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Abstract. We generalize a recent result stating that all analytic quantum dynamics
can be represented exactly as the reduction of unitary dynamics generated by a time-
dependent Hamiltonian. More precisely, we prove that the partial trace over analytic paths
of unitaries can approximate any Lipschitz-continuous quantum dynamics arbitrarily well.
Equivalently, all such dynamics can be approximated by analytic Kraus operators. We
conclude by discussing potential improvements and generalizations of these results, their
limitations, and the general challenges one has to overcome when trying to relate dynamics
to quantities on the system-environment level.

1. Introduction

Combining fundamental concepts from quantum information—such as
Kraus operators or Stinespring dilations—with quantum dynamics is an area
of research which, surprisingly, only gained traction within the last decade
or two. Examples of this are recent investigations [8, 48] into an old result of
Davies on (infinite-dimensional) unitary dilations of (finite-dimensional) dy-
namical semigroups [14, 15], as well as works on expressing system dynamics
via time-dependent Kraus operators [3, 24, 2]. Such sets of Kraus opera-
tors which are continuous w.r.t. some parameter (not necessarily time) could
also be useful for optimization tasks beyond parametrized unitary circuits
[37]. Moreover, the existence of a continuous curve of Stinespring unitaries
for time-independent Markovian dynamics [18] has recently been used for
studying quantum-embeddability of stochastic matrices [44].

At first glance, the task of constructing a continuous curve of Stinespring
unitaries may appear trivial: given any dynamics Φ(t), for all t one can choose
a unitary Ut such that Φ(t) = trE(Ut((·)⊗|0〉〈0|)U∗

t ) by the “static” version of
Stinespring’s representation theorem [26, Thm. 6.18]. The caveat is that, in
general, the resulting map U : t 7→ Ut will lack any kind of structure, because
we picked the unitaries independent of each other. In particular, there is no
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reason for U to be the solution to Schrödinger’s equation, meaning it does not
describe the dynamics of a larger closed system. We emphasize that this issue
has nothing to do with the representation we picked: the same problem arises
on the level of Stinespring isometries. While there, the only degree of freedom
is a unitary on the environment [52, Coro. 2.24], despite a continuity result for
Stinespring isometries [32, 31] it is unclear how to make an arbitrary curve of
isometries t 7→ V (t) (that gives rise to continuous dynamics) continuous via
environment unitaries, i.e. it is not clear how to construct t 7→ U(t) unitary
such that t 7→ (1 ⊗ U(t))V (t) is continuous. The fact that this problem is
independent of the chosen formalism is also in line (i) with the fact that the
Kraus and the Stinespring representation are equivalent, even for dynamics
(Lemma 1 below) and (ii) with a remark of Pollock and Modi from [39]
that “recovering the underlying [system-environment] quantities [...] from
operationally reconstructible time-dependent maps [...] is neither uniquely
constrained nor easy to achieve in practice.”

On the other hand, the heuristic derivation of Markovian dynamics is
fundamentally tied to Stinespring dilations, as the former are often intro-
duced as the reduced dynamics of a larger closed system—assuming the sys-
tem in question satisfies usual approximations (Born-Markov, separation of
timescales, etc.) [6]. Yet, this connection was made rigorous only about a
decade ago: as mentioned above, Dive et al. [18] showed that every quantum-
dynamical semigroup can be written as the reduction of (finite-dimensional,
time-dependent) unitary dynamics which are analytic everywhere aside from
time zero; for the precise statement we refer to Prop. 1 below. The key step
in their proof is to diagonalize the path of Choi matrices to obtain dynamic
Kraus operators. For this they used an old result of Kato [28, Ch. 2 §6.2] on
diagonalizing analytic paths of Hermitian matrices.

It may come as a surprise that the assumption of the dynamics being an-
alytic is necessary for this proof strategy to work: an example of a smooth,
non-analytic curve of Hermitian matrices which does not admit any path of
eigenvectors that is continuous at time zero is given in [28, Ch. 2, Ex. 5.3].
And this is not the only issue that comes up: Dive et al. also observed that
the unitaries not being analytic at time zero is due to divergence of the
generating Hamiltonian (cf. also [8, Coro. 4.5]). This is not a flaw of the
construction, but rather an unavoidable phenomenon: If the unitary dynam-
ics were differentiable at zero, then the derivative of the reduced dynamics
has to be tangent to the set of quantum channels, i.e. at time zero the re-
duced dynamics “look like” unitary dynamics [48]. But this contradicts the
dissipative nature of (non-unitary) Markovian dynamics.

Altogether, the problem of fully connecting quantum dynamics with quan-
tities on the system-environment level is still open. In this paper we take a
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first step in this direction by looking at a relaxed version of this problem:
We show that all dynamics can at least be approximated arbitrarily well
via the partial trace over the dynamics of a larger (closed) system, and the
Hamiltonian of the latter dynamics can always be chosen uniformly bounded,
and even analytic for finite times (Thm. 1 below). This is also motivated by
another observation made by Dive et al. [18]: while the overall Hamiltonian
has to diverge at zero, approximating it by something bounded (in time) only
results in a “small” error on the level of the reduced dynamics.

2. Preliminaries: Quantum Dynamics & Stinespring Curves

First some notation to set the stage: the collection of all linear maps
on n × n-matrices will be denoted by L(Cn×n) while the subset of com-
pletely positive, trace-preserving maps (also called quantum maps or quan-
tum channels) will be called1 CPTP(n). We will write D(Cn) for the set
of all n-level quantum states which, as usual, is equipped with the trace
norm ‖ · ‖1 (i.e. the sum of all singular values of the input). In contrast
‖ · ‖∞ refers to the operator norm (on matrices) which is given by the
largest singular value of the input. Then, going one level higher, the operator
norm on L(Cn×n) with respect to the trace norm will be denoted ‖ · ‖1→1,
i.e. ‖Φ‖1→1 := supA∈Cn×n,‖A‖1=1 ‖Φ(A)‖1, while the symbol for the diamond
norm (completely bounded trace norm) will be ‖·‖⋄, i.e. ‖Φ‖⋄ := ‖Φ⊗idn‖1→1

[52]. Another norm of importance will be the sup-norm: given a non-empty
set D and a map f : D → (X, ‖ · ‖X) one defines ‖f‖sup := supx∈D ‖f(x)‖X .
For our purpose, the sup-norm of maps Φ : D ⊆ R → L(Cn×n) will be eval-
uated with respect to ‖ · ‖X = ‖ · ‖⋄. Finally, U(n) is the Lie group of all
unitary n×n matrices, and u(n) is its Lie algebra, i.e. iu(n) is the collection
of all Hermitian n× n matrices.

