomb gauge value. For all α the absolute value of entanglement
becomes larger as the coupling increases and contributions of higher dipole
levels become increasingly significant as α approaches zero.

For sufficiently large couplings the entropies of entanglement are found
to be significantly different for different α (Fig. 3). The entanglement be-
tween the bare dipole and accompanying mode tends to be larger than the
entanglement between the corresponding subsystems defined relative to the
Coulomb gauge. The near-zone electric field is essentially unavailable for
entanglement with the electrostatically dressed dipole, because it is nearly
completely cancelled by the static field EL that is subtracted from E to yield
(minus) the Coulomb gauge photonic momentum −Π = ET.

It is noteworthy that, when focussing on the multipolar and Coulomb
gauges at resonance, gauge relativity of entanglement becomes apparent
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within the full model that retains all material levels, but it is obscured by a
two-level dipole truncation. Similarly, gauge-invariance is preserved within
the full model, but it is lost within truncated models [26, 27, 28, 34, 35, 38,
37, 36]. This example therefore serves to clearly demonstrate the distinction
between gauge relativity and gauge non-invariance.

a)

b)

Fig. 2: The population difference 2pα−1 between the first excited and ground
levels of a highly anharmonic double-well dipole, in the ground state of the
dipole-mode composite. We have assumed resonance ω = ωm. a) The dif-
ference is plotted as a function of η, for α = 0 and α = 1. The inset shows
the same curves over the smaller coupling range up to η = 0.3, and the black
dotted curve is the weak-coupling two-level dipole prediction of Eq. (52). b)
The difference is plotted as a function of α for η = 0.1 (ultrastrong-coupling)
and η = 1 (deep-strong coupling). The inset shows the η = 0.1 curve over a
smaller range of vertical axis values, and the black dotted curve is the weak-
coupling two-level dipole prediction of Eq. (52).
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a)

b)

Fig. 3: The entropy of entanglement in the ground state of the dipole-mode
composite. We have assumed resonance ω = ωm. a) The entropy is plotted
as a function of η, for α = 0 and α = 1. The inset shows the same curves
over the smaller coupling range up to η = 0.3, and the black dotted curve
is the weak-coupling two-level dipole prediction of Eq. (52). b) The entropy
is plotted as a function of α for η = 0.1 (ultrastrong-coupling) and η = 1
(deep-strong coupling). The inset shows the η = 0.1 curve over a smaller
range of vertical axis values, and the black dotted curve is the weak-coupling
two-level dipole prediction of Eq. (52).
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3.3. Two dipoles and a single mode

Providing a two-dipole extension of the above model is straightforward.
We note again that in the dipole gauge the boundaries are described entirely
via the use of appropriate mode functions and there are no direct inter-
dipole interactions. Restricting ones attention to a single resonant mode in
this gauge preserves the underlying physical structure of the corresponding
many-mode theory, which again could in principle be recovered by adding
modes one-by-one. The dipoles are labelled by an index i = 1, 2 and di is the
position of the dynamical charge within the i’th dipole relative to the centre
Ri, where R1 = 0 and R2 = R. We assume that the second dipole also
resides at a field maximum, f(R) = e, and we again suppose that di · e = di.

The single-mode dipole-gauge model reads

H ′ = Hm1 +Hm2 +Hph + V ′
1 + V ′

2 (56)

where the bare and interaction Hamiltonians are defined as in Eqs. (39)-
(41) for each subsystem. The α-gauge Hamiltonian can be defined by Hα =

R1αH
′R†

1α where

Rαα′ = exp

[
i
∑
i

(α− α′)di ·AT

]
, (57)

in which AT = AT(0) = AT(R). The Hamiltonian Hα includes a direct
dipolar interaction term

V inter
α = −2ωη2

d2eg
(1− α2)d1d2, (58)

which for α = 0 corresponds to the overlap of the Coulomb fields of the
dipoles within the toy model. In the gauge α this contribution is found to be
weighted by 1− α2.

We again consider the example of anharmonic double-well dipoles, which
we assume are identical and with a first transition energy resonant with the
mode. The ground state entropy of entanglement between the mode and
dipoles is shown in Fig. 4. It is essentially gauge non-relativistic for suf-
ficiently small coupling strengths, and increases more rapidly with coupling
strength in the dipole gauge than in the Coulomb gauge, mirroring the single-
dipole case. It reaches a steady value in the dipole gauge in the deep-strong
coupling regime.

