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Abstract

Göran Lindblad in 1983 published a monograph on non-equilibrium
thermodynamics. We here summarize the contents of this book, and
provide a perspective on its relation to later developments in statis-
tical physics and quantum physics. We high-light two aspects. The
first is the idea that while all unitaries can be allowed in principle,
different theories result from limiting which unitary evolutions are re-
alized in the real world. The second is that Lindblad’s proposal for
thermodynamic entropy (as opposed to information-theoretic entropy)
foreshadows much more recent investigations into optimal quantum
transport which is a current research focus in several fields.

This paper is an Invited contribution to the Lindblad memorial volume,
to be published in Open Systems and Information Dynamics (2023).

1 Introduction

The highest impact work of Göran Lindblad is his work on quantum
dynamical semigroup, published in 1976 [69]. Scopus reports that the
paper was cited more than 4800 times and Google Scholar indicates
more than 7700 times. So-called Lindblad equation and Lindblad gen-
erators are extensively used today, nearly a half a century after the
publication. Without a doubt, Lindblad was a forerunner of research
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on open quantum systems, as he was also in quantum information
theory.

A decade later Lindblad in 1983 published a monograph ”Non-
Equilibrium Entropy and Irreversibility” [70]. The book has to date
been cited about 200 times, predominantly though not exclusively in
the quantum thermodynamics literature. Figure 1 shows that the book
is more often cited in the 21st century, indicating that this work was
also ahead of its time. This contribution to the memorial volume is
about Lindblad’s monograph from the perspective of modern statistical
physics. By providing an extensive synopsis we will show that Lindblad
already then was pursuing the idea that while all unitaries can be
allowed in quantum theory in principle, different theories result from
limiting which evolutions are realized in the real world. The same
principle underlies Lindblad’s last paper [72] (this volume).

As the title suggests, the book is about the origin of irreversibil-
ity and the thermodynamic entropy of non-equilibrium states. While
many ideas introduced in the book can be applied to both classical and
quantum systems, Lindblad uses the language of quantum mechanics
throughout the book and the underlying quantum evolution is mainly
based on the quantum dynamical semigroup he had developed. He
tells us that elusive concepts, namely, irreversibility, thermalisation,
and the second law of thermodynamics, can be explained by quantum
Markov processes. In one sense, the book can be seen as an appli-
cation of his theory of open quantum systems to quantum thermody-
namics. However, it is far beyond that. The main goal of the book
is to construct a thermodynamic entropy function for non-equilibrium
states. He carefully develops necessary concepts and tools, step by
step. We can recognize many pioneering ideas (and also struggles)
in quantum thermodynamics which became a major research field of
physics in the 21st century. More specifically, Lindblad’s proposal for
non-equilibrium thermodynamic entropy (as opposed to information-
theoretic entropy) is related to the problem of optimal quantum trans-
port under constraints, a key research question in several areas of open
quantum systems theory, and with many applications to current and
future quantum technologies.

2 A synopsis of the book

In the following subsections we give an extended synposis of each chap-
ter in the book, providing a background of the discussion, interpreta-
tion of his ideas, a brief summary of his conclusions, and comparison
between the Lindblad’s work and later developments.
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Figure 1: The number of citations of Lindblad’s monograph [70] per year.
The citation count includes research articles in journals, proceedings, and
arXiv, books, and Ph.D dissertations.

2.1 Preface and Chapter 1 ”Introduction and Sum-
mary”

Lindblad begins the preface by stating that the problem of deriving
irreversible thermodynamics from reversible microscopic dynamics has
been on the agenda of theoretical physics for more than a century. He
states his ambition to present a different approach of which the key
aspects are

• that the relation between dynamics and thermodynamics can be
based on the concepts of energy and work, such that entropy is
related to available work;

• that the second law of thermodynamics, if it is to have a universal
validity, must be a tautology in a certain sense.

In Lindblad’s own words the essential idea is expressed as

”The entropy function is not unique. Instead there is a
family of such functions, one for each set of thermodynamic
processes allowed by the experimenter’s control of the dy-
namics of the system through the external fields.” (page
5)

It is striking that a scientist who inter alia is famous for deriving
entropy inequalities at the birth of quantum information theory (see
the profile of the life and career of Lindblad by Ingemar Bengtsson

3



[16], elsewhere in this issue) emphatically excludes an information-
theoretical interpretation of entropy for non-equilibrium states. It is
also striking that in the modern theory of stochastic thermodynam-
ics the Second Law indeed appears as a consequence of an equality
(a Fluctuation Relation), which in many systems holds as a tautology
[57, 62, 84, 97, 99]. The reader in his or her mind may thus form
the hypothesis that perhaps Lindblad was an unrecognized precursor
of much later developments, which have only recently risen to domi-
nance in statistical physics. This review has been written with such
an hypothesis in mind.

Lindblad defines non-equilibrium entropy in a manner which is
partly modern, and partly restricted to specific models

”The entropy of a non-equilibrium state is defined as the
infimum of the entropies of the equilibrium states which
can be reached from the given state using the semigroup of
evolutions generated by the Hamiltonian dynamics and the
interaction with heat baths.” (page 5)

The previous quote on multiplicity of entropy functions refer to dif-
ferent sets of Hamiltonians that can act on the system, corresponding
to different sets of external controls. Later in Chapter 10, he comments
on this multiplicity as ”At first sight, this seems disturbing in view of
the unicity of the entropy of classical thermodynamics. However, ....”
From the whole of the monograph it is clear that non-uniqueness is
a key ingredient in Lindblad’s theory of non-equilibrium entropy. We
will now, chapter by chapter, outline how Lindblad works out these
concepts. 1

2.2 Chapter 2 ”Dynamics and Work”

In Chapter 2 of the book, the dynamics controlled by an experimenter
is mathematically defined as the first step towards the multiplicity of
entropy in his theory. Let F be a set of Hamiltonian operators with
external fields the experimenter controls, which act on the system.
The experimenter can pick multiple Hamiltonians from F and con-
struct a time-dependent Hamiltonian (piece-wise constant) by switch-
ing from one Hamiltonian to another, one by one. In particular, Lind-
blad defines time-dependent Hamiltonians for a duration [s, t] such that
Hamiltonian comes back to the origin, i.e., H(s) = H(t) = H. Such
a protocol is called a work cycle and denoted as γ, where H is called
the origin of the work cycle. The experimenter can pick a work cycle
from the set of all possible work cycles Γ(F ). If the experimenter has
a smaller number of options (F ′ ⊆ F ), then obviously the number of

1We shall use the same mathematical notations as appeared in the book unless other-
wise is noted.
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possible work cycles is also reduced (Γ(F ′) ⊆ Γ(F )). The set of acces-
sible states hence depends on the set of controls F . This F-accessibilty
is the key ingredient of the Lindblad’s theory of irreversibility, and
appears throughout the book.

Once the experimenter has chosen a work cycle γ, a dynamical
semigroup T (γ) (either unitary or non-unitary) maps an initial state
ρ(s) to a final state ρ(t). The set of all dynamical semigroups allowed
by F is called the mobility semigroup and denoted as T (F ). In fact, if
F contains all self-adjoint operators and all the evolutions are unitary,
then T (F ) contains both U and U†, hence a reversible microscopic
system is realized.

Furthermore, Lindblad introduces Ω(ρ, F ), the set of all final states
accessible from an initial state ρ by T (F ) which satisfies crucial prop-
erties2:

Ω(ρ, F ′) ⊆ Ω(ρ, F ) (1)

for F ′ ⊆ F and
Ω(µ, F ) ⊆ Ω(ρ, F ) (2)

for ∀µ ∈ Ω(ρ, F ). These relations are used later in the book to show
irreversibility.