As we saw in the introduction it will be vital to be precise about what it
means for a curve of unitaries (U(t))t≥0—which are, e.g., not differentiable
at zero—to describe system dynamics, i.e. we want U to satisfy

U̇(t) = −iH(t)U(t) U(0) = 1 (1)

in some reasonable, yet general sense. For this we go back to the fundamentals
of differential equations and initial value problems. The mathematical notion
here—which is central to, e.g., control theory, as there one often works with
piecewise constant functions (i.e. they cannot be the conventional derivative
of some function)—is “absolute continuity”. Recall that a (locally) absolutely
continuous function f is a function which is differentiable almost everywhere

1While we work in the Schrödinger picture, all of our results have analogous formulations
in the Heisenberg picture by means of the usual duality [49].
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and which can be reconstructed from its derivative ḟ—which is (locally)
integrable—via f(t) = f(t0) +

∫ t
t0
ḟ(τ) dτ . The set of all locally integrable

functions f : I ⊆ R → V into a normed space V will be denoted by L1
loc
(I, V ).

Details can be found in Appendix A. Either way, combining this notion with
Eq. (1) yields the integral version of the lifted Schrödinger equation:

U(t) = 1− i

∫ t

0
H(τ)U(τ) dτ (2)

This leads to the arguably most general notion of dynamics of a closed quan-
tum system:

Definition 1. Given tf ∈ (0,∞] a map U : [0, tf ) → U(n) is said to describe
closed system dynamics if there exists H : [0, tf ) → iu(n) locally integrable
such that U solves (2) for all t ∈ [0, tf ).

Equivalently, closed system dynamics are precisely those curves of unitaries
which are locally absolutely continuous and which take the value 1 at zero.
For a more detailed treatment of such (so-called “mild”) solutions of differ-
ential equations, refer, again, to Appendix A.

As we saw in the introduction, in this framework it is very much possible
for dynamical semigroups to arise from closed system dynamics of a larger
system when tracing out the environment. Let us give such objects their own
name, see also [48]:

Definition 2. Let tf ∈ (0,∞] and Φ : [0, tf ) → CPTP(n) be given. We say
Φ is a Stinespring curve if there exists m ∈ N, a state ω ∈ D(Cm), as well as
U : [0, tf ) → U(mn) locally absolutely continuous such that for all t ∈ [0, tf )

Φ(t) = trCm

(

U(t)((·) ⊗ ω)U(t)∗
)

.

Here trCm : Cn×n⊗C
m×m → C

n×n is the usual partial trace. Additionally, if
U is generated by a fixed (i.e. time-independent) Hamiltonian H ∈ iu(mn),
i.e. if U(t) = e−iHtU0 for some U0 ∈ U(mn) and all t ∈ [0, tf ), then we call Φ
time-independent ; else we call the Stinespring curve time-dependent.

With this notation in place, the main result of Dive et al. [18] reads as
follows:

Proposition 1. Let n ∈ N, tf ∈ (0,∞], and Φ : [0, tf ) → CPTP(n) analytic
be given. Then Φ is a Stinespring curve with environment dimension at
most n2, and the closed system dynamics U of system plus environment can
be chosen such that U |(0,tf ) is analytic. In particular, this holds for all Φ

time-independent Markovian, i.e. Φ(t) = etL with L of gksl-form [23, 34].
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Remark 1. As explained in the introduction, for Markovian dynamics the
Hamiltonian of system plus environment has to diverge at zero. Yet we want
to mention that, in the past, systems with couplings which give rise to a
bounded curve of Hamiltonians—thus necessarily resulting in non-Markovian
dynamics—have been studied in the literature [9].

While we are focusing on the environmental form of quantum channels
in this work, let us reiterate that going to the level of Kraus operators yields
an identical problem. This is due to the equivalence of representations even
in the dynamic setting, refer also to [6, Ch. 3.2]:

Lemma 1. Let k, n ∈ N, tf ∈ (0,∞] as well as Φ : [0, tf ) → CPTP(n) be
given. The following statements are equivalent.

(i) There exist functions K1, . . . ,Kk : [0, tf ) → C
n×n locally absolutely

continuous such that for all t ∈ [0, tf )

Φ(t) =

k
∑

j=1

Kj(t)(·)Kj(t)
∗ .

(ii) There exists V : [0, tf ) → C
nk×n locally absolutely continuous such that

for all t ∈ [0, tf ), V (t) is an isometry and

Φ(t) = trCk

(

V (t)(·)V (t)∗
)

.

(iii) There exist an isometry V ∈ C
nk×n as well as closed system dynamics

U : [0, tf ) → U(nk) such that for all t ∈ [0, tf )

Φ(t) = trCk

(

U(t)V (·)V ∗U(t)∗
)

.

Moreover, if Φ(0) = id, then each of the above is equivalent to

(iii’) For all unit vectors ψ ∈ C
k (i.e. ‖ψ‖ = 1) there exist closed system

dynamics U : [0, tf ) → U(nk) such that for all t ∈ [0, tf )

Φ(t) = trCk

(

U(t)((·) ⊗ |ψ〉〈ψ|)U(t)∗
)

.

Finally, if any of the above objects is in some regularity class (e.g., continu-
ously differentiable, smooth, analytic, etc.) on an open subinterval of [0, tf ),
then so are all the others.

