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Abstract

Mn(C) denotes the set of n by n complex matrices. Consider
continuous time quantum semigroups Pt = etL, t ≥ 0, where L :
Mn(C) → Mn(C) is the infinitesimal generator. If we assume that
L(I) = 0, we will call etL, t ≥ 0 a quantum Markov semigroup. Given
a stationary density matrix ρ = ρL, for the quantum Markov semi-
group Pt, t ≥ 0, we can define a continuous time stationary quantum
Markov process, denoted by Xt, t ≥ 0. Given an a priori Laplacian
operator L0 : Mn(C) → Mn(C), we will present a natural concept of
entropy for a class of density matrices on Mn(C). Given an Hermitian
operator A : Cn → C

n (which plays the role of an Hamiltonian), we
will study a version of the variational principle of pressure for A. A
density matrix ρA maximizing pressure will be called an equilibrium
density matrix. From ρA we will derive a new infinitesimal generator
LA. Finally, the continuous time quantum Markov process defined
by the semigroup Pt = etLA, t ≥ 0, and an initial stationary den-
sity matrix, will be called the continuous time equilibrium quantum
Markov process for the Hamiltonian A. It corresponds to the quantum
thermodynamical equilibrium for the action of the Hamiltonian A.
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detailed balance condition, entropy, pressure, equilibrium quantum processes
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1 Introduction

We are interested in continuous time stationary quantum Markov process
which corresponds to equilibrium for a quantum bath (interacting with a
quantum system) under the action of a certain given Hamiltonian. Therefore,
our results concern continuous-time quantum channels.

In [5] the authors present a detailed study of a nice version of the de-
tailed balance condition for a continuous-time quantum Markov semigroup
on Mn(C), n ∈ N (see also [9], [8] and [16] for related results). In Theorem
4.2 in [5] it is explained that the detailed balance condition for a classical
continuous-time Markov Chain, with values on a finite state space, corre-
sponds to the commutative part of the dynamical evolution of the continuous-
time quantum Markov semigroup. Results of [5] are used here in an essential
way.

On page 75 in Section 9 in [10], and also on page 114 in Section 5 in [17],
for a classical continuous-time Markov Chain satisfying the detailed balance
condition, a deviation function (which is a form of entropy) is introduced
and a variational principle (in some sense a form of maximizing pressure)
is considered (see expression 9.18 in page 76 in [10]). We would like to
extend the results obtained for the classical commutative setting to the non-
commutative setting of quantum Markov semigroups satisfying the detailed
balance condition as described in [5].

We will present a natural concept of entropy for a class of density matrices
(see Section 3). We point out that the dynamics of the flow in the set of
matrices is encapsulated on the infinitesimal generator and the entropy we
consider here is at the level of this linear operator. In this sense, this concept
of entropy has no direct dynamical content. Our setting is the quantum
channel version of the classical ones considered in [10] and [17].

After introducing entropy we will study a version of the variational princi-
ple of pressure and its relation to an eigenvalue problem for a certain type of
transfer operator (see Section 5 and expression (32) in Section 6). In classical
Thermodynamic Formalism, the Ruelle operator plays this role. The Ru-
elle Theorem describes a relation of equilibrium states with a corresponding
eigenvalue problem (see [15]). The Ruelle operator is an infinite-dimensional
version of the Perron-Frobenius operator. The transfer operator we consider
here is not exactly an extension of the concept of Ruelle operator. A density
matrix maximizing pressure will be called an equilibrium density matrix. We
will provide examples in Section 5.

Our results are in some sense the quantum analogous of the reasoning
delineated in [2], [13] and [11], which considered the dynamics of continuous-
time dynamics (a flow) in the Skorohod space.
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Our definition of entropy is also different from the ones in [3] and [4]
which considered quantum channels in discrete-time dynamics.

Taking into account the concept and the notation described in section 5 in
[5] we will denote by L0 (the Laplacian) the generator of the heat semigroup.
We will choose a special L0 (see Definition 4) which will play the role of the
a priori Laplacian. Our special choice of L0 is the analogous of taking the
normalized counting probability as the a priori probability in the classical
definition of Kolmogorov-Shannon entropy (see discussion in [14]).

From this L0 (which is fixed from now on) we will be able to define the
detailed balanced condition (as described in [5]) and the Laplacian-entropy.

Definition 1. Given a density operator ρ define the Laplacian-entropy (en-
tropy for short) by

h(ρ) = Tr [ ρ1/2L†
0(ρ

1/2) ], (1)

where we set L0 by Definition 4.

Our definitions of entropy and pressure are quite natural. They are the
non commutative extension of the concepts considered in the classical setting
of continuous-time Markov chains as described by M. Kac in expressions
(9.16) and (9.18) in Section 9 in [10] and by D. W. Strook in Section 5 in
[17].

Expression (5.12) in [17] defines the so-called rate function I in the setting
of classical continuous-time Markov Processes taking values on the compact
metric space E. If L is the infinitesimal generator, then (5.12) means

I(ν) = − inf
u>0, u∈C(E)

∫

Lu

u
dν,

where C(E) is the set of real continuous functions defined on E.
Later, for reversible processes, the above formula simplifies to expression

(5.18) in [17], which claims

I(ν) = −
∫

φ1/2Lφ1/2dµ, φ =
dν

dµ
.

In [17] it is used the term symmetric operator but in other contexts, this
would correspond to conditions like reversibility or the detailed balanced
condition.

Under the detailed balanced condition, in the quantum channel context,
one should replace the role of L by the generator of a QMS, which is usually
denoted by L (the Lindbladian). Probabilities are replaced by densities ρ
(states). In this case, (5.12) in [17] corresponds here to

I(ρ) = − inf
U>0

Tr(ρU−1 L0 U),
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where the infimum is taken over the positive matrices U ∈ Mn.
In [17] (see also [10]) the variational principle is taken as

λ(V ) = sup
prob ν

(

∫

V dν − I(ν)),

where λ(V ) is the main eigenvalue of a certain operator.
Denote Dn = {ρ ≥ 0 : Tr(ρ) = 1}.
In section 5 we consider an analogous problem: given an Hermitian op-

erator A : Cn → Cn, we consider the variational problem:

PA = sup
ρ∈Dn

{h(ρ) + Tr(Aρ) }. (2)

A matrix ρA maximizing PA will be called an equilibrium density the
operator for A. We call P (A) the Laplacian-pressure (pressure for short) of
the Hermitian operator A : Cn → Cn.

A connection of PA of expression (2) with the eigenvalue of a certain
linear operator is described in expression (32) in Section 6 (see also (33)).
In this way we get all elements for establishing a continuous time quantum
channel version of the classical Ruelle operator (see [15], [14], [2], [13]).

Our definition of entropy has a difference of sign when compared with the
setting of [17], so we wonder if there exists a connection between h(ρ) and
−I(ρ). In section 7 we will show this connection in the special case of the
heat-semigroup with the a priori generator L0 defined on section 3. We will
show that:

Theorem 2. Given the density matrix ρ, then

h(ρ) = inf
A>0

Tr(ρA−1 L0(A)).