The work performed during a work cycle γ is defined as3

W (γ) =

∫
γ

ρ(u)[dH(u)] =

∫ t

s

Tr

[
ρ(u)

∂H(u)

∂u

]
du. (3)

While this definition is general, it is not quite practical since the time
evolution of the state must be known and the trace must be integrated.
For unitary evolutions we can do an integration by parts and use the
von-Neumann-Liouville equation for ρ̇ to obtain

W (γ, ρ) = Tr
[
ρŴ (γ)

]
(4)

where Ŵ (γ) = Ĥ(s)− Ĥ(t) with the Hamiltonian Ĥ expressed in the
Heisenberg picture. This definition is now known as the two-point
measurement formalism.

Lindblad appears to have taken for granted that Ŵ defined by
Eq. (4) is a quantum-mechanical observable. In quantum thermody-
namics this has been questioned since Ŵ is not a standard observ-
able [107]4. Apart from the perhaps mis-leading word choice, the def-
inition itself is however reasonable, and widely used to date.

2Lindblad here orders F and F ′ oppositely. To preserve parallelism with the preceding
argument and increase readability we have switched the order.

3Throughout the book Lindblad uses the notation ρ(X) ≡ Tr[ρX] where X is an
operator. For readability, we shall write the trace explicitly.

4There is a recent report that work can be a quantum operator and its eigenvalues have
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For non-unitary evolutions the situation is more complex [86, 108].
If the evolution is unital, Eq. (4) can still be used [4, 92]. For general
non-unitary evolution, one approach is just to integrate Eq. (3) with
the quantum state ρ obtained from a non-unitary evolution, e.g., a
Lindblad equation. This does not lead to Eq. (4), and we must carry
out the integral for each specific time-dependent control Hamiltonian
H. We can also represent non-unitary evolution as unitary evolution
of the system and an appropriately chosen environment such that in
Eq. (3) ρ is the total density matrix. Then Eq. (4) holds for the total
Hamiltonian of the system and the environment and work so defined
includes both change of internal energy and change of environment en-
ergy. The latter can be assimilated to heat and recalls the First Law
(in expectation). Unfortunately, this definition supposes that expected
energy changes in the environment are measurable, which is question-
able from a strict thermodynamic point of view, and often difficult to
execute in practice.

There are still more open questions with the definition of work for
quantum thermodynamics. Measuring energy is not necessarily free
of cost. When the measurement is destructive, we must take into
account quantum back action. Furthermore, the exchange of energy
and information between the system and the measurement device needs
to be included [37, 51, 104, 109]. Lindblad discusses the effects of
quantum measurement on work extraction in Chapter 11.

We end this section by emphasizing again that Lindblad throughout
assumes that a work cycle γ is constructed from a set F . The mobility
semigroup T (F ) hence consists of the F-accessible Lindblad-equation
evolutions, and Ω(ρ, F ) is the set of states that can be reached from
an initial state ρ evolving under an element in T (F ).

2.3 Chapter 3 ”Information entropy”

In this chapter Lindblad introduces the basic concepts of (quantum)
information theory, a set of tools, concepts and results now widely
known [82, 113]. First, he introduces two entropies, von Neumann en-
tropy SI(ρ) = −Tr(ρ ln ρ) (Lindblad calls it I-entropy) and relative
entropy SI(ρ|µ) = Tr(ρ ln ρ) − Tr(ρ lnµ). Then, he provides a sum-
mary of their basic properties, namely, positivity, unitary invariance,
concavity, and subadditivity for the von Neumann entropy and positiv-
ity, unitary invariance, and data processing inequality (Lindblad calls
it quantum H-theorem) for the relative entropy.

physical meaning [87]. It is also possible to carry forward a first measurement by the use of
ancillas so that the generating function of work defined by the two-measurement scheme
is measurable [76], a point subsequently made more generally by considering positive
operator valued measures (POVM) [95].
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From the perspective of non-equilibrium thermodynamics, the uni-
tary invariance disqualifies the von Neumann entropy as a candidate
of thermodynamic entropy since it cannot describe irreversibility. The
quantum H-theorem has thermodynamic significance an the under-
standing of irreversibility, which Lindblad discusses in Chapter 10.

The information entropies are more useful for equilibrium states.
First, Lindblad shows that thermodynamic entropy S[β,H] of equi-
librium states ρ(β,H), coincides with the information entropy of the
Gibbs state SI(ρ(β,H)). Then, he introduces a useful equality involv-
ing a Gibbs state. For any state ρ,

SI [ρ|ρ(β,H)] = S(β,H)−SI(ρ)+β[Tr(Hρ)−Tr(Hρ(β,H))] ≥ 0, (5)

which leads to the variational principles of thermodynamics:

S(β,H) = SI(ρ) ⇒ Tr(ρH) ≥ Tr[ρ(β,H)] (6a)

Tr(ρH) = Tr[ρ(β,H)] ⇒ S(β,H) ≥ SI(ρ). (6b)

Equation (5) is particularly useful when Lindblad considers the ther-
modynamic limit in Sec. 2.5.

For unitarily evolving states ρ(t), the work as defined by Eqs. (3)
and (4) can be expressed using relative entropy as

W (γ, ρ(s)) = β−1 (SI [ρ(s)|ρ(β,H)]− SI [ρ(t)|ρ(β,H)]) (7)

where γ is the work cycle for period [s, t]. From equality (7) and
the properties of relative entropy, Lindblad draws the following three
conclusions:

(1) If ρ(s) is an equilibrium state then the work is non-positive, con-
sistent with the passivity of the Gibbs state.

(2) If W = 0 then ρ(t) is the same equilibrium state as ρ(s).

(3) Since SI [ρ(t)|ρ(β,H)] ≥ 0, an upper bound of the work is given
by
W ≤ β−1SI [ρ(s)|ρ(β,H)] and the equality holds if and only if
ρ(t) = ρ(β,H). It follows that if an equilibrium state ρ(β,H) can
be reached by unitary evolution from some initial state ρ(s) = ρ,
then the maximal work which can be extracted from ρ in such a
work cycle γ is given by

A(ρ;H) = β−1SI [ρ|ρ(β,H)] (8)

and that the maximum work can be obtained if and only if the final
state is the Gibbs state ρ(β,H).

As Lindblad remarks, this property had a few years earlier led Pro-
caccia and Levine [89] to propose A(ρ;H) as a definition of available
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work in an arbitrary non-equilibrium state, for classical systems. It was
recently used as the upper bound of work in the context of quantum
thermodynamics [1, 2, 53]. If justified this would make work practically
a state functional, and so would be a highly non-trivial (and very use-
ful) property. However, as Lindblad then goes on to remark, in general
no equilibrium state is reachable by only unitary operations. In the
final subsection of this chapter Lindblad discusses entropy-increasing
processes, as a preparation to the ideas developed in the later chapters.

2.4 Chapter 4 ”Heat baths”

To construct a thermodynamic entropy function for non-equilibrium
states, we must clearly define a heat bath or otherwise we may end up
with a tautology. Lindblad sets two required properties for idealized
heat baths:

(1) To have a method of preparing the observed system in any one
of a set of well-defined, reproducible initial states.

(2) To have in the formalism the class of reversible isentropic pro-
cesses of classical thermodynamics and the notion of temperature.