Proof. “(i) ⇒ (ii)”: For all t ∈ [0, tf ) define V (t) : C
n → C

n ⊗ C
k via

x 7→
∑k

j=1(Kj(t)x) ⊗ |j〉 . Then (i) implies Φ(t) = trCk(V (t)(·)V (t)∗) and
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each V (t) is an isometry (because
∑k

j=1Kj(t)
∗Kj(t) = 1, due to Φ(t) being

trace-preserving) for all t ∈ [0, tf ) [26, Thm. 6.9 & Cor. 6.13]. As V (t) is
linear in each Kj(t), local absolute continuity as well as any type of regularity
transfers over from the Kj to V .

“(ii) ⇒ (iii)”: The task, essentially, is to complete V (t) to a unitary U(t)
while maintaining the continuity requirement in t. The idea for this is as
follows: Because t 7→ V (t) is locally absolutely continuous, the “generator”
Q(t) = (1−V (t)V (t)∗)V̇ (t)V (t)∗−V (t)V̇ (t)∗(1−V (t)V (t)∗) is almost every-
where defined, locally integrable, and skew-Hermitian; thus the solution to
Ẇ (t) = Q(t)W (t), W (0) = 1 exists and unitary. Then one can show that in
some (time-independent) basis the last nk−n columns of W (t) are precisely
what completes V (t) to a unitary U(t) while preserving local absolute conti-
nuity in t. The precise statement—proven in Appendix B as Lemma 3—reads
as follows: there exists U : [0, tf ) → U(nk) locally absolutely continuous such
that V (t) = U(t)V (0), U(0) = 1 for all t ∈ [0, tf ). Thus U describes closed
system dynamics, and (ii) implies (iii) when defining V := V (0). Moreover,
the aforementioned lemma also guarantees that any regularity of t 7→ V (t)
can be carried over to U .

“(iii) ⇒ (i)”: Given any orthonormal basis {gj}kj=1 of C
k, it is well known

that {ι∗j : j = 1, . . . , k} are Kraus operators of trCk where ιj : C
n → C

n⊗C
k is

defined via ιj(x) := x⊗gj , cf., e.g., [48, Lemma B.2 & C.1]. This implies that

Φ(t) = trCk

(

U(t)V (·)V ∗U(t)∗
)

=
∑k

j=1 ι
∗
jU(t)V (·)V ∗U(t)∗ιj which shows (i)

once we define Kj(t) := ι∗jU(t)V ∈ Cn×n for all j = 1, . . . , k, t ∈ [0, tf ).
Again, each Kj is linear in U(t) so local absolute continuity as well as any
regularity carries over from U to the Kj.

Finally, assume Φ(0) = id. While “(iii) ⇐ (iii’)” follows directly from the
relation (·) ⊗ |ψ〉〈ψ| = ιψ(·)ι∗ψ (where ιψ(x) := x⊗ ψ), cf. [48, Lemma C.1],
for “(iii) ⇒ (iii’)” note that trCk(V (·)V ∗) = Φ(0) = id = trCk(ιψ(·)ι∗ψ). This
means that V , ιψ are locally unitarily equivalent: Coro. 2.24 in [52] yields
W ∈ U(k) such that V = (1⊗W )ιψ, i.e. V x = x⊗Wψ = x⊗φ for all x ∈ C

n

where φ := Wψ ∈ C
k. Therefore V AV ∗ = A ⊗ |φ〉〈φ| for all A ∈ C

n×n,
that is, (iii’) holds for ψ = φ. Now if ψ ∈ C

k is an arbitrary unit vector
there certainly exists W ′ ∈ U(k) such that φ = W ′ψ; all we then need is
the modification U(t) → (1 ⊗W ′)∗U(t)(1 ⊗W ′). Obviously, the latter still
describes closed system dynamics and we compute

Φ(t) = trCk

(

U(t)((·) ⊗ |φ〉〈φ|)U(t)∗
)

= trCk

(

U(t)((·) ⊗W ′|ψ〉〈ψ|W ′∗)U(t)∗
)

= trCk

(

U(t)(1⊗W ′)((·) ⊗ |ψ〉〈ψ|)(1 ⊗W ′)∗U(t)∗
)

= trCk

(

(1⊗W ′)∗U(t)(1⊗W ′)((·) ⊗ |ψ〉〈ψ|)(1 ⊗W ′)∗U(t)∗(1⊗W ′)
)
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for all t ∈ [0, tf ).

Remark 2. Lemma 1 continues to hold if local absolute continuity is replaced
by usual continuity. The only thing that changes about the above proof is
the step where one extends V (t) to a continuous curve of unitaries U(t): the
problem is that if V (t) is only continuous, then we cannot guarantee that the
generator Q(t) = (1 − V (t)V (t)∗)V̇ (t)V (t)∗ − V (t)V̇ (t)∗(1 − V (t)V (t)∗)—
which was the key to constructing U(t)—even exists. One can circumvent
this problem via an old result of Doležal [19] which essentially guarantees
existence of such an extension U(t) in the continuous case (cf. also Rem. 4
in Appendix B), the drawback being that the construction is not as explicit
as the one involving Q(t). However, in light of Def. 1 it could be argued that
mere continuity is too weak for describing and modeling physical systems
either way.

3. Main Result

With Definitions 1 & 2 in place we are finally ready to state our main
result:

Theorem 1. Let n ∈ N, tf ∈ (0,∞], as well as Φ : [0, tf ) → CPTP(n)
Lipschitz with constant KΦ > 0—with respect to, say, the diamond norm1—
be given. Then for all ε > 0 there exists a Stinespring curve Φε on [0, tf )

with dilation space C
n2 ⊗C

2 ⊗ C
2 such that ‖Φ− Φε‖sup < ε. Moreover,

(i) the time-dependent Hamiltonian H ∈ L1
loc
([0, tf ), iu(4n

3)) which gen-
erates the dynamics of the larger closed system of Φε can be chosen
piecewise constant with ‖H‖sup = supt∈[0,tf ) ‖H(t)‖∞ <∞.