Following [5], we will present in Section 8 the classical Markov Chain
associated with a continuous-time quantum channel and we will provide ex-
amples.

The present work is part of the PhD. thesis of J. Brasil and J. Knorst in
Graduate Program in Math. in UFRGS.

2 An outline of the main prerequisites

Given a linear operator A : C → C, its dual (with respect to the canonical
inner product), is denoted by A∗ : C → C.

Denote by Mn(C) = Mn the set of n by n complex matrices with the GNS
inner product < A,B >= Tr (A∗B). Given a linear operator T : Mn → Mn,
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its dual with respect to this inner product is denoted by T † : Mn → Mn.
That is, for all matrices A,B we get

< T (A), B >=< A, T †(B) > .

We denote by 1 the diagonal matrix with entries 1
n
. Then, 1 is a density

matrix and also the unity of the C∗-algebra Mn(C). We denote by G+ the
set of invertible density matrices (operators) ρ : Mn → Mn.

We will consider continuous time quantum semigroups (QS) the ones
given by Pt = etL, t ≥ 0, where L : Mn(C) → Mn(C) is the infinitesimal
generator (see Definition 5.5.1 and also Section 9.3.2 in [6]). The linear
operator L should satisfy the conditional complete positivity property (see
section 5 in [6] or section 6 in [18]). We assume that L(A∗) = (L(A))∗,
for all A ∈ Mn(C). Given a selfadjoint matrix A ∈ Mn(C), the dynamical
evolution t → etL(A) is called the Heisenberg dynamical evolution. Given a
density matrix ρ ∈ Mn(C), the dynamical evolution t → etL

†

(ρ) is called the
Schrödinger dynamical evolution.

If we assume that L(I) = 0, we will call Pt = etL, t ≥ 0, the continuous
time quantum Markov semigroup (QMS) associated to L (see Definition
5.5.2 and also section 7 in [6]). It is known that in this case etL(1) = 1, for
all t ≥ 0. Continuous time quantum Markov semigroups provide a convenient
mathematical description of the irreversible dynamics of an open quantum
system.

If ρ = ρL is such that L†(ρ) = 0, then for all t ≥ 0, we get etL
†

(ρ) = ρ and
we say that ρ is the stationary density matrix for the continuous time

quantum Markov semigroup with infinitesimal generator L. Section 9.4
in [6] presents a discussion on the uniquenes of the stationary matrix ρ.

We call Xt, t ≥ 0, the continuous time quantum Markov process

(QMP) associated to the infinitesimal generator L, the process associated to
the pair (etL, ρL), t ≥ 0. We can ask questions about ergodicity for such
process (see Section 11 in [6]).

Given the (QMP) associated to L and the stationary density operator ρ,
take an observable (a self-adjoint matrix) A ∈ Mn. Then, we get that

t → Tr(ρ etL(A))

describes the time evolution of the expected value of the observable A.
We say that L is irreducible if for every non-zero matrix A ≥ 0, and every

strictly positive t > 0, we have etL(A) > 0. We will also assume that L is
irreducible (see Sections 10 and 11 in [6]).

Given σ ∈ G+, consider the inner product < , >σ in the set of matrices
in Mn given by < A,B >σ= Tr (A∗Bσ) =< A,Bσ > .
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Definition 3. Given σ ∈ G+, we say that the QMS etL, t ≥ 0, satisfies the
σ-detailed balance condition if L is symmetric with respect to < , >σ. That
is, for all matrices A,B ∈ Mn we get

< L(A), B >σ=< A,L(B) >σ .

Given σ ∈ G+, if the QMS etL, t ≥ 0, satisfies the σ-detailed balance
condition, then, σ is stationary for the evolution of the semigroup etL

†

, t ≥ 0
(see Lemma 10).

The explicit form of the infinitesimal generator of a continuous-time quan-
tum Markov semigroups satisfying the detailed balance condition is described
by expression (3.4) in [5] (see our expression (13)).

Definition 4. We denote L0 the infinitesimal generator satisfying d.b.c.
where we take σ = 1. L0 will be called the Laplacian (see Section 3 in
[5]).

The semigroup Pt = etL0, t ≥ 0, describes the unperturbed continuous
time quantum channel.

Given the a priori Laplacian operator L0 : Mn(C) → Mn(C), we will
present a natural concept of entropy for a class of density matrices ρ on
Mn(C) (see Definition 5).

Given a Hermitian operator A : Cn → Cn (which plays the role of minus
the Hamiltonian), we will consider in Section 5 a variational principle of
pressure for A, which is given by Definition 12.

A density matrix ρA maximizing pressure will be called an equilibrium
density matrix for A. This matrix (in fact ρ

1/2
A ) will satisfy an eigenvalue

property for a certain linear operator LA to be described in Section 6. From
ρA we will derive a new infinitesimal generator LA. Finally, the continuous-
time quantum Markov Process Xt, t ≥ 0, associated to Pt = etLA, t ≥
0, and ρA, will be called the continuous-time equilibrium quantum Markov
semigroup for the Hamiltonian A. This new process describes a continuous-
time quantum channel after the perturbation by the selfadjoint operator A.

3 The heat semigroup and entropy of density

operators

In this section the inner product in Mn is < A,B >= Tr (A∗B).
Denote by ej , j = 1, ..., n, the canonical base in Cn, and by

Ii,j = | ei 〉〈 ej | : Cn → C
n,
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where i, j = 1, ..., n. Note that I∗
i,j = | ej 〉〈 ei |.

We denote by Ii,j the matrix which is zero in all entries, up to the entry
i, j, where it has the value 1.

We denote by 1 the operator identity I times 1
n
. The matrix 1 describes

an invertible density operator.
L0 denotes the infinitesimal generator satisfying d.b.c. for σ = 1.
One can show that Ii,j, i, j = 1, ..., n, is an orthonormal basis for L0

associated to the eigenvalue 0.
Following section 5 in [5] we call L0 (the Laplacian) the generator of the

heat semigroup (the Laplacian)

A → L0(A) =
n
∑

i,j=1

(V ∗
i,j [A, Vi,j] + [Vi,j, A]V

∗
i,j) (3)

This operator is negative-semi definite. (see page 1827 in [5] and also (13)
and (15) of next section. Note that L0(I) = 0.

One can show that L†
0 = L0 and Tr (1L0(A)) = 0, for all A ∈ Mn.

Note that

L†
0(ρ) =

n
∑

i,j=1

([Vi,j ρ, V
∗
i,j] + [Vi,j, ρ V

∗
i,j] ). (4)

σ = 1 is invariant for the flow etL
†
0 .

Definition 5. Given a density operator ρ define the Laplacian-entropy

h(ρ) = Tr [ ρ1/2L†
0(ρ

1/2) ] (5)

This definition is consistent with expression (5.18) on page 113 in [17].
Our main result in this section is the explicit expression for entropy to

be described by Proposition 7.