The first requirement is often overlooked. The processes of current
interest begin with a system in thermal equilibrium and a work cycle
brings it out of equilibrium. The initial equilibrium state is usually
assumed without question. Lindblad warns a possible tautology and
writes ”The introduction of a priori irreversible preparation procedure
in a formalism which has some ambition to explain irreversibility on
the basis of reversible microscopic dynamics may seem to constitute
a vicious circle.” and ”For this reason the state preparing procedures
will be defined by a class of highly idealized heat baths which can be
specified in a microscopic way.” (page 33)

Lindblad remarks that it is difficult to develop a general theory of
relaxation to a thermal state. However, he was optimistic that finding
a single working model is good enough, in his own words, ”it can be
argued that it is sufficient to have one microscopic model with this
property even if it is rather artificial.” (page 37)

The microscopic models of heat baths he considered are infinitely
large quasifree5 boson or fermion systems. Their temporal correlation
functions decay rapidly so that the heat baths effectively remain in
thermal equilibrium (a KMS state) within the time scale of coupling
between the system and the heat baths. This allows the weak coupling
limit (WCL), which in turn allows us to use the Lindblad equation

5In the current context, it is sufficient to assume that the correlation functions of all
orders are given by the products of the second order correlation functions or otherwise
vanish.
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for the time evolution of the system. As long as various time scales,
including the one associated with the work cycle, satisfy the given
conditions as developed by Lindblad in Appendix A of the book, see
also [34, 106], the microscopic models work as ideal heat baths. The
same models are widely used up to the present day[25].

In most cases studied in the book, a target process begins with a
Gibbs state with a Hamiltonian H ∈ F and the system is driven to a
non-equilibrium state by a work cycle. It is convenient to define the
set E(F ) of states which are F-accessible from the Gibbs states. ”The
set contains all the experimentally available non-equilibrium states. It
is for these states that we have to define the entropy function.”

In addition to heat baths, the system interacts with the rest of the
world (X) but very weakly, much weaker than the interaction with the
heat baths, even under WCL. We want to make sure that S can be
thermalized with R, but not with X. Otherwise, the entire universe
falls into the ”heat death”. To prevent this, energy exchange between
S and X must be negligible. Lindblad briefly discusses the necessary
conditions in this chapter. The effects of such weak perturbation on
non-equilibrium states are discussed again in Chapter 8.

2.5 Chapter 5 ”Reversible processes”

In this chapter, Lindblad analyzes macroscopically reversible processes
from the microscopic point of view using the definitions introduced
in the previous chapters (sections in above), namely the F-accessible
work cycle, information entropy and the Gibbs state from Chapter
2 (Sec. 2.2), and ideal heat baths and the weak coupling limit from
Chapter 4 (Sec. 2.4) As discussed above in Section 2.2, if F is large
enough, any work cycle applied to a closed system is microscopically
reversible. The focus of this chapter is conversely on thermodynamic
reversibility for infinitely large systems (thermodynamic limit) where F
can be a finite set. In standard thermodynamics, quasi-static processes
where the system and the heat baths remain in thermal equilibrium
are considered reversible in general. The goal Lindblad sets for himself
is to confirm it from a microscopic picture.

Lindblad considers the following thermodynamic process. The whole
system consists of a finite subsystem S and a reservoir R. Throughout
the chapter, S+R is treated as a single closed system, and density oper-
ators ρ express joint states (without index S+R). S and R are initially
in thermal equilibrium ρ0 at an inverse temperature β. When a work
cycle γ is applied to S, the initial state ρ0 is transformed to a new
joint state ρ1. After the work cycle is completed, the whole system is
relaxes to a new thermal equilibrium ρ′1. This process is not necessar-
ily reversible and ρ1 can be non-equilibrium. For it to be reversible,
ρ1 and ρ′1 must satisfy certain conditions, which Lindblad proceeds to
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work out.
Standard thermodynamics says that if the process is reversible,

∆SR = Q/T where Q is reversible heat. Recall that information en-
tropy corresponds to thermodynamic entropy if the system is in ther-
mal equilibrium. Since S returns back to the original state, ∆SS = 0
and Q + W = 0 (the first law of thermodynamics). The reversibility
condition is then expressed as

∆SR =
Q

T
⇒ ∆SRI = −βW (γ, ρ(β,H)) (9)

which Lindblad calls the ”standard formula”.
The aim of this chapter can now be said to be to verify Eq. (9) for

the current process. If we naively think that the system returns back to
the original state and that the state of R does not change we find that
ρ′1 = ρ0, and consequently that ∆SS+R

I = SI(ρ
′
1)−SI(ρ0) vanishes, in

contradiction to the standard formula. In the thermodynamic limit,
we however have ∞′ − ∞ which can be finite. Lindblad avoids this
trap by carefully evaluating ∆SS+R

I in the thermodynamic limit.
We follow the Lindblad’s argument, which is more involved than it

may appear at first sight. By substituting ρ(β,H) = ρ(s) = ρ0 and
ρ(t) = ρ1 in Eq. (7) and using SI(ρ0|ρ0) = 0, it follows that

βW = −SS+R
I (ρ1|ρ0), (10)

which is exact without the thermodynamic limit. In the following,
Lindblad shows that ∆SS+R

I = SI(ρ1|ρ0) in the thermodynamic limit.
The proof is rather complicated since the right hand side does not
depend on the final state. Hence, we must find the relation between
ρ1 and ρ′1.

First of all, temperature must remain the same, or otherwise Eq.
(9) would not make sense. On the other hand, the work cycle injects
some energy (negative work) and thus in a large but finite total system
S+R (inverse) temperature would change to β′ corresponding to final
energy Tr{Hρ0}−W , see Section 2.3 Injecting a physical principle into
the argument Lindblad assumes that when R is infinitely large, its heat
capacity diverges, and thus β′ = β. However, this does not mean that
SI(ρ0) = SI(ρ

′
1) as discussed above.

To find the relation between ρ0 and ρ′1, Lindblad calculates the
asymmetry between SI(ρ

′
1|ρ0) and SI(ρ0|ρ′1). Substituting ρ(β,H) =

ρ0 and ρ = ρ′1 in Eq. (5) and ρ(β′, H) = ρ′1 and ρ = ρ0 also in the
same equation, we obtain two relative entropies

SI(ρ
′
1|ρ0) = SI(ρ0)− SI(ρ′1)− βW. (11a)

SI(ρ0|ρ′1) = SI(ρ
′
1)− SI(ρ0) + β′W (11b)

10



By adding the two equations, it follows that

SI(ρ0|ρ′1) + SI(ρ0|ρ′1) = (β′ − β)W. (12)

The right hand side vanishes in the thermodynamic limit and we ob-
tain6

lim
R→∞

SI(ρ
′
1|ρ0) = lim

R→∞
SI(ρ0|ρ′1) = 0. (13)

which provides an important relation between ρ0 and ρ′1. Again, this
result should not be interpreted as ρ′1 = ρ0.

Next, Lindblad searches for a relation between ρ1 and ρ′1 by taking
the limit of Eq. (10).

−βW = SI(ρ1|ρ0) = Tr(ρ1 ln ρ1)− Tr(ρ1 ln ρ0)

= Tr(ρ1 ln ρ1) + β Tr(ρ1H) + β lnZ

β→β′

−−−−→ Tr(ρ1 ln ρ1) + β′ Tr(ρ′1H) + β′ lnZ ′

= SI(ρ1|ρ′1) (14)

where we used Tr(ρ1H) = Tr(ρ′1H). This result can be obtained also
by taking the limit of the chain rule7 SI(ρ1|ρ0) = SI(ρ1|ρ′1)+SI(ρ

′
1|ρ0).

Hence, we found a missing relation between ρ1 and ρ′1 in the thermo-
dynamic limit, that is SI(ρ1|ρ0) = SI(ρ1|ρ′1).

Based on Eqs. (10) and (14), Lindblad posits, without justification,
that

− βW = SI(ρ1|ρ′1) ≡ ∆SS+R
I . (15)

At first sight, this looks strange since the entropy change does not
depend on the initial state ρ0. It can be verified as follows. Using Eq.
(5) again with ρ(β,H) = ρ′1 and ρ = ρ0 and W = 0 (no work during
the relaxation period), it follows that

SI(ρ1|ρ′1) = SI(ρ
′
1)− SI(ρ1). (16)

Now adding Eq. (16) to Eq. (11a) and using Eqs. (13) and (14), we
obtain

SI(ρ
′
1|ρ0) + SI(ρ1|ρ′1) = SI(ρ0)− SI(ρ1)− βW
R→∞−−−−→ −βW = SI(ρ0)− SI(ρ1)− βW
→ SI(ρ0) = SI(ρ1). (17)

6Recall the basic property of relative entropy SI(ρ|σ) ≥ 0 and SI(ρ|σ) = 0 if and only
if ρ = σ.