(ii) if tf < ∞, then the Hamiltonian H : [0, tf ) → iu(4n3) can even be
chosen analytic.

(iii) the auxiliary state of Φε can be chosen pure.

(iv) if Φ(0) = id, then the curve of unitaries t 7→ U(t) which generates
Φε can be chosen such that U(0) = 1, i.e. U describes closed system
dynamics.

Proof. Given any ε > 0, the idea for constructing Φε is to consider a suf-
ficiently discretized version of Φ and to “connect the dots” appropriately.
More precisely, choose δ ∈ (0,min{1, tf}) such that δ < ε2(KΦ+4π

√
KΦ)

−2,

and consider {Φ(jδ) : j ∈ N0, j < Mδ} where Mδ := ⌈ tfδ ⌉. Next, for each

j < Mδ pick an arbitrary Stinespring isometry Vj : C
n → C

n⊗C
2n2

of Φ(jδ),

1so Φ satisfies ‖Φ(t1)− Φ(t2)‖⋄ ≤ KΦ|t1 − t2| for all t1, t2 ∈ [0, tf )
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i.e. Φ(jδ) = tr
C2n2 (Vj(·)V ∗

j ). The key to our construction is the following
continuity result for Stinespring dilations: for any Ψ1,Ψ2 ∈ CPTP(n) and
any respective Stinespring isometries Z1, Z2 : Cn → C

n ⊗ C
2n2

of Ψ1,Ψ2,
there exists W ∈ U(2n2) such that2 ‖Z1 − (1 ⊗W )Z2‖∞ ≤

√

‖Ψ1 −Ψ2‖⋄,
cf. [32, Thm. 1], [13, Prop. 5], or [47, Prop. 1]. Starting from W0 := 1, an
inductive application of this result to Φ(jδ), Φ((j+1)δ) yieldsWj+1 ∈ U(2n2)
such that

‖(1⊗Wj)Vj − (1⊗Wj+1)Vj+1‖∞ ≤
√

‖Φ(jδ) −Φ((j + 1)δ)‖⋄ . (3)

for all j ∈ N0, j < Mδ. In other words this gives rise to a new family of Stine-
spring isometries {V0, (1⊗W1)V1, (1⊗W2)V2, . . .} of {Φ(0),Φ(δ),Φ(2δ), . . .},
respectively, where consecutive elements of the former set are as close to-
gether as the (square root of the) corresponding channel distance. Next, in
order to connect all Φ(jδ) via a Stinespring curve we have to extend each
Stinespring isometry (1⊗Wj)Vj to a Stinespring unitary. For this we define3

Uj :=

(

(1⊗Wj)Vjι
∗ (1⊗Wj)(1− VjV

∗
j )(1⊗Wj)

∗

1− ιι∗ −ιV ∗
j (1⊗Wj)

∗

)

∈ C
4n3×4n3

, (4)

where ι : Cn → C
n ⊗ C

2n2
is the injective embedding ι(x) := x ⊗ |0〉. In

particular, ι is an isometry (i.e. ι∗ι = 1), which—after a straightforward
computation—implies that Uj is unitary. Moreover, this Uj for all x ∈ C

n

satisfies Uj(x ⊗ |0〉 ⊗ |0〉) = ((1 ⊗ Wj)Vjx) ⊗ |0〉 because of the following
identity: (1− ιι∗)(x ⊗ |0〉) = (1 − 1 ⊗ |0〉〈0|)(x ⊗ |0〉) = 0. Altogether, this
shows that Uj is a Stinespring unitary of Φ(jδ) w.r.t. the environment state

|0〉〈0|4n2 = |0〉〈0| ⊗ |0〉〈0| ∈ C
2n2×2n2 ⊗ C

2×2:

tr
C4n2 (Uj((·) ⊗ |0〉〈0| ⊗ |0〉〈0|)U∗

j )

= tr
C4n2 ((1⊗Wj)Vj(·)V ∗

j (1⊗Wj)
∗ ⊗ |0〉〈0|)

= tr
C2n2 ((1⊗Wj)Vj(·)V ∗

j (1⊗Wj)
∗) = tr

C2n2 (Vj(·)V ∗
j ) = Φ(jδ)

Now that we have a discrete set {Uj : j ∈ N0, j < Mδ} of Stinespring unitaries
we have to turn it into a curve of unitaries U(t); however, not any such curve

2Recall that (1⊗W )Z2 is again a Stinespring isometry, regardless of W ∈ U(2n2).
3More precisely in (4), Uj ∈ L(Cn ⊗ C

2n2

⊗ C
2) is defined via

Uj := J ◦

(

(1⊗Wj)Vjι
∗ (1⊗Wj)(1− VjV

∗

j )(1⊗Wj)
∗

1− ιι∗ −ιV ∗

j (1⊗Wj)
∗

)

◦ J−1

where ◦ is the usual composition of maps, and J : (Cn⊗C
2n2

)×(Cn⊗C
2n2

) → C
n⊗C

2n2

⊗C
2

is the isometric isomorphism J(x, y) := x ⊗ |0〉 + y ⊗ |1〉. However, in abuse of notation
we will use block matrices (e.g., in (4)) and the corresponding (induced) operator on the
tensor product interchangeably.
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will do as we have to be careful that the norm of the generating Hamiltonian
does not become “too large”. More precisely, for all j = 1, . . . ,Mδ − 1 there
existsHj ∈ iu(4n3) such that UjU

∗
j−1 = eiHj and 2‖Hj‖∞ ≤ π‖UjU∗

j−1−1‖∞;
the existence of such Hj is proven in Lemma 6 (ii) in Appendix C. With this,
define a piecewise constant path H : [0, tf ) → iu(4n3) via H(t) := −δ−1Hj

for all t ∈ [(j − 1)δ, jδ), j < Mδ and 0 else. Note that, obviously, H is locally
integrable and Hermitian at all times so U̇(t) = −iH(t)U(t), U(0) = U0 has
a (unique, locally absolutely continuous) solution U : [0, tf ) → U(4n3). As
desired, U(t) “connects” the discrete Stinespring unitaries Uj :