First, we want to show the following Lemma:

Lemma 6. h(1) = 0.

Proof. From (4)

L†
0(ρ

1/2) =

n
∑

i,j=1

([Vi,j ρ
1/2, V ∗

i,j] + [Vi,j, ρ
1/2 V ∗

i,j] ).

Then,

L†
0(1

1/2) =

n
∑

i,j=1

([Vi,j 1
1/2, V ∗

i,j] + [Vi,j, 1
1/2 V ∗

i,j] ) = 11/2 2

n
∑

i,j=1

([Vi,j, V
∗
i,j].
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Note that
[Vi,j, V

∗
i,j] =

| ei 〉〈 ei | − | ej 〉〈 ej | .
For each pair (i, j) there is a correspondent (j, i). From this follows that

L†
0(1

1/2) = 11/2 2

n
∑

i,j=1

| ei 〉〈 ei | − | ej 〉〈 ej | = 0.

Then, h(1) = 0.

Consider now a general density operator ρ ∈ S+. We want to estimate
h(ρ).

Denote ρ1/2 =
∑n

r,s=1 crs | er 〉〈 es |.
For i, j fixed

[Vi,j ρ
1/2, V ∗

i,j] =
[

Vi,j

(

n
∑

r,s=1

crs | er 〉〈 es |
)

, V ∗
i,j

]

=

Vi,j

(

n
∑

r,s=1

crs | er 〉〈 es |
)

V ∗
i,j − V ∗

i,j Vi,j

(

n
∑

r,s=1

crs | er 〉〈 es |
)

=

Vi,j

(

n
∑

r,s=1

crs | er 〉〈 es |
)

V ∗
i,j − | ej 〉〈 ej |

(

n
∑

r,s=1

crs | er 〉〈 es |
)

=

Vi,j

(

n
∑

r,s=1

crs | er 〉〈 es |
)

| ej 〉〈 ei | −
n
∑

s=1

cjs | ej 〉〈 es | =

| ei 〉〈 ej |
n
∑

r=1

crj | er 〉〈 ei | −
n
∑

s=1

cjs | ej 〉〈 es | =

cj j | ei 〉〈 ei | −
n
∑

s=1

cjs | ej 〉〈 es | .

On the other hand, for i, j fixed

[Vi,j , ρ
1/2 V ∗

i,j] =
[

Vi,j ,
(

n
∑

r,s=1

crs | er 〉〈 es |
)

V ∗
i,j

]

=
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Vi,j

(

n
∑

r,s=1

crs | er 〉〈 es |
)

V ∗
i,j −

(

n
∑

r,s=1

crs | er 〉〈 es |
)

V ∗
i,j Vij =

cj j | ei 〉〈 ei | −
(

n
∑

r,s=1

crs | er 〉〈 es |
)

| ej 〉〈 ej | =

cj j | ei 〉〈 ei | −
n
∑

r=1

crj | er 〉〈 ej | .

Finally,

L†
0(ρ

1/2) =
n
∑

i,j=1

(

[Vi,j ρ
1/2, V ∗

i,j] + [Vi,j, ρ
1/2 V ∗

i,j]
)

=

n
∑

i,j=1

(

cj j | ei 〉〈 ei | −
n
∑

s=1

cjs | ej 〉〈 es |+

+ cj j | ei 〉〈 ei | −
n
∑

r=1

crj | er 〉〈 ej |
)

=

2

n
∑

j=1

cj j I −
n
∑

i,j=1

(

n
∑

s=1

cjs | ej 〉〈 es |+
n
∑

r=1

crj | er 〉〈 ej |
)

=

2
n
∑

j=1

cj j I − n
n
∑

j=1

(

n
∑

s=1

cjs | ej 〉〈 es |+
n
∑

r=1

crj | er 〉〈 ej |
)

.

Then,
ρ1/2L†

0(ρ
1/2) =

n
∑

u,v=1

cuv | eu 〉〈 ev | 2

n
∑

j=1

cj j I −

n
n
∑

u,v=1

cuv | eu 〉〈 ev |
(

n
∑

j=1

n
∑

s=1

cjs | ej 〉〈 es |+
n
∑

j=1

n
∑

r=1

crj | er 〉〈 ej |
)

=

n
∑

u,v=1

cuv | eu 〉〈 ev | 2

n
∑

j=1

cj j I −

n
n
∑

u,v=1

cuv | eu 〉
(

n
∑

s=1

cvs 〈 es |
)

+ n
n
∑

u,v=1

cuv | eu 〉
(

n
∑

j=1

cvj 〈 ej |
)

=
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n
∑

u,v=1

cuv | eu 〉〈 ev | 2
n
∑

j=1

cj j I − 2n
n
∑

u,v=1

cuv | eu 〉
(

n
∑

s=1

cvs 〈 es |
)

=

2

n
∑

j=1

cj j

n
∑

u,v=1

cuv | eu 〉〈 ev | − 2n

n
∑

u,v=1

n
∑

s=1

cuv cvs | eu 〉〈 es |.

The diagonal of ρ is ρ11, ρ22, ..., ρnn and
∑n

j=1 cj j =
∑n

j=1

√

λj, where λj,

j = 1, ..., d, are the eigenvalues of ρ. Note that sup(
∑n

j=1

√

λj)
2 = n and

inf(
∑n

j=1

√

λj)
2 = 1.

Therefore, for fixed n and a given ρ

h(ρ) = Tr [ρ1/2L†
0(ρ

1/2)] = 2
n
∑

j=1

cj j

n
∑

u=1

cuu − 2n
n
∑

v=1

n
∑

s=1

csvcvs =

2
(

n
∑

j=1

cj j

)2

− 2n

n
∑

s=1

ρss = 2
(

n
∑

j=1

√

λj

)2

− 2n ≤ 0.

Note h(ρ) can be very negative if n is large. We get the following propo-
sition by looking at this last inequality:

Proposition 7. The entropy h depends only on {λi} the eigenvalues of ρ
and

h(ρ) = 2Tr (ρ1/2)2 − 2n = 2

(

n
∑

j=1

√

λi

)2

− 2n.

Note that as
∑n

j=1 λj = 1, the maximal value of h(ρ) is zero, and this

happens when all eigenvalues λj = 1 are equal to 1
n
. The maximal value of

entropy is attained by the density matrix 1.

Remark 1. For fixed A we denote ∂i,j(A) = [Vi,j, A] and ∂†
i,j(A) = [V ∗

i,j, A].

∂i,j is a version of the momentum operator 1
i

∂
∂x

acting on the set L2 of
functions for the Lebesgue probability on the circle. Indeed, denote by D the
operator g → D(g) = 1

i
g′. For fixed a : [0, 1) → R, take the multiplication

operator g → a g acting on functions g. Then, the operator

g → D(ag)− aD(g) =
1

i
a′ g,

describes multiplication by 1
i
a′ = 1

i
∂ a
∂x
.