7For any ρ, the chain rule between the Gibbs state G1 and G2 is given by SI(G1|G2) =
SI(G1|ρ) + SI(ρ|G2).

11



which means the entropy does not change during the work cycle. Re-
placing SI(ρ1) with SI(ρ0) in Eq. (16), at last we obtain the correct
thermodynamic limit

∆SS+R
I = SI(ρ

′
1)− SI(ρ0) = SI(ρ1|ρ′1). (18)

which justifies Eq. (15).
Combining Eqs. (14) and (18), we conclude that the the change of

entropy in the thermodynamic limit is given by

∆SS+R
I = SI(ρ1|ρ′1) = SI(ρ1|ρ0) = −βW (19)

Since under the assumption of a weak coupling limit (WCL) the cor-
relation between S and R can be neglected, we have ∆SS+R

I = ∆SSI +
∆SRI . Furthermore, ∆SSI = 0 since S returns to the initial state, see
Section 2.4. Then, Eq. (19) is equivalent to the standard formula (9).

It is admittedly easy to lose one’s way in the above derivation due
to the apparently counter-intuititive relations obtained in the thermo-
dynamic limit. Lindblad provides a physical reasoning why the entropy
increases despite the system returning back to thermal equilibrium at
the same temperature by introducing the ”quasilocal” description of
the system in the thermodynamic limit. The whole system is divided
into many finite subspaces {Λ}. If there is local relaxation back to
equilibrium, then for any subspace Λ, the reduced densities satisfy
ρ0,Λ = ρ1,Λ = ρ′1,Λ. However, the global states ρ0, ρ1 and ρ′1 do not
have to be the same if there is correlation among the subspaces. Equa-
tion (19) clearly shows that ρ1 differs from ρ0 and ρ′1, indicating that
the global correlation present in ρ1 is responsible for the change of the
entropy.

When the process is not reversible, ρ1 is a non-equilibrium state and
irreversible entropy is produced. One example of a recent contribution
showing that the origin of the entropy production is mutual information
formed inside the heat bath, which seems consistent with Lindblad’s
idea in this chapter, is [91].

2.6 Chapter 6 ”Closed finite systems”

In Chapter 6, Lindblad discusses to what extent irreversibility can be
defined for a finite quantum system with Hamiltonian dynamics in
terms of F-accessible work cycles defined in Chapter 2. In particular,
he defines an entropy function for closed system, which forms the basis
of the final definition of non-equilibrium entropy developed in Chapter
10.

From Eq. (2), irreversibility is defined by

Ω(ρ(t), F ) ⊂ Ω(ρ(s), F ); t > s. (20)

12



When F contains all self-adjoint operators, then the two sets coincide
and the processes are reversible. Choosing an origin of work H ∈ F
and an initial state ρ, Lindblad introduces a greatest lower bound of
accessible energy:

Q(ρ;F,H) = inf{µ(H), µ ∈ Ω(ρ, F )} (21)

This is the lowest (expected) energy that the system can reach by the
available work cycles. From the irreversibility condition (20), it follows
that Q only grows during irreversible processes. The passive state ρ
can be defined as Q(ρ;F,H) = Tr(ρH), i.e. the (expected) energy of a
passive state with respect to F cannot be decreased by any work cycle
based on F . Lindblad further introduces the availability function

A(ρ;F,H) = Tr[ρH]−Q(ρ;F,H) (22)

which is the supremum of the work that can be be obtained from the
work cycles in F , starting in state ρ and HamiltonianH. A work cycle γ̂
defined by A(ρ;F,H) = W (γ̂) extracts all available work. The infimum
in Eq. 21 means that γ̂ may not exist as a proper work cycle, but that
A(ρ;F,H) can be arbitrarily well approximated by actual work cycles.
Both greatest lowest accessible energy and the availability function are
used to construct non-equilibrium entropy in Chapter 10.

The Boltzmann’s H theorem was criticized based on the two as-
pects of microscopic dynamics, the reversibility by Loschmidt and the
recurrence by Zermelo[24, 73]. Lindblad expected similar criticisms
and defended his formalism against them. Since the F-accessibility in-
troduces the irreversibility, the Loschmidt’s paradox does not apply to
his formalism. Lindblad further comments that ”for a classical system
with the mixing property the Poincar e recurrence theorem does not
really present a difficulty, ...,” and the recurrence paradox of Zermelo
can be mitigated for such systems [73]. However, Lindblad admits that
”The recurence paradox of Zermelo is not so easy to dispose of for a
finite quantum system.”

In the second section of Chapter 6, Lindblad address the issue of
recurrence. He first considers the possibility of arriving at (expected)
energy E (less than Q(ρ;F,H)) in a finite time by some work cycle
in the set Γ(F ), and defines τ(ρ(t), E) − t to be the infimum of such
times. Lindblad shows that

τ(ρ(s), E) ≤ τ(ρ(t), E) for all s ≤ t. (23)

from which he advances the hypothesis that for many complex systems

τ(ρ(t), E)− τ(ρ(s), E) >> t− s (24)

and observes that if this is so, evolution has made it harder to access
the same energy. Lindblad interprets this effect as the ”origin of ir-
reversibility in finite system”. Note that this irreversibility of finite
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closed systems in the sense of Lindblad is not absolute, but depends
on F . It is certainly a very original idea which has not have much
continuation in the later literature.

After defining irreversibility in terms of energy and justifying it
against Loschmidt and Zermelo paradoxes, Lindblad defines an en-
tropy function for all F-accessible non-equilibrium states ρ ∈ E(F )
with a given initial Hamiltonian H ∈ F . This definition relies on ex-
istence of a function β(u,H) (introduced by Lindblad in Section 3.b)
which is the inverse temperature at which the expected energy under
the Gibbs ensemble based on H equals u. We recall the equilibrium
statistical mechanics expression for entropy as function of energy by

thermodynamic integration, S(E) =
∫ E

0
β(u,H)du. Lindblad defines

thermodynamic entropy for a work cycle γ as

S(ρ; γ) =

∫ E

0

β(u,H)du E = Tr[ρH]−W (γ, ρ) (25)

and thermodynamic entropy relative to ρ and for the set Γ(F ) (or the
mobility semigroup T (F )) as

S(ρ;F ) = inf{S(ρ; γ); γ ∈ Γ(F )} (26)

This entropy has the following properties:

(1) SI(ρ) ≤ S(ρ;F ) (Equality holds if ρ is a Gibbs state.)

(2) S(ρ(s);F ) ≤ S(ρ(t);F ) for all s < t

(3) S(ρ, F ) ≤ S(ρ, F ′) for F ⊆ F ′.
(4)

∑
k λkS(ρk;F ) ≤ S (

∑
k λkρk;F ), for ρk ∈ E(F ), λk > 0,

∑
k λk.

The non-decreasing function (2) and convexity (4) are required for any
entropy functions. The properties (1) and (3) need some remarks.
(1) follows from that von Neumann-entropy is conserved during uni-
tary evolution (in the chapter under review all evolutions are unitary).
Whatever ρ′ is reached by the work cycle, its von Neumann entropy
cannot be larger than entropy of the Gibbs state with the same ex-
pected energy, as maximizing entropy under constraints is a defining
property of Gibbs states. Hence SI(ρ) is less than or equal to S(ρ; γ)
in Eq. (25) for any γ, and therefore in particular less than or equal to
their infimum, which is S(ρ;F ) in Eq. (26). For the largest F that con-
tains all self-adjoint operators, we have the minimal entropy function
from property (3). We can show that it coincides with SI(ρ). Then,
ρ must be a Gibbs state from (1). As discussed earlier, the largest F
allows reversible processes. Hence, the entropy of reversible processes
is SI(ρ) as expected.