U(jδ) =
(

j
∏

α=1

e−i[αδ−(α−1)δ]H((α−1)δ)
)

U(0)

=
(

j
∏

α=1

eiHα

)

U0 =
(

j
∏

α=1

UαU
∗
α−1

)

U0 = Uj

for all j < Mδ. With this we define Φε : [0, tf ) → CPTP(n) via

Φε(t) := tr
C4n2

(

U(t)((·) ⊗ |0〉〈0|)U(t)∗
)

for all t ∈ [0, tf ), i.e. Φε is a time-dependent Stinespring curve and (iii)
holds. We claim that this Φε is the Stinespring curve we were looking for,
i.e. that ‖Φ − Φε‖sup < ε. For this the idea is as follows: Φ, Φε coincide at
times t = 0, δ, 2δ, . . . so ‖Φ − Φε‖sup can be upper bounded by the product
of the step-size ∆t = δ and the sum of any Lipschitz constants of Φ, Φε.
Intuitively, the Lipschitz constants determine how much Φε can deviate from
Φ between t = (j − 1)δ and t = jδ. Thus, the first step is to check that Φε
is Lipschitz. Let j < Mδ, t ∈ ((j − 1)δ, jδ) be given. Then U is differentiable
with U̇(t) = iδ−1HjU(t) which implies that Φε is differentiable at t with

Φ̇ε(t) = iδ−1tr
C4n2

([

Hj, U(t)
(

(·)⊗ |0〉〈0|
)

U(t)∗
])

,

i.e. Φ̇ε(t) = iδ−1tr
C4n2 ◦ [Hj, ·] ◦ AdU(t) ◦ ι|0〉〈0| where, again, ◦ is the usual

composition of maps, AdU := U(·)U∗ for any U ∈ U(n), and ιω := (·) ⊗ ω

for any ω ∈ C
n×n. Now the identity ‖Ψ1 ◦ Ψ2‖⋄ ≤ ‖Ψ1‖⋄‖Ψ2‖⋄ for all

Ψ1,Ψ2 ∈ L(Cn×n) [52, Prop. 3.48] together with the well-known fact that
every CPTP map is ‖ · ‖⋄-contractive [52, Prop. 3.44] lets us compute

‖Φ̇ε(t)‖⋄ ≤ δ−1‖[Hj , · ]‖⋄ = δ−1‖[Hj , · ]⊗ idn‖1→1

= δ−1‖[Hj ⊗ 1, · ]‖1→1

≤ 2δ−1‖Hj ⊗ 1‖∞ = 2δ−1‖Hj‖∞ .
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Because Φε is continuous and differentiable almost everywhere, the largest
value of the norm of the derivative is a Lipschitz constant for Φε (cf. Lemma 4
in Appendix C) meaning Φε is Lipschitz-continuous with Lipschitz constant

sup
j∈N,j<Mδ

2δ−1‖Hj‖∞ ≤ sup
j∈N,j<Mδ

πδ−1‖Uj − Uj−1‖∞

≤ 4πδ−1 sup
j∈N,j<Mδ

‖(1⊗Wj)Vj − (1⊗Wj+1)Vj+1‖∞

(3)

≤ 4πδ−1 sup
j∈N,j<Mδ

√

‖Φ(jδ) − Φ((j − 1)δ)‖⋄ ≤ 4π
√

KΦ
δ

Here, in the second step we used ‖Uj−Uk‖∞ ≤ 4‖(1⊗Wj)Vj−(1⊗Wk)Vk‖∞
for all j, k < Mδ—which follows from the definition (4) of Uj via a straight-
forward computation—and in the last step we used Lipschitz-continuity of Φ.
Either way we now know that both Φ,Φε are Lipschitz-continuous on [0, tf )
and they—by construction—for all j < Mδ satisfy

Φε(jδ) = tr
C4n2 (U(jδ)((·) ⊗ |0〉〈0|)U(jδ)∗)

= tr
C4n2

(

Uj((·)⊗ |0〉〈0|)Uj
)

= Φ(jδ) .

As stated previously, this lets us upper bound ‖Φ−Φε‖sup by δ times the sum
of the Lipschitz constants (cf. Lemma 5 in Appendix B for precise statement
and proof). Recalling that δ < 1 was chosen less than ε2(KΦ + 4π

√
KΦ)

−2,

‖Φ− Φε‖sup ≤ δ(KΦ + 4πδ−1/2
√

KΦ) ≤
√
δ(KΦ + 4π

√

KΦ) < ε .

Now let us quickly reflect on which statements we have yet to prove. We
constructed a Stinespring curve Φε with pure auxiliary state |0〉〈0| (state-
ment (iii)) which is ε-close to Φ, and the time-dependent Hamiltonian H

that generates the larger unitary dynamics of Φε is piecewise constant with
‖H‖sup = supj∈N,j<Mδ

δ−1‖Hj‖∞ ≤ 2π
√

KΦδ−1 < ∞ (statement (i)). Hence
(ii) and (iv) are still open.