We point out that
∑

i,j ∂i,j∂
†
i,j corresponds to second derivative (Lapla-

cian). On the other hand
∑

i,j ∂i,j∂i,j corresponds to minus second derivative
(minus Laplacian).
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4 The general setting for detailed balanced

condition

Before we begin the study of the quantum case we will state results for the
detailed balanced condition when the continuous time Markov Chain takes
values on {1, 2.., k}. Denote by s = (s1, ..., sk) the initial invariant probability
for the line sum zero matrix W = (Wi,j)i,j=1,...,k.

The detailed balance condition for W is: for all i, j = 1, ..., k

siWi,j = sjWj,i.

Consider the inner product in Rk

< x, y >s=
k
∑

j=1

sjxjyj .

It is easy to see that W satisfies the detailed balance condition, if and
only if, W is self-adjoint for the inner product < ., . >s.

The above is the classical (commutative) setting for presenting the de-
tailed balance condition. We are interested in presenting the non-commutative
version of the concept.

We will be interested here in the C∗-Algebra A = Mn of complex n by n
matrices. The inner product in Mn is < A,B >= Tr [A∗B]. Following the
notation of [5] the associated Hilbert space will be denoted by hA.

We will fix from now on an element σ : Cn → Cn in S+. A hypothesis
that can be helpful for ergodic properties is to assume that all eigenvalues of
σ are simple.

Now, we present some preliminary definitions and properties taken from
[5].

Once we fix the Hamiltonian H we fix the density state σ via σ = e−h

(in some sense we are considering a “normalized” Hamiltonian). In fact,

σ = e−H

Tr(e−H)
and h = H + log Tr(e−H).

The linear transformation, ∆σ : Mn → Mn, is given by A → ∆σ(A) =
σ Aσ−1. Note that ∆σ(σ) = σ and ∆σ(1) = 1.

Assume each eigenvalue of σ is simple.
∆−1

σ : Mn → Mn, is given by B → ∆σ(B) = σ−1B σ.
Note that (∆σ(A))

∗ = ∆−1
σ (A∗).

K : Mn → Mn is positive preserving, if K(A) ≥ 0, in the case A ≥ 0.
∆σ is positive but not positive preserving.

11



We say that K : Mn → Mn is self-adjointness preserving, if (K(A))∗ =
K(A∗).

Remember that by definition K† : Mn → Mn is the one such that for all
A,B

Tr[A∗K(B)] =< A,K(B) >=< K†(A), B >= Tr[(K†(A))∗B].

K : Mn → Mn is self-adjoint if K = K†.
∆σ is self-adjoint.
Note that if ∆σ(E) = e−wE, then ∆σ(E

∗) = ewE∗.
Assume that ηj ∈ C

n, j = 1, 2, ..., n, is an orthonormal basis for h =
− log σ,

h(ηj) = λjηj , ∀j. (6)

Then, ηj ∈ Cn, j = 1, 2, ..., n, is also an orthonormal basis for σ.
h = − log σ plays the role of the Hamiltonian.
Then, we get that ηj ∈ Cn, j = 1, 2, ..., n, is an orthonormal basis for σ,

σ(ηj) = e−λjηj , ∀j. (7)

As σ : Cn → Cn is in S+, we get that

n
∑

j=1

e−λj = 1. (8)

For α = (α1, α2), where α1, α2 ∈ {1, 2, ..., n}, denote

wα1,α2
= wα = λα1

− λα2
. (9)

If σ = 1, then, all wα1,α2
= 0.

For each pair α ∈ {1, 2, ..., n}2, denote

Fα = | ηα1
〉〈 ηα2

|.

Note that
F ∗
(α1,α2)

= F(α2,α1). (10)

Moreover,

∆σ(Fα) = e−λα1
+λα2 Fα. (11)

Indeed,

∆σ(Fα) = σ | ηα1
〉〈 ηα2

| σ−1 = e−λα1 | ηα1
〉〈 ηα2

| σ−1 =

e−λα1
+λα2 | ηα1

〉〈 ηα2
| = e−λα1

+λα2 Fα.

This shows that:

12



Lemma 8. The operators Fα = | ηα1
〉〈 ηα2

|, α1, α2 ∈ {1, 2, ..., n}, describe a
natural orthonormal basis of∆σ. The corresponding eigenvalues are e

−λα1
+λα2 .

Note that if τ represents the normalized trace and α = (α1, α2) is such
that α1 6= α2, then,

τ(Fα) = 0

and, for α, α̃ ∈ {1, 2, ..., n}2

τ(F ∗
α Fα̃) = δα,α̃ := δα1,α̃1

δα2,α̃2
.

Now we denote the different Fα, α ∈ {1, 2, ..., n}2, by Vk, k = 1, ..., n2

(in order to use the same notation as in [5]). In this identification, we also
denote for each k = 1, ..., n2, the value wk = λα1

−λα2
, for the corresponding

α = (λα2
, λα1

).
Then, the family V1, ..., Vn2 represent the different eigenmatrices (an or-

thonormal basis) for ∆σ associated to the eigenvalues e−w1, ..., e−w
n2 , where

wk ∈ R, k = 1, ..., n2. 1 and σ are eigenmatrices associated to the eigenvalue
1. The matrices Vk do not have to be self-adjoint, but from (10) we get

{V1, ..., Vn2} = {V ∗
1 , ..., V

∗
n2}.

Therefore, if wk is in the above list, there exists a j such that wj = −wk.
Given the Hamiltonian h = − log σ, the modular automorphism αt :

Mn → Mn, t ≥ 0, is defined by

A → αt(A) = eithAe−ith ⇐ The Heisenberg point of view.

A Quantum Markov Semigroup (QMS) is a continuous one-parameter
semigroup of linear transformations Pt : Mn → Mn, t ≥ 0, such that for each
t ≥ 0, Pt is completely positive and Pt(1) = 1.

It is natural to focus on quantum Markov semigroups that commute with
the modular operator ∆σ associated to their invariant states σ.

Consider a QMS Pt : Mn → Mn, t ≥ 0, of the form

Pt = etL,

for some linear operator L : Mn → Mn.
The operator L acts on observables (self-adjoint matrices). Note that

L(1) = 0. The dual operator L† acts on density matrices.
A state σ is invariant if Tr [σ L(A)] = 0, for all A ∈ Mn.
In terms of the possible inner products described on Defnition 2.2 in [5]

we will choose s = 1.

13



Remember that given σ we consider the inner product < , >σ =< , >1 in
Mn, where

< A,B >σ = Tr [σA∗B].

From [5] we get:

Proposition 9. Given the density operator σ, the the QMS Pt : Mn → Mn,
t ≥ 0, of the form Pt = etL, satisfies the σ- detailed balance condition, if and
only if,

L ◦∆σ = ∆σ ◦ L. (12)

If Pt = etL, satisfies the σ-detailed balanced condition, then, for all t ≥ 0,

Pt ◦∆σ = ∆σ ◦ Pt.