The second law of thermodynamics under unitary evolution is still a
major issue. The eigenthermalization hypothesis (ETH) has been quite
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successful to explain thermal states of closed systems [39]. However,
the information entropy is conserved by unitary transformation and
thus cannot be used to show the second law as Lindblad stated in
Chapter 3 (See also [40]). It has been proposed to use the classical
Shannon entropy in the energy eiegenbasis, so-called diagonal entropy
(d-entropy) [54]. The relation between the Lindblad’s approach and
d-entropy, if any, however remains to be established.

2.7 Chapter 7 ”Open systems”

Lindblad starts this chapter by recalling a system S weakly coupled
to a heat bath R(β) at inverse temperature β, and states that the
objective of the open system approach he is to discuss is to ”treat
the dynamics and thermodynamics of S + R using only the reduced
description given by the partial state ρS of S and the parameter β of
R” (page 60, lines 12-15).

From the modern point of view it is clear that the above is not an
entirely achievable goal. Thermodynamic functions such as work are
in general functionals of the open quantum system evolution, similar
but not identical to the open quantum state [15]. Lindblad in facts
remarks (page 60, lines 17-19) that he is here introducing an extra
requirement.

The chapter should perhaps best be seen as the beginning of a dis-
cussion of the limitations of modelling open quantum systems as quan-
tum Markov processes, which at the time was but very incompletely
understood. The chapter is also an entry point to a more technical
appendix A (16 pages) where Lindblad discusses these issues in more
detail. The appendix begins with a very clear and succinct summary
of Lindblad’s then fairly recent theory of quantum Markov processes.

2.8 Chapter 8 ”External Perturbations”

In Chapter 8 Lindblad discusses a possible mathematical model of es-
sentially isolated systems introduced in Chapter 3. The question was
how the information entropy Si increases in an isolated system. We
know that it remains constant during any unitary evolution. In a ther-
modynamics context, however, an isolated system does not exchange
energy with its environment but the interaction between them does not
have to be absent. The interaction can change the information entropy
of the system without energy exchange if the correlation between them
changes.8 Such environments (X) are introduced in Chapter 4. They
interact with the system much weaker than heat baths (R). Because

8As an example, consider decoherence induced by the environment. The decoherence
changes entropy but energy exchange is not required. See Ref. [103].
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the stability of equilibrium states, the weak perturbation exerted by X
will not affect the initial equilibrium state (see Chapter 4). However,
non-equilbrium states will not exhibit such nice properties and there
could be a significant influence on the evolution of non-equilibrium
states increasing its entropy. In Chapter 4, the desired properties of R
is clearly defined and thus we can make a mathematical model with the
desired properties. On the other hand, X is completely out of control
except that the coupling between S and X is so weak that S+X will not
reach equilibrium. X may not have even a definite temperature. The
lack of specificity makes it difficult to develop a mathematical model.

The key question is how unstable the evolution of non-equilibrium
states is under the perturbation by X. Lindblad sees a certain simi-
larity between the instability caused by the perturbation and by the
classical chaos. However, no quantum version of the mixing prop-
erty and the Kolmogorov-Sinai entropy is known. To extend the idea
of classical Hamiltonian chaos to quantum dynamics, Lindblad first
tried to quantify the instability using information entropy available for
both classical and quantum systems. This is developed in Appendix B
”Sensitivity of Hyperbolic Motion”. Without a rigorous mathematical
theory, the idea is phenomenologically extended to quantum systems
based on the energy-time uncertainty relation. The concept of quan-
tum chaos was still in its infancy at the time the book was published.
However, Lindblad’s discussion seems to be in line with modern quan-
tum chaos theory. He concluded that the entropy function introduced
in Chapter 6 only very weakly depends on the coupling strength and
most likely the instability is physically not significant.

2.9 Chapter 9 ”Thermodynamic limit”

This chapter lies a bit outside the main focus of this review. Stochastic
thermodynamics and its quantum analogue quantum thermodynamics
is (mainly) concerned with systems that may interact with large reser-
voirs, but which are not themselves in the thermodynamic limit (limit
of unlimited number of degrees of freedom).

2.10 Chapter 10 ”Thermodynamic entropy”

In Chapters 2-9, Lindblad introduced components necessary to con-
struct a general definition of thermodynamic entropy for non-equilibrium
states. In Chapter 10, he ties these strands together and posits a ther-
modynamic entropy function for non-equilibrium states and presents
its properties. Consider a set of thermodynamic processes P=P(F)
which includes all processes investigated in the previous chapters, both
Hamiltonian dynamics for closed systems, and Markovian dynamics
under the weak coupling limit. Interaction with multiple heat baths
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with different temperature are also included. The main goal is to find
an entropy function S(ρ;P ) for any state ρ accessible by P . To do
so, Lindblad considers a hypothetical process driven by a work cycle γ
which brings an arbitrary state ρ to a Gibbs state ρ(γ) ∈ G(F ). Then,
he defines thermodynamic entropy, or ”P-entropy”, as

S(ρ;P ) = inf
γ
{SI(ρ(γ)) +

∑
R

∆SR(ρ; γ)} (27)

where the change of entropy in heat bath R is ∆SR(ρ; γ) = β(R)∆ER

as derived in Chapter 5, and the infimum is taken over all γ ∈ Γ(F )
that takes ρ to a Gibbs state.

The definition has a simple interpretation based on the second law
of thermodynamics. Recall that entropy changes can be classified as
reversible and irreversible. Heat Q can also be classified as reversible
and irreversible. Then, the total change in entropy during a work cycle
γ can be written as ∆S(γ) = SI(ρ(γ))− S(ρ;P ) = −

∑
RQ

R(γ)/T +
Σ(γ) where Σ(γ) is the irreversible entropy production. The second
law demands that 0 ≤ Σ(γ) = SI(ρ(γ)) − S(ρ;P ) +

∑
RQ

R(γ)/T .
Thus, S(ρ;P ) ≤ SI(ρ(γ)) +

∑
R ∆SRI (ρ; γ);∀γ ∈ Γ(F ). Here we used∑

RQ
R(γ)/T =

∑
R ∆SRI (ρ; γ) (see Sec. 2.5). The infimum in Eq.

(27) is sufficient to satisfy the second law. In other words, the infimum
is equivalent to optimizing the entropy production with respect to γ.
Lindblad appears to have been the first to consider a definition of non-
equilibrium entropy of this type. The concept is quite closely related
to much more recent research, and we will return to this connection in
Section 3

Lindblad shows that the P-entropy (27) satisfies a set of following
inequalities:

(1) For all ρ ∈ E(F ), SI(ρ) ≤ S(ρ;P ) and equaility holds for ρ ∈
G(F ).

(2) For all time interval s ≤ t, S(ρ(s);P ) ≤ S(ρ;P ) +
∑
R ∆SR(s, t).

(3) For P ′ ⊆ P , S(ρ;P ) ≤ S(ρ, P ′). If P is large enough, the in-
equality implies S(ρ;P ) = SI(ρ). (See Chapter 6 for microscopic
reversibility for F containing all self-adjoint operators.)

(4) For any set {ρk ∈ E(F ), λk ≥ 0;
∑
k λk = 1},

∑
k λS(ρk;P ) ≤

S(
∑
k λkρk;P ).

(5) For independent subsystems S1 and S2 (not coupled and driven
by independent Hamiltonians), S(ρ;P ) = S(ρ1;P1) + S(ρ2;P2).