The key to proving (ii)—i.e. if tf < ∞, then H can be chosen analytic—
is, unsurprisingly, the fact that polynomials are dense in (L1([0, tf ]), ‖ · ‖1)
(density of the continuous functions in L1 [40, Thm. 3.14] together with
the fact that polynomials are dense in the continuous functions by Stone-
Weierstrass). Starting from tf > 0, a Lipschitz function Φ, as well as ε > 0,
(i) yields H : [0, tf ] → iu(4n3) piecewise constant and uniformly bounded
such that the induced Stinespring curve Φε is ε

2 -close to Φ in sup-norm. To

construct an analytic Hamiltonian H̃ which approximates H we will simply
approximate the matrix elements of H. Indeed, define Hjj : [0, tf ] → R

for all j = 1, . . . , 4n3 via Hjj(t) := 〈j|H(t)|j〉, and define Hjk : [0, tf ] → C
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for all 1 ≤ j < k ≤ 4n3 via Hjk(t) := 〈j|H(t)|k〉. By the above density
argument there exist polynomials {H̃jj : [0, tf ] → R : j = 1, . . . , 4n3},
{H̃jk : [0, tf ] → C : 1 ≤ j < k ≤ 4n3} such that ‖Hjk − H̃jk‖1 < ε

64n6 for all
j ≤ k. This lets us define the analytic Hamiltonian

H̃ : [0, tf ] → iu(4n3)

t 7→
4n3
∑

j=1

H̃jj(t)|j〉〈j| +
4n3
∑

j,k=1,j<k

(

H̃jk(t)|j〉〈k| + H̃∗
jk(t)|k〉〈j|

)

.

A crude estimate shows ‖H − H̃‖1 <
(4n3)2ε
64n6 = ε

4 . This carries over to

the solutions of the corresponding differential equations U̇(t) = −iH(t)U(t),

U(0) = U0 and ˙̃
U(t) = −iH̃(t)Ũ(t), Ũ(0) = U0 via the identity

U(t)− Ũ(t) = iŨ(t)

∫ t

0
Ũ(τ)∗(H̃(τ)− H(τ))U(τ) dτ (5)

which holds for all t ∈ [0, tf ) [20, Ch. 1, Thm. 5.1 & Ch. 1.8]. Together
with the fact that unitary matrices have operator norm 1, Eq. (5) implies
‖U − Ũ‖sup ≤ ‖H− H̃‖1. Altogether, Φ̃ε(t) := tr

C4n2 (Ũ(t)((·)⊗ |0〉〈0|)Ũ (t)∗),
t ∈ [0, tf ] is an analytic Stinespring curve which satisfies

‖Φ − Φ̃ε‖sup ≤ ‖Φ− Φε‖sup + ‖Φε − Φ̃ε‖sup
< ε

2 +
∥

∥tr
C4n2 ((U − Ũ)((·) ⊗ |0〉〈0|)U∗)

∥

∥

sup

+
∥

∥tr
C4n2 (Ũ ((·)⊗ |0〉〈0|)(U − Ũ)∗)

∥

∥

sup

≤ ε
2 + 2‖U − Ũ‖sup ≤ ε

2 + 2‖H− H̃‖1 < ε ;

this shows (ii).
Finally let us prove (iv), i.e. if Φ(0) = id, then U can be chosen such that

U(0) = 1. As in the proof of Lemma 1 (iii) ⇒ (iii’), because the Stinespring
isometry V0 satisfies tr

C2n2 (V0(·)V ∗
0 ) = Φ(0) = id = tr

C2n2 ((·) ⊗ |0〉〈0|) there
exists Z ∈ U(2n2) such that V0x = x⊗ Z|0〉 [52, Coro. 2.24]; in other words
V0x = x ⊗ ψ for all x ∈ C

n where ψ := Z|0〉 ∈ C
2n2

. Then U0 from (4)
simplifies considerably: because W0 = 1, V0 = (1⊗Z)ι, and ιι∗ = 1⊗ |0〉〈0|
a straightforward computation shows that U0 = 1⊗ UA where

UA =

(

|ψ〉〈0| 1− |ψ〉〈ψ|
1− |0〉〈0| −|0〉〈ψ|

)

∈ U(4n2) .

With this we define a new curve Ũ : [0, tf ) → U(4n3) via Ũ(t) := U(t)(1⊗U∗
A)
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with U(t) from above. Also we define Φε : [0, tf ) → CPTP(n) via

Φε(t) := tr
C4n2 (Ũ(t)((·) ⊗ |ψ〉〈ψ| ⊗ |0〉〈0|)Ũ (t)∗)

= tr
C4n2

(

U(t)
(

(·) ⊗ U∗
A(|ψ〉〈ψ| ⊗ |0〉〈0|)UA

)

U(t)∗
)

= tr
C4n2 (U(t)((·) ⊗ |0〉〈0| ⊗ |0〉〈0|)U(t)∗)

for all t ∈ [0, tf ). The last rearrangement implies that Φε is ε-close to Φ
in sup-norm. Moreover, Ũ is locally absolutely continuous with Ũ(0) = 1

(i.e. Ũ describes closed system dynamics). This concludes the proof.

We emphasize that, in the case of (iv) (i.e. if Φ(0) = id), statements (i)
through (iii) continue to hold, and that if the domain of Φ is a compact time
interval, then Lipschitz continuity can be relaxed to local Lipschitz continuity,
cf. [7, Ch. 1.4] & [33, p. 93].

We conclude this section with some remarks on the dimension of the
auxiliary system in Thm. 1:

Remark 3. (i) A direct consequence of our proof is that—just like in the
static case—the n2 in the environment dimension can be lowered to the
largest Kraus rank of Φ(t) taken over all t.

(ii) One additional factor of two comes from our choice of dilation (4).
This extra environment qubit can probably be avoided by using the
construction from Appendix B where a dynamic isometry is turned to
something unitary by adding suitable columns (and not via a larger
block matrix). However, taking this route makes it is more difficult to
keep track of the error from (3).

(iii) The other additional factor of two comes from the continuity result for
Stinespring isometries we used. Getting rid of this extra qubit would
amount to improving said result to hold for all m ≥ n2 (instead of,
currently, just all m ≥ 2n2), probably at the cost of enlarging the
right-hand side of (3) by a factor or

√
2, refer also to [47].

Moreover, combining our main theorem with Lemma 1 shows that for
all quantum dynamics there exist at most 4n2 dynamic (locally absolutely
continuous, and analytic for bounded time intervals) Kraus operators which
uniformly approximate the dynamics in question.