Moreover, for any t, t′ and matrix A we get that

(αt′ ◦ Pt)(A) = (Pt ◦ αt′)(A).

It follows from (12) that V1, ..., Vn2 is an orthonormal basis for L associ-
ated to the eigenvalues e−v1 , ..., e−v

n2 , where vj ∈ R, j = 1, ..., n2.

Lemma 10. σ is a stationary density matrix for the semigroup with infinites-
imal generator L.
Proof. Note that

[Vi,j σ, V
∗
i,j] = | ηi 〉〈 ηj |σ| ηj 〉〈 ηi | − | ηj 〉〈 ηi || ηi 〉〈 ηj |σ

= e−λj | ηi 〉〈 ηi | − eλj | ηj 〉〈 ηj |
= e−λj (| ηi 〉〈 ηi | − | ηj 〉〈 ηj |)

and

[Vi,j, σ V ∗
i,j] = | ηi 〉〈 ηj |σ| ηj 〉〈 ηi | − σ| ηj 〉〈 ηi || ηi 〉〈 ηj |

= e−λj | ηi 〉〈 ηi | − eλj | ηj 〉〈 ηj |
= e−λj (| ηi 〉〈 ηi | − | ηj 〉〈 ηj |) .

Using expression (15) we get

L†(σ) = 2
∑

i,j

e(λj−λi)/2e−λj (| ηi 〉〈 ηi | − | ηj 〉〈 ηj |)

= 2

[

∑

j

e−λj/2
∑

i

e−λi/2| ηi 〉〈 ηi | −
∑

i

e−λi/2
∑

j

e−λj/2| ηj 〉〈 ηj |
]

= 0.

14



Remember that for each pair i, j ∈ {1, 2, ..., n}, we denote

Vi,j = | ηi 〉〈 ηj |,

where ηi, i ∈ {1, 2, ..., n}, is the orthonormal basis of eigenvectors for h =
− log σ associated to the eigenvalues λj (according to (6)). As we mention
before wi,j = λi − λj, i, j ∈ {1, 2, ..., n}.

Theorem 11. If Pt = etL, satisfies the σ-detailed balanced condition, then
L is of the form

A → L(A) =
n
∑

i,j=1

e−wi,j/2 (V ∗
i,j [A, Vi,j] + [V ∗

i,j, A]Vi,j), (13)

where Vi,j = | ηi 〉〈 ηj | and wi,j = λi − λj, i, j ∈ {1, 2, ..., n}, are real numbers
such that (7), (8) and (9) are true (which also means ∆σ(Vi,j) = e−λi+λj Vi,j).

Note that given σ ∈ G+, the eigenvetors | ηi 〉 and eigenvalues λj, j ∈
{1, 2, ..., n}, are determined. Therefore, if Pt = etL satisfies the σ-detailed
balanced condition, then, L is uniquely determined.

Remark 2. Conversely, given σ in G+ and Vj, j = 1, 2, ..., n2, such that,
1. ∆σVj = e−wjVj,
2. {Vj, j = 1, 2, ..., n2} = {V ∗

j , j = 1, 2, ..., n2},
then,

A → L(A) =
n2

∑

j=1

e−wj/2 (V ∗
j [A, Vj] + [V ∗

j , A]Vj), (14)

is the infinitesimal generator of a QMS etL, t ≥ 0, which satifies de d.b.c.
for the given σ. Therefore, σ is stationary for etL

†

, t ≥ 0.

The dual operator L† satisfies

ρ → L†(ρ) =

n
∑

i,j=1

e−wi,j/2 ([Vi,j ρ, V
∗
i,j] + [Vi,j, ρ V

∗
i,j] ) (15)

Remark 3. If Pt = etL, satisfies the detailed balanced condition for the
σ = 1, then from (12) we get that Vi,j = Ii,j, i, j = 1, ..., n. This is the case
when L = L0.
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5 The Pressure problem

Definition 12. Given an Hermitian operator A : Cn → Cn, Dn = {ρ ≥ 0 :
Tr(ρ) = 1}, consider

PA(ρ) = h(ρ) + Tr(Aρ) (16)

and

PA = sup
ρ∈Dn

PA(ρ). (17)

A matrix ρA maximizing PA is called an equilibrium density operator for
A.

Question: Is there L such that ρA is stationary for L? The converse in
Theorem 3.1 in [5] may be useful.

The expression of entropy we found in Proposition 7 suggests us to look
at the matrices of the form ξ = ρ1/2, where ρ is a density. In order to study
the problem of who maximizes PA, we then define

Ξn = {ξ ≥ 0 : ξ2 ∈ Dn}, (18)

the set of square roots of density operators and

pA(ξ) = h1/2(ξ) + Tr(Aξ2), (19)

where h1/2(ξ) := 2Tr(ξ)2−2n = h(ξ2) by Proposition 7. Notice that pA(ξ) =
PA(ξ

2).

Proposition 13. If ξ maximizes the functional pA, then there exists a κ
satisfying

2κξ = 4Tr(ξ)I + Aξ + ξA. (20)

Proof. We will use Lagrange Multipliers. Let g : Mn → C, g(ζ) = Tr(ζ2)−1.
The maximal ξ then satisfies, for all h ∈ Mn(C) and some κ ∈ R,

{

DpA(ξ)(h) = κDg(ξ)(h)

g(ξ2) = 0,
(21)

with DpA(ξ)(h) = 4Tr(ξ)Tr(h) + Tr(A{ξ, h}) and Dg(ξ)(h) = 2Tr(hξ).

Taking h = | ej 〉〈 ei | we have
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2κξij = 4Tr(ξ)δi,j + {A, ξ}ij.
Since the above is true for every i, j, it corresponds to the coordinate

equations of the matrix equation

2κξ = 4Tr(ξ)I + Aξ + ξA. (22)

Note that if ξ = ρ
1/2
A , then it follows from (20)

κρA = 2Tr(ρ
1/2
A ) ρ

1/2
A +

1

2
(AρA + ρ

1/2
A Aρ

1/2
A ). (23)

Indeed,

2κρA = 2κξ ξ = 4Tr(ξ) ξ + Aξξ + ξAξ = 4Tr(ξ) ξ + ρA + ξAξ. (24)

Proposition 14. If ξ maximizes pA, then the following statements are true

1. Tr(Aξ) = (κ− 2n)Tr(ξ);

2. PA(ρA) = PA(ξ
2) = pA(ξ) = κ− 2n;

Proof. In (21) take h = I and h = ξ, respectively.

Remark 4. The problem of finding the maximizing density ρ = ξ2 for a
general Hermitian A can be reduced to the study of the diagonal case. In
fact, since A is hermitian, it is diagonalizable. We have UAU∗ = Λ, the
later a diagonal matrix, for some unitary matrix U . Multiplying on the left
by U and on the right by U∗ in the above matrix equation gives us

2κ UξU∗ = 4Tr(ξ)UU∗ + UAU∗ UξU∗ + UξU∗ UAU∗

⇐⇒ 2κη = 4Tr(η) + Λη + ηΛ,

where η := UξU∗. We arrive at a particular version of (22) on which the
matrix is diagonal.