One of important consequences from the above set of inequalities
is a precise description of irreversibility. Suppose that an initial equi-
librium state ρ0 is driven to a state ρ. We find from (1) and (2) that if
the process is an optimal adiabatic process then S(ρ;P ) = SI(ρ) and
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for any irreversible processes, we have

S(ρ;P ) ≥ SI(ρ). (28)

When the mobility semigroup T(F) is large enough, i.e., F contains all
self-adjoint operators, S(ρ;P ) ' SI(ρ) as property (3) indicates. Then,
the irreversibility is essentially due to the increase in the I-entropy
induced by the external perturbation. (See Chapters 7 and 8.) On the
other hand, when T (F ) is limited, the P-entropy significantly deviates
from the I-entropy due to the limited intrinsic Hamiltonian dynamics.
The irreversility is caused by the limitation of the F-accessible states.
(See Chapter 6.)

Next, Lindblad discusses approach to equilibrium using the P-entropy.
To do so, he introduces a P-relative entropy9

S (ρ|ρ(β,H)) ≡ S(β,H)− S(ρ;P ) + β
[
〈H〉ρ − 〈H〉ρ(β;H)

]
. (29)

as a distance between ρ and the Gipps state similar to Eq. (5). Like
a regular relative entropy, it vanishes if and only if S(ρ;P ) = S(β;H)
and 〈H〉ρ = 〈H〉ρ(β;H). Furthermore, S(ρ(t)|ρ(β,H);P ) is a non-
increasing function of time t. Then, Lindblad introduces the concept
of P-equilibrium, the closest of P-accessible Gibbs states. When the
displacement

d(ρ|G(F )) = inf
µ
{S(ρ|µ;P );µ ∈ G(F )} (30)

vanishes, ρ is the P-equilibrium state. Since d is a non-increasing
function, the system tends to approach the P-equilibrium.

2.11 Chapter 11 ”Measurements, entropy and work”

In this last chapter Lindblad tackles the issue of quantum measure-
ment. Based on the standard interpretation of quantum mechanics,
quantum measurement transforms the state of measured system to a
different state and the transition is irreversible. There is no universally
agreed upon dynamical process that describes the quantum measure-
ment. Lindblad considers quantum measurement as non-equilibrium
thermodynamics processes taking place between the system (S) and
the measurement device (M). The mathematical part is based on a
series of papers published earlier[66, 67, 68]. The physical interpreta-
tion of the quantum measurement is not conclusive within the book.
Part of his interpretation was clarified in a paper published 28 years
later [71].

9Not confused with the standard relative entropy.
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Lindblad first shows that the classical information obtained by the
measurement has a lower bound. Consider a measurement of system
in a state ρ. The outcome ρk is obtained with probability pk. If ρk is
a pure state |k〉〈k|, this is a standard projective measurement. Other-
wise, it is non-efficient measurement. Lindblad further assumes that
the measurement is non-destructive and thus ρ =

∑
k pkρk

10. Before
the measurement, the system carries an amount SI(ρ) of information.
When the measurement outcome has been recorded, the amount of
classical information obtained by the observer is given by Shannon
entropy I{pk} = −

∑
k pk ln pk: for non-efficient measurement, some

information remains in the system, on average
∑
k pkSI(ρk). If the

outcome is not recorded, the amount of information in the system re-
mains SI(ρ) since the measurement is assumed to be non-destructive.
Using convexity and sub-additivity of information entropy, Lindblad
shows that

0 ≤ SI(ρ)−
∑
k

pkSI(ρk) ≤ I{pk} (31)

which is a well-known inequality in quantum information theory [82].
The above inequality does not take into account the change in the

state of M nor the correlation between S amd M. To emphasize their
importance, Lindblad invokes the Maxwell demon. Suppose that the
system is in a Gibbs state which is passive with respect to P-work cycle.
After measurement, the system jumps to ρk which is no longer passive.
Hence, it is possible to extract work out of it with another P-work
cycle, which seemingly violates the second law of thermodynamics. He
recognized that this is a quantum version of the Maxwell demon, the
measurement device being the demon.

Lindblad mentions the Szilard engine as example without detailed
analysis of the quantum version which was published much later [63,
96]. Lindblad then analyzes the information in the joint system S+M
and derives the upper bound of the classical information gain

I{pk} ≤ C12(ρ′12) (32)

where C12 is the mutual information in the final state of S+M, ρ′12.
Then, Lindblad goes on to evaluate the energy and heat (information)
exchange between S and M.

Throughout the chapter, Lindblad uses the P-entropy to explain
the thermodynamics of quantum measurement. This suggests that in
his mind the underlying dynamics of quantum measurement is a quan-
tum Markov processes. Lindblad points out that non-equilibrium pro-
cesses and quantum measurements share a similar irreversibility. In his

10We do not impute to Lindblad to the position that the destructive nature of quantum
measurement is not essential for the discussion. To the contrary, it is essential, especially
when there is back action.
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much later paper [71], he suggested that the irreversibility in quantum
measurement is due to ever expanding quantum entanglement in the
measurement device similar to the global correlation discussed above
in Chapter 5. In both [71] and in his last unpublished paper [72], Lind-
blad cites in this connection the quantum Darwinism of Zurek [115].

2.12 Chapter 12 ”Other approaches”

In this last chapter of the book Lindblad summarizes and discusses
critically other approaches to non-equilibrium entropy actively investi-
gated at the time when the monograph was written. From the perspec-
tive of this review of Lindblad’s work, the main interest is what other
approaches he had in mind, and the role of these other approaches
today, i.e. 40 years later.

Lindblad begins by discussing the work of the Brussels group led
by Prigogine, which is still actively considered to this day, and which
has been presented in several books and monographs, for example, see
Ref. [88]. The essence of the Brussels approach is that classical chaos
leads to growth of uncertainty, which is then extended to a postulate of
intrinsic irreversibility. The exact nature of this may perhaps be said
not to have crystalized in one precise form in the presentation of the
Brussels group and their supporters, critics and detractors, but in the
current context this is immaterial. Lindblad’s main argument against
the Brussels approach is that conservative (reversible) evolution exists
in nature, at least to very good approximation, and that this is difficult
to reconcile with any kind of intrinsic irreversibility. A later critique
against Prigogine’s ideas can be found in the writings of Bricmont [22].

The second approach discussed by Lindblad, which he attributes
to Penrose and Goldstein [49], aims to connect entropy of a state S
(thermodynamic or other entropy) to the Kolmogorov-Sinai entropy
h describing the rate of gain of information of a classical dynamical
system. Lindblad remarks that this introduces a characteristic time as
t = S

h such that S is produced in a time t, and that beyond that time
information as measured by Kolmogorov-Sinai entropy can increase
indefinitely.

The third approach is the subjective interpretation of entropy as
measuring ignorance: Lindblad also calls this the anthromorphic 11

approach. In this approach it is postulated that information-theoretic
entropy −

∑
k pk log pk – of practically any probability distribution –

is to maximized given constraints on the probabilities pk representing
one’s prior knowledge. Jaynes [59] introduced this as the maximum-
entropy method in 1957. As Lindblad remarks maximum-entropy nat-

11Likely a reference to [60] (Section VI), cited by Lindblad further on in this Chapter.
The phrase ”Entropy is an anthropomorphic concept” is in [60] attributed to E.P. Wigner.
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urally appears as a form of statistical inference, and as such it has
remained popular to this day. Another early proponent of thermody-
namics (and entropy) as a consequence and/or a form of statistical
inference was Mandelbrot [75].

One prominent recent application of these ideas is the use of Gibbs-
Boltzmann distributions to recover interactions from large-scale biolog-
ical data. This undisputed success of maximum-entropy inference is in
a view which we subscribe to due not to ”knowledge out of ignorance”,
but because many natural distributions are of the Gibbs-Boltzmann
distribution type, where maximum-entropy is equivalent to maximum-
likelihood inference [14, 41], see also Bricmont [23]. Many in the com-
munity working on this class of problems are however of the opposite
opinion, see e.g. [110]. In thermodynamics in a more strict sense the
approach of Jaynes and Mandelbrot has in any case largely fallen out
of favor in recent years, for a critical discussion, see [10].