4. Outlook

In this paper, we tackled the question of whether the dynamics of any
quantum system admit a continuous (resp. sufficiently regular) curve of Stine-
spring unitaries. Or, reformulating this physically: can the evolution of an
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open system always be lifted to dynamics of a larger closed system while
adding only finitely many degrees of freedom? Answering this question—
ideally in a constructive way—could simplify simulating, and, in general,
studying open systems, cf. also [18].

Our contribution to this problem is the result that, given any Lipschitz
continuous dynamics such time-dependent Stinespring unitaries exist if one
allows for arbitrarily small errors in the supremum norm. Moreover, for
finite times these unitaries can even be chosen analytic. One way to inter-
pret our main result is that there is no (substantial) “gap” between general
quantum dynamics and time-dependent Stinespring curves (resp. dynamic
Kraus operators). Taking this perspective comes with a number of follow-up
questions—even beyond the obvious one which is whether uniform approxi-
mation can be replaced by exactness.

• What is the role of time-dependence of the system-environment Hamil-
tonian? More precisely, given1 Φ : [0, tf ] → CPTP(n), tf > 0 lo-
cally Lipschitz with Φ(0) = id, can Φ be approximated by a (finite-
dimensional) time-independent Stinespring curve to arbitrary degree?

At first glance, this may appear simple: first apply Thm. 1 to get an approx-
imation Φε generated by (analytic) closed system dynamics U(t). Then—
motivated by [8] where an infinite-dimensional clock was used to construct
an autonomous unitary dilation of a dynamical semigroup consistent with dy-
namical decoupling—given a sufficiently small step size δ, collect U(0), U(δ),
U(2δ), etc., into a larger unitary via a finite clock system. More precisely,
define W :=

∑ℓ
j=1U(jδ)U((j − 1)δ)∗ ⊗ |ej+1〉〈ej | to recover the curve Φε at

each time-step jδ after tracing out:

Φε(jδ) = trE
(

W j((·) ⊗ |0〉〈0| ⊗ |0〉〈0|)(W ∗)j
)

.

When writingW as e−iH for suitable H this yields a time-independent Stine-
spring curve Φ′

ε(t) := trE(e
−iHt((·) ⊗ |0〉〈0| ⊗ |0〉〈0|)eiHt); however, it is not

obvious whether the error ‖Φε(t)−Φ′
ε(t)‖⋄ “produced” between jδ and (j+1)δ

(more precisely: the Lipschitz constant of Φ′
ε) is of order o(δ

−1). This would
be necessary for the proof of Thm. 1 to generalize to this setting as “the”
Lipschitz constant of Φ′

ε is decided by ‖H‖∞. However, this is anything but
straightforward as the added clock makes W non-block-diagonal.

• Can the exactness result of Dive et al. [18] be generalized to time-
dependent Markovian dynamics? While their result covers the ana-

1We stress that boundedness of the interval is a necessary assumption. This is a direct
consequence of the quantum recurrence theorem [4, 42] (cf. also [51, 29]), i.e. every finite-
dimensional time-independent Stinespring curve eventually revisits the identity (at least
approximately), but a generic dynamic process does not do that.
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lytic case as well as the case where one takes finite products of time-
independent Markovian maps, taking the closure over the latter [53]
is what makes the step from time-independent to time-dependent non-
trivial.

This question is also inspired by the idea of a “Markovian shell” [21, 30, 10,
43, 11, 46, 12] where one wants to express arbitrary, but fixed dynamics Φ
via Φ(t) =

(

trCm ◦ Ψt

)

((·) ⊗ ω), for some m ∈ N, ω ∈ D(Cm), as well as
Ψ : [0, tf ) → CPTP(mn) time-dependent Markovian2. For convenience let us
call objects of the form (trCm◦Ψt)((·)⊗ω) Markov-Stinespring curves. Such a
construction can be seen as an interpolation between arbitrary dynamics and
Stinespring curves (in the sense of Def. 2): while one may have to add “many”
environmental degrees of freedom to turn a system of interest into something
closed, it may only take a few extra dimensions to turn the system into
something Markovian, cf. also [5]. Indeed, proving the above generalization
of [18] would imply that the set of Markov-Stinespring curves coincides with
the set of (finite-dimensional) Stinespring curves.
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Appendix A: Initial Value Problems and Their Solutions

Because we are dealing with a generalized notion of differential equations
we should be particularly careful when it comes to the underlying mathe-
matical formalism. For this we mainly follow [45, Appendix C]. The upshot
of this appendix can be found at the end of this section, refer to Lemma 2.
Given any mapping f : I → V where I is any connected subset of R (called
interval) and V is any finite-dimensional normed space one calls f

2Recall that a map Ψ : I → CPTP(n) is called time-dependent Markovian if it is the
solution to a time-local master equation Ψ̇(t) = L(t)Ψ(t), Ψ(0) = id (resp. the correspond-
ing integral equation) for some L : [0, tf ) → L(Cn×n) locally integrable with values in the
gksl-generators, refer to [53, 17, 50].



[Author and title] 15

• locally absolutely continuous if the restriction f |K to each compact in-
terval K ⊆ I is absolutely continuous, i.e. for every such K and every
ε > 0 there exists δ > 0 such that for every finite sequence of non-
empty pairwise disjoint subintervals (aj , bj) ⊂ K, j = 1, . . . , k which

satisfies
∑k

j=1(bj −aj) < δ it holds that
∑k

j=1 ‖f(bi)− f(ai)‖ < ε. The
collection of all such functions is denoted by ACloc(I, V ).

• locally integrable if f is measurable and
∫

K ‖f(t)‖dt < ∞ for all com-
pact intervals K ⊆ I. The collection of all such functions is denoted by
L1
loc
(I, V ).

• locally essentially bounded if f is measurable and the restriction f |J to
any bounded subinterval J ⊆ I is essentially bounded, that is, for every
such J there exists K ⊆ V compact such that f(t) ∈ K for almost all
t ∈ J . The collection of all such functions is denoted by L∞

loc
(I, V ).