Theorem 15. If A = Diag(a1, . . . , an), the ξ that maximizes pA is also
diagonal, with

ξii =
c

κ− ai
,
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where κ is given implicitly on the data a1, ..., an and c is such that Tr(ξ2) = 1.
Consequently, the density that maximizes the pressure PA is

ρA =
1

Tr (ρA)











1
(κ−a1)2

1
(κ−a2)2

. . .
1

(κ−an)2











.

Proof. For A diagonal, the expression (22) becomes

2κξij = 4Tr(ξ)δi,j + ξij(ai + aj). (25)

If we take i = j in the expression above,

κξii = 2Tr(ξ) + ξiiai ⇐⇒ (κ− ai)ξii = 2Tr(ξ) (26)

We know that Tr(ξ) > 0, because Tr(ξ) = 0 leads to ξ = 0. Then ξii 6= 0
and κ > ai for all i. So,

1

κ− ai
=

ξii
2Tr(ξ)

(27)

and

n
∑

i=1

1

κ− ai
=

1

2
. (28)

We need to find κ to completely characterize the maximal ξ. Suppose
that a1 = maxi ai. Notice that f(x) =

∑n
i=1

1
x−ai

, for x 6= ai has a vertical
asymptote at a1, limx→a+

1
f(x) = ∞, and it decreases to limx→∞ f(x) = 0.

By the intermediate value theorem, we have a κ > a1 s.t. f(κ) = 1/2.
Alternatively, one can find it as one of the roots of the following polyno-

mial, which is the expression (27) rewritten.

1

2
det(κI−A)−

n
∑

i=1

det
(

κI− A+ (ai − κ+ 1)| ei 〉〈 ei |
)

= 0. (29)

There is just one root that is bigger than all ai, therefore it is κ.

Finally we prove the elements out of the diagonal are null. For i 6= j, the
expression (28) gives us 2κξij = ξij(ai + aj), or equivalently,

ξij(2κ− (ai + aj)) = 0.
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We know that κ > ai, ∀i. Thus 2κ > ai + aj. This leaves us with ξij = 0.

To conclude the pressure problem, we write

ξ = Diag(ξ11, ..., ξnn), ξii =
c

κ− ai
, (30)

where c is the constant that makes Tr(ξ2) = 1, i.e.,

c =

(

n
∑

i=1

1

(κ− ai)2

)−1/2

.

This way, given a1, ..., an, we find κ, then c and finally ξ.

Corollary 16. If A is diagonalizable, with UAU∗ diagonal, then the maxi-
mizing density ρA for PA is such that UρAU

∗ is diagonal.

Proof. If A was not diagonal at first, we proceed as in Remark 4 and use
the last theorem to find a maximal η = UξU∗ which is diagonal. Then
η2 = Uξ2U∗ = UρAU

∗ is diagonal.

Remark 5. Using (27), we know that if A = a1I then ξii = ξ11 for all i.
Since A is diagonal and Tr (ξ2) =

∑

i ξ
2
ii = nξ211 = 1, it follows that ξ = 1√

n
I

is the only ξ that maximizes pA.

Example 1. Let

A =





0 1 0
1 0 0
0 0 2



 .

What is the equilibrium density ρA, i.e., the density that maximizes PA? Let’s
diagonalize A.

U =
1√
2





1 −1 0
1 1 0

0 0
√
2



 , UAU∗ =





−1 0 0
0 1 0
0 0 2



 .

Now we apply Theorem 15. κ satifies

1

κ+ 1
+

1

κ− 1
+

1

k − 2
=

1

2
,
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and κ > −1, 1, 2. We get κ ≈ 6.902. Thus, the maximizing density for UAU∗

is

ρUAU∗ =
1

Tr (ρUAU∗)







1
(6.902+1)2

1
(6.902−1)2

1
(6.902−2)2







=





0.186
0.332

0.482



 .

Finally,
ρA = U∗ρUAU∗U

=





0.259 0.073 0
0.073 0.259 0
0 0 0.482



 .

Notice that
P (ρA) = h(ρA) + Tr(AρA)

= 2Tr(ρ
1/2
A )2 − 2n+ Tr(UAU∗UρAU

∗)

= 2Tr((UρAU
∗)1/2)2 − 2n+ Tr(UAU∗UρAU

∗)

= 2 (
√
0.186 +

√
0.332 +

√
0.482)2 − 6 + (−1 · 0.186 + 1 · 0.332 + 2 · 0.482)
≈ 0.902 ≈ κ− 6.

in accordance with Proposition 14.

6 The pressure PA as an eigenvalue problem

Consider the linear operator LA

ξ → LA(ξ) = 2Tr(ξ)I +
1

2
(Aξ + ξA). (31)

Suppose ρA is an equilibrium density operator for the selfadjoint matrix
A.

From (20) we get that ξ = ρ
1/2
A is an eigenmatrix for the linear operator

LA associated to the eigenvalue κ, that is

LA(ρ
1/2
A ) = κ ρ

1/2
A (32)

From item 2. in Theorem 14 we get that PA(ρA) = κ− 2n.
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In this way, the equilibrium density operator is related to an eigenvalue
problem in a similar fashion as in classical Thermodynamic Formalism.

The equilibrium matrix ρA satisfies

κρA = 2Tr(ρ
1/2
A ) ρ

1/2
A +

1

2
(AρA + ρ

1/2
A Aρ

1/2
A ), (33)

but this is not exactly a linear relation.

7 A connection between h(ρ) and I(ν)

We will present a connection between the concepts of h(ρ) and −I(ρ).
Recall that 1 = Id/n satisfies the detailed balance condition, which is the

quantum equivalent of reversibility.
We are going to establish a connection of the Laplacian-entropy of Defini-

tion 5 with the one in (5.18) of [17]. The notion of Radon-Nikodym derivative
is not clear in the quantum setting, but we can consider a natural analogy
in our reasoning and we write dν

dµ
= A, if

Tr(νU) = Tr(µAU).

This corresponds of writing A in the form A = µ−1ν. When looking at (5.18),
L is simmetric in L2(µ), and our operator L0 satisfies d.b.c. for 1. Therefore,
here we will address the computation of the corresponding expression dν

d1
.

Then, it is natural to consider A = 1−1ν = nν. Therefore, (5.18) in our
setting corresponds to

I(ν) = −
∫

(nν)1/2L0((nν)
1/2) d1

= −nTr(1 ν1/2L0(ν
1/2))

= −Tr(ν1/2L0(ν
1/2)),

and then, −h(ν) come up.