To determine the inter-dipole entanglement we calculate the negativity
associated with dipole 1 defined as

Nαm =
1

2

[
∥ρT1

αm∥ − 1
]

(59)
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Fig. 4: The entropy of entanglement of the two dipole reduced density op-
erator (which equals that of the mode’s reduced density operator) is plotted
with η for α = 0 (green dashed) and α = 1 (blue solid). The dashed red line
shows the α = 0 curve when the model is truncated to the first two levels of
each dipole, showing that the increase in entropy for α = 0 can be attributed
to light-matter coupling to higher material levels.

where ∥X∥ := tr(
√
X†X) and ρT1

αm is the partial transpose with respect to
dipole 1, of the reduced dipole density operator ραm. The negativity is an
entanglement monotone and is shown for the Coulomb and dipole gauges
in Fig. 5. In the dipole gauge it is found to exhibit the same behaviour
as the fidelity of the two-dipole reduced state in the maximally entangled
Bell state represented by |ψ⟩ := (|e, e⟩ + |g, g⟩)/

√
2 (Fig. 6). For large η

the entanglement vanishes as the reduced state approximates the classical
mixture (|ψ⟩ ⟨ψ| + |ϕ⟩ ⟨ϕ|)/2 where |ϕ⟩ := (|e, g⟩ + |g, e⟩)/

√
2. This state

can equivalently be written (|+,+⟩ ⟨+,+| + |−,−⟩ ⟨−,−|)/2 where |±⟩ =
(|e⟩ ± |g⟩)/

√
2, from which it is clear that it is a symmetric mixture of two

separable states.
In the Coulomb gauge the inter-dipole entanglement as quantified by the

negativity is much larger and reaches a steady value within the deep-strong
coupling regime. As shown in Fig. 6, much of this entanglement can be at-
tributed to the direct coupling, which moreover, is largely restricted to the
lowest two levels of each dipole. This is because V inter

α in Eq. (58) depends
only on the dipole moments and so does not scale with dipolar transition
energies. Within the two level truncation for each dipole the reduced state
for large η is essentially the pure Bell state |ψ⟩. This arises almost entirely
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Fig. 5: The negativity of dipole 1 is plotted with η for α = 0 and α = 1.
We have assumed resonance ω = ωm. The inset shows the negativity as a
function of α. For η = 1 it is maximised in the Coulomb gauge while for
η = 0.1 it is maximised near α = αJC , which is also near to the minimum of
the entropy of entanglement between the mode and dipole.

from the direct dipole-dipole interaction, while the entropy of entanglement
associated with the mode vanishes (Fig. 4). Higher dipole levels become
increasingly significant as η increases however, and when enough levels for
convergence (and gauge-invariance) are included the fidelity of the reduced
state in the state |ψ⟩ decreases, as does the purity. The state becomes in-
creasingly mixed and the dipole-mode entanglement increases, albeit much
more slowly than in the dipole gauge (Fig. 4).
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Fig. 6: The fidelity of the material state in the Bell state |ψ⟩ is plotted
with η. The inset shows the purity of the material state. The red dashed
curves are obtained when the α = 0 theory is truncated to the first two
levels of each dipole and are very close to those obtained when, in addition to
truncation, one includes only the direct inter-dipole coupling. Within the α =
0 truncated theory, the material state is essentially |ψ⟩ for large η, but higher
levels become increasingly important for larger η and become entangled with
the mode (Fig. 4). This reduces the purity and overlap with |ψ⟩. In the
dipole gauge only the lowest two levels of each dipole are important over
the shown range of η, and the curves display behaviour concurrent with the
negativity shown in Fig. 5.

4. Conclusions

We have studied the gauge relativity of the quantum subsystems called
atoms and photons. Different physical definitions of these subsystems, each
using different physical observables, are provided by each different gauge. We
have specified these observables in terms of the primitive manifestly gauge-
invariant and local fields ρ,J,E, and B, finding that different definitions of
the atomic subsystem differ in their degree of spatial localisation. The reason
can be traced back to Gauss’ law, which implies that some generally non-local
part, P, of the local electric field E, must be a material quantum subsystem
observable, but the definition of P differs between different gauges.

We have termed the regime in which the gauge relativity of light and mat-
ter subsystems can be ignored, gauge non-relativistic. Beyond this regime,
we have discussed the significance of the different definitions of the quantum
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subsystems for entanglement generation between two atoms (1 and 2). A
mediating photonic field is necessary to produce entanglement only if the
corresponding atoms are localised to the extent that their material fields
Pi, i = 1, 2 do not overlap. We have similarly noted that between such
atoms the mediating field propagates causally, yielding purely causal inter-
atomic dependencies. However, this implies immediate nonzero excitation of
the atom in its local ground state accompanied by the photonic vacuum.

We have studied simple models of a single mode interacting with one and
two dipoles, in an arbitrary gauge controlled by a parameter α. The choice
α = 1 defines bare point dipoles each with a material electric field P fully lo-
calised at the dipole’s position. As a result, at every other point in space the
source part of the photonic field Π, is the well-known dipolar local electric
source-field. The choice α = 0 yields dipoles fully dressed by their electro-
static fields and the corresponding source part of Π includes electrostatic
contributions that are additional to the local source field of a bare dipole. At
the level of individual photonic modes these contributions arise from terms
that are singular at zero mode frequency. Such terms occur whenever α ̸= 1
but can be straightforwardly separated off revealing that they are weighted
by 1−α in the gauge α. We have computed the entropies of entanglement in
simple models of a single mode interacting with one and two dipoles. Having
found that both light-matter and interatomic entanglement are in general
strongly gauge-relative, we have discussed the different underlying physical
mechanisms leading to entanglement between different physical subsystems.
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