The final approach discussed by Lindblad is that of ”rational ther-
modynamics”, referring to two papers in the mathematical journal
Archive for Rational Mechanics and Analysis, by respectively Day [35]
and Coleman and Owen [29]. Although the second of these papers is
rather well cited, this approach has not had a large impact in the later
physical literature.

3 Was Lindblad a forerunner of modern
non-equilibrium thermodynamics?

Lindblad introduced many unique ideas in his book. We will now sur-
vey selected recent developments related to his pioneering contribution.

Open quantum systems and quantum master equations: Stan-
dard quantum mechanics textbooks assume that quantum objects are
completely isolated from the rest of the world. Such an idealization
also played an important role when classical mechanics was developed.
However, the influence of the environment on quantum systems is much
more significant than on classical systems. For example, the quantum
coherence in the system can be destroyed by the environment even
without energy exchange [103]. The theory of open quantum systems
is essential for the development of quantum technologies.

The investigation of open quantum systems were well underway
even before Lindblad’s book was published. See for example the Davies’s
book ”Quantum Theory of Open Systems” [34], published in 1976. The
goal is to derive equations of motion for open quantum systems in con-
tact with quantum heat baths. Due to dissipation, the resulting time
evolution is not unitary. It is known as completely positive dynam-
ical semigroup [6]. In his famous 1976 paper [69], Lindblad derived
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a general form of the equation of motion, since then usually called
Lindblad equation or Markovian quantum master equation [25]. The
equation has been successfully applied to many different quantum sys-
tems including photons, condensed matter, and quantum computers.
The Lindblad equation is still today the most popular tool for the in-
vestigation of open quantum systems. Without a doubt, Lindblad was
a forerunner of the theory of open quantum systems.

Quantum stochastic thermodynamics: The conventional theory
of thermodynamics deals with energetic transaction at the macroscopic
scale where the fluctuations of microscopic states are negligible. How-
ever, advances in nanotechnologies have forced us to develop a the-
ory of thermodynamics at the mesoscopic scale where the fluctuations
play a significant role. For classical systems, stochastic approaches
such as Langevin equations already existed at the time of the Lind-
blad’s book. However, a major advancement in the understanding of
the relation between fluctuations and thermodynamics was achieved
by the development of stochastic thermodynamics near the end of 20th
century [99, 102], wherein thermodynamic quantities are defined as
functionals of a single stochastic trajectory x(t).

For example, the work functional is defined by

W [x(·)] =

∫ tf

ti

∂H(x;λ)

∂λ

dλ

dt
dt =

∫ tf

ti

∂H(x;λ(t))

∂t
dt (33)

whereH(x, λ) is a Hamiltonian with a control parameter λ [101, 55, 56].
Thermodynamic work can be obtained by taking ensemble average over
the stochastic trajectories.

For quantum systems, not only the thermal fluctuation but also
the quantum fluctuation can play a role in thermodynamics processes,
which is the starting point of quantum thermodynamics [8]. The most
common approach is to use the quantum Markovian dynamics obtained
from the Lindblad equation in place of classical Markovian dynamics.
Lindblad called it quantum stochastic processes in Chapter 7. Ex-
tending the idea of stochastic thermodynamics to quantum systems,
thermodynamic quantities are considered as a functional of the whole
evolution of state ρ(t) obtained from the quantum stochastic processes.
Alicki [7] derived the principles of thermodynamics using this approach.
Lindblad followed the Alicki’s approach and evaluated the rate of en-
tropy production using the Lindblad equation in Chapter 7. This ap-
proach has been extensively used since. We can say that Lindblad was
a founding father of quantum thermodynamics.

Fluctuation theorems: The most significant outcome of the stochas-
tic thermodynamics is the discovery of fluctuation theorems. Starting
from Bochkov and Kuzovlev [21], various forms of fluctuation rela-
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tions beyond the standard fluctuation-dissipation theorem were dis-
covered [97, 57, 99, 48, 105]. Among them, the Jarzynski equality [55]
is arguably the most famous and the most relevant to the Lindblad’s
book. Suppose that a system in thermal equilibrium at inverse temper-
ature β is brought out of the equilibrium by a time-dependent Hamil-
tonian. The corresponding stochastic trajectories start from a point
x0 randomly chosen from the Gibbs distribution ρ(x0) = e−βH(x0)/Zi.
The trajectories are determined by a Hamiltonian or stochastic dynam-
ics. Then, the following equality between a non-equilibrium average
(left-hand side) and a difference between equilibrium quantities (right-
hand side) holds [55]: 〈

e−βW
〉
x0

= e−β∆F (34)

where ∆F = T (lnZf/Zi) is the free energy difference, and the en-
semble average 〈· · ·〉x0

is taken over the initial position x0 with the
Gibbsian meausure ρ(x0). When the system goes out of equilibrium,
temperature is no longer defined. The temperature in the equality
is therefore the initial temperature of the system. Using Jensen’s in-
equality, Eq. (34) implies the second law in the form of work vs.free
energy inequality:

〈W 〉 −∆F ≥ 0. (35)

Classical fluctuation relations follow from that the entropy produc-
tion functional can be defined both in terms of heat exchanges with
reservoirs, and as a log-ratio of probabilities of forward and time-
reversed processes. Almost tautological relations in the second formu-
lation then yield highly non-trivial equalities (the fluctuation relations)
in the first [48]. An intermediate result is represented by Crooks’ the-
orem [30], an exact relation between two Markovian dynamics, one in
the forward time and the other in backward time. One consequence is
a precise equality between dissipation and irreversibility [62, 84]:

β(〈W 〉 −∆F ) = S(ρ(t)‖ρ̃(τ − t)) (36)

where ρ and ρ̃ are the state density of the forward and backward pro-
cesses, respectively, τ is the final time of the process, and t can be
any time between 0 and τ . This equality is closely related to Eq. (18)
derived by Lindblad in Sec. 2.5. Using the same process considered in
Sec. 2.5, we find that ∆F = 0, t = τ . ρ1 = ρ(τ), ρ′1 = ρ̃(0) and that
Eq. (36) coincides with Eq. (18). We hence find that Lindblad was
very close to deriving one type of fluctuation relations.

Jarzynski’s equality for closed quantum systems was to our knowl-
edge first found by David Thouless in 1996 [58], and first presented in
a pre-print of Kurchan in 2000 [64]. The same derivation goes through
if the open quantum system evolution is unital [4, 92]. The Jarzynski
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equality for general open quantum systems encountered various diffi-
culties extensively discussed in the literature at an early stage [27, 44].
One difficulty is the relation (if any) between quantum Jarzynski equal-
ity and quantum time reversals. In an environmental representation
such a relation was found by Crooks [31]. In an intrinsic representa-
tion this was found in [28] for quantum Markov dynamics (Lindblad
equation), but is in general unclear, see [13] for a critical discussion.

Quantum measurement, Maxwell demon and Landauer prin-
ciple: In Chap. 11, Lindblad discussed work extraction from a passive
state by quantum measurement, seemingly in violation of the second
law. This is precisely a quantum version of the Maxwell’s demon. In
modern understanding of Maxwell demon, the decrease of entropy of
the system by the action of demon corresponds an increase of informa-
tion in the demon itself (measurement device). The part of the world
considered in the analysis is not brought back to its original state
unless this information in the demon is erased. Lindblad condidered
the measurement device (demon) as a macroscopic object, interacting
with its own environment at inverse temperature β0. A part of energy
transferred to the device dissipates as heat Q which corresponds to the
erasure of information in the device. Then, he derived

β0Q = ∆SMI . (37)

Equation (37) indicates that the information acquired by the device
dissipates into its own heat bath. He pointed out that work extraction
by the quantum measurement is essentially the heat engine operating
between the two heat baths, one for the system and the other for the
device assuming β < β0.