Remark 6. Recall that for an A =
∑

kl akl| k 〉〈 l |,

L0(A) =

n
∑

i,j=1

(V ∗
ij [A, Vij] + [Vij, A]V

∗
ij), for Vij = | i 〉〈 j |

=

n
∑

i,j=1

VjiAVij − VjiVijA + VijAVji −AVijVji
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= 2
n
∑

i,j=1

VjiAVij −
n
∑

i,j=1

| j 〉〈 i || i 〉〈 j |A−
n
∑

i,j=1

A| i 〉〈 j || j 〉〈 i |

= 2

n
∑

i,j=1

VjiAVij − n

n
∑

j=1

| j 〉〈 j |A− n

n
∑

i=1

A| i 〉〈 i |

= 2
n
∑

i,j=1

VjiAVij − 2nA

= 2

n
∑

i,j=1

| j 〉〈 i |A| i 〉〈 j | − 2nA

= 2
n
∑

i,j,k,l=1

akl| j 〉〈 i || k 〉〈 l || i 〉〈 j | − 2nA

= 2
n
∑

i,j=1

aii| j 〉〈 j | − 2nA

= 2

n
∑

i=1

aii

n
∑

j=1

| j 〉〈 j | − 2nA

= 2Tr (A)I − 2nA.

The next step is to write the entropy as an infimum. We will show that:

Theorem 17. Given the density matrix ρ

h(ρ) = inf
A>0

Tr (ρA−1 L0(A)).

For the proof, we will need the following result:

Lemma 18. In the space Mn of matrices n× n, is true that

inf
B>0

Tr (BU)Tr (UB−1) = Tr (U)2.

Proof. Let B > 0 be a general positive matrix. Let | i 〉 be the orthonormal
basis of eigenvectors of B. Then, we can write B =

∑n
i=1 bi | i 〉〈 i |, and in

this basis, U can be written as U =
∑n

j,k=1 ujk | j 〉〈 k |. Thus,

BU =
∑

ijk

biujk | i 〉〈 i || j 〉〈 k | =
∑

ik

biuik | i 〉〈 k |
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=⇒ Tr(BU) =
n
∑

i=1

biuii.

UB−1 =
∑

ijk

ujk

bi
| j 〉〈 k || i 〉〈 i | =

∑

ij

uji

bi
| j 〉〈 i |

=⇒ Tr(UB−1) =

n
∑

i=1

uii

bi
.

Therefore,

Tr(UB) Tr(BU−1) =
n
∑

i,j=1

bj
bi

uiiujj =
1

2

n
∑

i,j=1

(

bj
bi

+
bi
bj

)

uiiujj

≥
n
∑

i,j=1

uiiujj =

(

n
∑

i=1

uii

)2

= Tr(U)2.

Notice that we used the fact that x + 1/x ≥ 2, for all x > 0. By now, we
have the lower bound Tr(U)2. To finish, notice that B = Id achieves this
bound, so we conclude that

inf
B>0

Tr(BU) Tr(UB−1) = Tr(U)2.

Now we proceed to prove the theorem.

Proof. Using Remark 6, we have

A−1L0(A) = 2A−1Tr(A)− 2nI

⇒ Tr(ρA−1L0(A)) = 2Tr(ρA−1).Tr(A)− 2nTr(ρ)

= 2Tr(ρA−1)Tr(A)− 2n.

Writing A in the form A = Bρ1/2, it will not change the infimum, which
will be now taken over B > 0. This means

inf
A>0

2Tr(ρA−1)Tr(A)− 2n = 2 inf
B>0

Tr(ρ1/2B−1)Tr(Bρ1/2)− 2n

= 2Tr(ρ1/2)2 − 2n = h(ρ).

As the infimum was computed by Lemma 18 we proved the claim.
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8 From quantum to classical

Definition 19. Given σ and an infinitesimal generator L of the form (13),
we say that the matrix Q is the matrix associated to L, if Q is n × n real
matrix with entries Qi,j = Tr [Fi,iLFj,j], where Fi,i = | ηi 〉〈 ηi |.

This matrix is line sum zero with positive values outside the diagonal
(see [5]). The matrix Q†, the transpose of Q, has a stationay eigenvector
probability −→σ ∈ (0, 1)n associated to the eigenvalue 0.

Lemma 20. Given l, k, the entry Ql,k = Tr [Fl,l LFk,k] is given by

Ql,k = 2 e−wk,l/2 − 2δl,k

n
∑

i=1

e−wi,l/2. (34)

Proof. Indeed, when, A = Vk,k = | ηk 〉〈 ηk | we get

V ∗
i,j[A, Vi,j] = | ηj 〉〈 ηi |

[

A , | ηi 〉〈 ηj |
]

=

| ηj 〉〈 ηi |
(

| ηk 〉〈 ηk | | ηi 〉〈 ηj | − | ηi 〉〈 ηj | | ηk 〉〈 ηk |
)

=

δi,k | ηj 〉〈 ηj | − δj,k | ηj 〉〈 ηk |
Moreover, when A = Vk,k = | ηk 〉〈 ηk |

[V ∗
i,j , A]Vi,j =

[

| ηj 〉〈 ηi |, A
]

| ηi 〉〈 ηj | =
(

| ηj 〉〈 ηi | | ηk 〉〈 ηk | − | ηk 〉〈 ηk | | ηj 〉〈 ηi |
)

| ηi 〉〈 ηj | =
δi,k | ηj 〉〈 ηj | − δj,k | ηk 〉〈 ηj |.

Then, when A = Vk,k = | ηk 〉〈 ηk |

e−wi,j/2
(

V ∗
i,j[A, Vi,j] + [V ∗

i,j, A]Vi,j

)

=

e−wi,j/2
(

2δi,k| ηj 〉〈 ηj | − δj,k | ηj 〉〈 ηk | − δj,k | ηk 〉〈 ηj |
)

= e−wi,j/2
(

2δi,k| ηj 〉〈 ηj | − 2δj,k | ηk 〉〈 ηk |
)

,

and finally

L(A) =
n
∑

i,j=1

e−wi,j/2 (V ∗
i,j[A, Vi,j] + V ∗

i,j, A]Vi,j) =

n
∑

i=1

n
∑

j=1

e−wi,j/2 ( 2δi,k| ηj 〉〈 ηj | − 2δj,k | ηk 〉〈 ηk | ) =
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2
n
∑

j=1

e−wk,j/2 | ηj 〉〈 ηj | − 2
n
∑

i=1

e−wi,k/2 | ηk 〉〈 ηk |

Therefore, when A = Vk,k = | ηk 〉〈 ηk |, given l

| ηl 〉〈 ηl | L(A) = 2 | ηl 〉〈 ηl |
n
∑

j=1

e−wk,j/2 | ηj 〉〈 ηj |−2 | ηl 〉〈 ηl |
n
∑

i=1

e−wi,k/2 | ηk 〉〈 ηk |

= 2

n
∑

j=1

e−wk,j/2| ηl 〉〈 ηl || ηj 〉〈 ηj | − 2

n
∑

i=1

e−wi,k/2| ηl 〉〈 ηl || ηk 〉〈 ηk |

= 2 e−wk,l/2| ηl 〉〈 ηl | − 2δl,k

n
∑

i=1

e−wi,l/2| ηl 〉〈 ηl |.