Landauer [65] in 1961 proposed that an erasure of information the
demon acquired always satisfies

βQ ≥ ∆S (38)

where Q is the heat released to a bath and ∆S is the entropy change
of the system. The inequality (38), known as Landauer principle, sug-
gests that the heat released into the environment when erasing the
record of the demon’s actions is enough to match the entropy which
the demon manages to decrease [17]. Mandal and Jarzynski [74] dis-
cusses a classical model of Maxwell’s demon illustrating the mechanism
in detail.

We note that the Lindblad’s equality (37) is a special case of the
Landauer principle. A process realizing the Landauer principle as an
equality must proceed very slowly. For processes completed in a finite
time t it was first predicted on general grounds [101] and found in
specific models [98], later confirmed experimentally [19] and then de-
veloped further and put in a wider context [11, 12] that the principle
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is modified to

Q ≥ kBT∆S +
C

t
. (39)

where C in above is a suitable measure of the distance between the
initial and final state. The formal derivation of quantum Landauer
principle is more complicated, see Ref. [9].

It is not clear if Lindblad was aware of the Landauer principle at
the time he wrote the book. He cites only the much earlier discussion
by Szilard. But we can say that Lindblad’s reasoning in Chapter 11
is closely related to the Landauer principle. Furthermore, from later
papers it is clear that Lindblad thought that non-equilibrium thermo-
dynamics and quantum measurement share the similar irreversibility
where entanglement spread through the heat bath or macroscopic mea-
surement device [71]. We therefore hold it likely that the similarity of
irreversibility between non-equilibrium thermodynamics and quantum
measurement later led Lindblad to the Markov chain model of quantum
measurement theory.

P-entropy and entropy production One of the signatures of irre-
versibility is entropy production. The second law of thermodynamics
only states that it is positive for any irreversible process. It has been
a major topic of modern thermodynamics that (total) entropy pro-
ductions is composed of system entropy change (∆Ssys) and entropy
production in the environment, which in the stochastic thermodynam-
ics literature is usually written δSenv. When the environment is a heat
bath (or heat baths) δSenv is the heat transferred in units of tem-
perature. Lindblad’s central concept of P-entropy (Eq. 27) is a clear
forerunner of these ideas, since it can be written as

SP [ρ;F ] = SI [ρ] + Inf[∆Ssys + δSenv; {ρG ∈ Ω(F )}] (40)

where the infimum is over final Gibbs states ρG which can be reached
from ρ by quantum evolutions (work cycles and interactions with baths),
using controls in F . SI [ρ] is the von Neumann (information-theoretic)
entropy in the initial state and SI [ρ] + ∆Ssys = SI [ρG] is the von
Neumann entropy of the final state.

For (classical) over-damped systems the infimum in Eq. 40 is re-
alized as optimal (classical) transport, a problem also known as the
Monge-Kantorovich problem, or the minimum (classical) Wasserstein
distance. This connection between two seemingly very different op-
timization problems, which leads to the revised Landauer principle
(Eq. 39 above), was apparently first made in the mathematical litera-
ture by Otto and Villani [83], and in the physical literature in [11, 12]
as sketched above. More recent discussions from a physical perspec-
tive can be found in [90], [80] and [111, 112]. The extension of Eq. 40
to underdamped Langevin dynamics was carried out in [78, 79], and
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has also been realized in experiments [32, 33]. Optimality for finite-
time processes with discrete states was discussed in [77], [93, 36] and
[111, 112] where the latter two also consider generalizations to quantum
processes. The quantum Wasserstein (transport) distance as such has
been extensively discussed in the information-theoretical [38], physi-
cal [46, 20] and mathematical [3, 26, 47] literature.

Still, it is obvious that the full extent of Lindblad’s proposal em-
biodied by Eq. 40 has not been explored. It is not clear if also in
the quantum case this quantity has the alternative interpretation as
a geometric (transport) distance between states, and the study of the
interplay between optimality and a limited control set indicated by
F is certainly only in its infancy. We believe constructing theories
along these lines important future tasks for non-equilibrium quantum
thermodynamics.

Another, perhaps equally important direction, can be found in
Chap. 5 where Lindblad concluded that the dissipation of heat dur-
ing reversible processes are due to the formation of global correlations.
A modern theory of entropy production, that is valid even far-from
equilibrium, indicates that the formation of correlation inside the heat
bath is the main source of the entropy production [91]. Once the en-
tanglement spreads, it is difficult to determine the phase information
by measurement and consequently it is difficult to construct a time-
reversed operation, which Lindblad claimed to be the origin of the
irreversibility. Lindblad’s ideas on entropy production were hence con-
sistent with the modern notions. Furthermore, Lindblad thought that
the irreversibility of quantum measurement can be explained by the
same reasoning. These both seem to us very promising future direc-
tions.

Measurement-driven engines: As Lindblad suggested, quantum
measurement can be thought of a heat engine. In another sense, a
measurement device behaves like a heat bath [61], suggesting that one
of heat baths used in conventional thermal engine can be replaced with
a quantum measurement. More than thirty years after the publication
of Lindblad’s book, measurement-driven engines extracting work out
of a single passive state, even without feedback control, became a hot
research topic [42, 43, 114]. These engines are seemingly violating
the second law unless the erasure of information is explicitly taken
into account, i.e., the quantum version of the Landauer principle, as
discussed above. It has been also shown that the strong local passiv-
ity [45] (aka. CP-passivity [5]) can be broken by the so-called quan-
tum energy teleportation (QET) protocol consisting of a local quantum
measurement followed by local operations and classical communication
(LOCC)[5, 45]. QET was recently confirmed in experiments [94]. It is
a regrettable fact that Lindblad’s theory on measurement-driven work
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extraction has been overlooked in most recent papers on the topic,
perhaps because his work was too far ahead of his time. We hope that
this perspective will help rectify this state of affairs.

Entanglement-driven engines: In Chapter 5 Lindblad shows that
the global correlation in the heat bath induced by work is responsible
for the entropy increase. It has been shown that the quantum corre-
lation (entanglement or discord) affects thermodynamics significantly.
It is now well-known that the quantum correlation can be used as ther-
modynamic resources. If a system carries quantum correlation, it can
be used to drive thermal machines consuming the mutual information
stored in the correlation as fuel. In other words, the mutual informa-
tion can be used in place of work, see for example Ref. [18]. Among
many proposed coherence-driven machines, one seemingly violating the
second law is spontaneous heat flow from a cold to a hot reservoir un-
der the presence of quantum correlation between the reservoirs [85].
Based on it, a heat pump entirely driven by quantum entanglement
was proposed [52]. The second law is recovered if the mutual informa-
tion I is assumed to be equivalent to βW in the regular heat pump. In
summary, advanced concepts of quantum information are important
components of quantum thermodynamics, that is of thermodynamics
extended to the microscale and to the quantum regime.

4 Concluding remarks

Lindblad introduced unique ideas to advance the understanding of non-
equilibrium states. They are grounded in the experimental situation
where the experimenter has limited options. He also developed many
pieces of new concepts necessary to derive an entropy function for such
states. His final proposal, the P-entropy, is closely related to concepts
which have only recently come to the fore in quantum theory. Unfor-
tunately, neither Lindblad’s definition of entropy nor other ideas was
noticed at the time of publication. Since then, research on the non-
equilibrium thermodynamics has made great progress. Nevertheless, it
turns out that many of Lindblad’s ideas were reinvented in the mod-
ern development of quantum thermodynamics, though his work was
almost completely overlooked. We think that Lindblad was a deep
thinker and truly ahead of his time. We hope that our extended syn-
opsis and modern perspective helps established researchers and young
researchers alike to discover his book.
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