From this,

Qlk = 2 e−wk,l/2 − 2δl,k

n
∑

i=1

e−wi,l/2 (35)

=







2 e−wk,l/2 = 2 e(λl−λk)/2 if l 6= k

2 e−wl,l/2 − 2
∑n

i=1 e
−wi,l/2 = 2− 2

∑n
i=1 e

(λl−λi)/2 if l = k

Notice that:
n
∑

k=1

Qlk = Qll +
∑

k: k 6=l

Qlk

= 2 e−wl,l/2 − 2

n
∑

i=1

e−wi,l/2 + 2
∑

k: k 6=l

e−wk,l/2

= −2
n
∑

i=1

e−wi,l/2 + 2
n
∑

k=1

e−wk,l/2 = 0.

Note that the expression (34) for the matrix Q depends on the eigenvalues
e−λi , i ∈ {1, 2.., n}, and not the specific eigenfunctions ηi, i ∈ {1, 2.., n}, of
σ. This means that many density matrices σ can determine the same matrix
Q.

Theorem 4.2 in [5] claims:
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Theorem 21. Assume that L is of the form (13) for σ. The matrix Q, given
by Qi,j = Tr [Fi,iLFj,j] is line sum zero. The invariant probability for the
classical continuous time Markov chain with infinitesimal generator Q is

−→σ = (σ1, σ2, ..., σn) = (Tr[σF1,1], T r[σF2,2], ...T r[σFn,n]). (36)

The classical detailed balance condition

σiQi,k = σkQk,i (37)

is satisfied.
Consider the Chapman-Kolmogorov linear differential equation on −→ρ (t) =

(ρ1(t), ρ2(t), ..., ρn(t)) ∈ Rn,

d

dt
ρl(t) =

n
∑

k=1

(ρk(t)Qk,l − ρk(t)Ql,k). (38)

This is equivalent to

−→ρ (t) = etQ
†

(−→ρ (0)). (39)

The occupation time probability in {1, 2.., n} of the continuous time Markov
Chain is described by −→ρ (t).

−→ρ (t) satisfies (38), if and only if, the quantum continuous time evolution
ρ(t) in A satisfies

ρ(t) =
n
∑

k=1

ρk(t)

Tr(Fk,k)
Fk,k. (40)

Remember that from (7)

σ =
n
∑

k=1

e−λk | ηk 〉〈 ηk |. (41)

Then, from (36), given j

σj = Tr [σ | ηj 〉〈 ηj | ] = Tr
[

n
∑

k=1

e−λk | ηk 〉〈 ηk | | ηj 〉〈 ηj |
]

= e−λj . (42)

Expression (37) means for k 6= l

e−λk eλk/2−λl/2 = e−λk/2−λl/2 = e−λl eλl/2−λk/2. (43)

From (35) and (36) we get

−→σ Q = (σ1, σ2, ..., σn)Q = (0, 0, ..., 0). (44)
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Example 2. Let

σ =





1
2

0 0
0 1

3
0

0 0 1
6



 .

Then

h = − log σ =





log 2 0 0
0 log 3 0
0 0 log 6



 ,

so λ1 = log 2, λ2 = log 3 and λ3 = log 6. The Q matrix given by the expres-
sion (34) has entries

Q12 = 2e(log 2−log 3)/2 = 2

(

2

3

)1/2

= 2

√
2√
3

Q13 = 2e(log 2−log 6)/2 = 2

(

2

6

)1/2

= 2
1√
3

Q11 = 2

(

−
√
2√
3
− 1√

3

)

Q21 = 2e(log 3−log 2)/2 = 2

(

3

2

)1/2

= 2

√
3√
2

Q23 = 2e(log 3−log 6)/2 = 2

(

3

6

)1/2

= 2

√
3√
6

Q22 = 2(−
√
3√
2
− 1

√
3√
6

)

Q31 = 2e(log 6−log 2)/2 = 2

(

6

2

)1/2

= 2
√
3

Q32 = 2e(log 6−log 3)/2 = 2

(

6

3

)1/2

= 2
√
2

Q33 = 2(−
√
3−

√
2)

Thus

Q = 2











−
√
2√
3
− 1√

3

√
2√
3

1√
3

√
3√
2

−
√
3√
2
−

√
3√
6

√
3√
6√

3
√
2 −

√
3−

√
2











.
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We should have that ~σ = (1
2
, 1
3
, 1
6
) is the invariant vector. In fact,

1

2
(~σQ)1 = −(

√
2 + 1)

2
√
3

+

√
3

3
√
2
+

√
3

6

=
−
√
3
√
2−

√
3 +

√
2
√
3 +

√
3

6
= 0.

1

2
(~σQ)2 =

√
2

2
√
3
− (1 +

√
3)

3
√
2

+

√
2

6

=

√
2
√
3−

√
2−

√
2
√
3 +

√
2

6
= 0.

1

2
(~σQ)3 =

1

2
√
3
+

1

3
√
2
− (

√
2 +

√
3)

6

=

√
3 +

√
2−

√
2−

√
3

6
= 0.

Example 3. Let

σ =













1

4
0

i

8

0
1

2
0

− i

8
0

1

4













.

The eigenvalues of σ are 1
8
, 3

8
and 1

2
. Then h = − log σ has eigenvalues

λ1 = log 8, λ2 = log
8

3
and λ3 = log 2. So, the Q matrix given by the

expression (34) has entries

Q12 = 2e(log 8−log 8

3
)/2 = 2 (3)1/2 = 2

√
3.

Q13 = 2e(log 8−log 2)/2 = 2

(

8

2

)1/2

= 4.

Q11 = −2
(√

3 + 2
)

.

Q21 = 2e(log
8

3
−log 8)/2 = 2

(

1

3

)1/2

=
2√
3
.
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Q23 = 2e(log
8

3
−log 2)/2 = 2

(

4

3

)1/2

=
4√
3
.

Q22 = − 6√
3
.

Q31 = 2e(log 2−log 8)/2 = 2

(

1

4

)1/2

= 1.

Q32 = 2e(log 2−log 8

3
)/2 = 2

(

3

4

)1/2

=
√
3.

Q33 = −
(

1 +
√
3
)

.

Thus

Q =

















−2
(√

3 + 2
)

2
√
3 4

2√
3

− 6√
3

4√
3

1
√
3 −

(

1 +
√
3
)

















.

We should have that ~σ = (1
8
, 3
8
, 1
2
) is the invariant vector. In fact,

(~σQ)1 =
1

8

(

−2
√
3− 4

)

+
3

8

2√
3
+

1

2

= −
√
3

4
− 1

2
+

√
3

4
+

1

2
= 0.

(~σQ)2 =

√
3

4
− 3

√
3

4
+

2
√
3

4
= 0.

(~σQ)3 =
1

2
+

√
3

2
− 1

2

(

1 +
√
3
)

= 0.

Related results are described in (3) and (4) in [12].
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