The reason we consider the local versions of these notions is that we are also
dealing with dynamics on an infinite interval I (e.g., I = [0,∞)) where one
cannot guarantee absolute continuity but “only” its local counterpart.

The key property of absolutely continuous functions is that they are pre-
cisely those functions which can be recovered via their derivative. More
precisely, an absolutely continuous function f : [a, b] → V is differentiable
almost everywhere, ḟ is integrable, and

f(t) = f(a) +

∫ t

a
ḟ(τ) dτ for all t ∈ [a, b] ,

cf. [40, Thm. 7.20]. This readily transfers to the local version of absolute
continuity because R is a σ-finite measure space: If f : I → V is locally
absolutely continuous, then f is differentiable almost everywhere, ḟ is locally
integrable, and for all t0, t ∈ I one has f(t) = f(t0) +

∫ t
t0
ḟ(τ) dτ . Another

property we need—where I and V are chosen as before—is that if V is a
normed algebra, then the pointwise products f · g, g · f : I → V of func-
tions f ∈ L1

loc(I, V ), g ∈ L∞
loc(I, V ) are in L1

loc(I, V ) (due to the norm being
submultiplicative).

A note on topologies on these spaces: (L1, ‖ · ‖1), (L∞, ‖ · ‖∞) are well-
known to be Banach spaces [36, Thm. 13.5], and there are many norms such
that the same is true for AC([a, b], V ) such as, for example, f 7→ ‖f‖∞+‖ḟ‖1,
f 7→ |f(t0)|+‖ḟ‖1 for any t0 ∈ [a, b], or f 7→ ‖f‖1+‖ḟ‖1 (the latter turns AC
into the Sobolev space L1

1([a, b]) [35, Ch. 1.1.3]). However, if I is not compact
then their local counterparts are not Banach spaces; instead L1

loc, L
∞
loc,ACloc

can be equipped with a metric which turns them into a Fréchet space [36,
Lemma 5.17 ff.].
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With this we have introduced the necessary language for studying more
general initial value problems. Let E : I×Ω → V with I ⊆ R an interval and
Ω ⊆ V open. If for t0 ∈ I, f0 ∈ Ω there exists f ∈ ACloc(I,Ω) which satisfies

f(t) = f0 +

∫ t

t0

E(τ, f(τ)) dτ (6)

for all t ∈ I, then we say f is a solution of (6). If this f is differentiable
it even satisfies ḟ(t) = E(t, f(t)) with initial condition f(t0) = f0 . Under
certain assumptions on the map E one can guarantee the existence of unique
solutions of (6) on a maximal subinterval J ⊆ I, t0 ∈ J [45, Thm. 54].
However, as our setting is a lot more specific we may cut some corners and
get straight to linear differential equations ḟ(t) = A(t)f(t), f(t0) = f0—
respectively their integral counterpart

f(t) = f0 +

∫ t

t0

A(τ)f(τ) dτ (7)

—where t0 ∈ I, f0 ∈ V , and A : I → L(V ) maps to the linear operators
on V . The minimal requirement on A needed for this problem to be well-
posed is that it is locally integrable (as solutions are defined to be locally
absolutely continuous). It turns out that this is also sufficient in some sense:
for locally integrable A it follows—again from [45, Thm. 54]—that (7) has
a unique maximal solution. Even better, in our setting f takes values in
the quantum states—or, for the operator lift, in the unitary matrices or the
quantum channels—all of which are bounded sets [38]. Thus [45, Prop. C.3.6]
guarantees the existence of a unique solution3 for all times t > t0. For
convenience we summarize this in the following lemma:

Lemma 2. Let n ∈ N, tf ∈ (0,∞]. For all H : [0, tf ) → iu(n) locally
integrable and all U0 ∈ U(n) the integral equation

U(t) = U0 − i

∫ t

0
H(τ)U(τ) dτ (8)

has a unique solution U : [0, tf ) → U(n) (i.e. U is locally absolutely contin-
uous and satisfies (8) for all t ∈ I). In this case U satisfies the differential
equation U̇(t) = −iH(t)U(t), U(0) = U0 for almost all 4 t ∈ [0, tf ). More-

3Strictly speaking the result quoted from Sontag’s book requires the solution to live
inside a compact space at all times. However, a bounded set in a normed space is one which
is contained in BK(0) for some K > 0, and in finite dimensions the latter is compact.

4If U is differentiable at a so-called Lebesgue point t0 of H , then U̇(t0) = −iH(t0)U(t0)
[40, Thm. 7.11]; moreover U is differentiable almost everywhere [40, Thm. 7.20] and almost
every point is a Lebesgue point [40, Thm. 7.7]. Simple counterexamples show that, in
general, one needs that t0 is a Lebesgue point of H to get from (2) to (1), cf. also [22,
Ch. 4, Ex. 6].
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over, given any ρ0 ∈ D(Cn) the Liouville-von Neumann equation

ρ̇(t) = −i[H(t), ρ(t)] , ρ(t0) = ρ0

(more precisely its integral version ρ(t) = ρ0 − i
∫ t
0 [H(τ), ρ(τ)] dτ) has a

unique solution ρ : [0, tf ) → D(Cn) given by ρ(t) = U(t)ρ0U(t)∗ where U is
the solution to (8) for U0 = 1.

Appendix B: Evolutions of Isometries

In this appendix we derive a result which extends certain curves of isome-
tries to curves of unitaries and, most importantly, the construction conserves
any type of regularity.

Lemma 3. Let m,n ∈ N, m ≥ n, tf ∈ (0,∞] as well as V : [0, tf ) → C
m×n

be given such that V (t) is an isometry for all t ∈ [0, tf ). If V is locally
absolutely continuous, then there exists U : [0, tf ) → U(m), U(0) = 1 locally
absolutely continuous such that

V (t) = U(t)V (0) for all t ∈ [0, tf ) . (9)

Moreover, any regularity of V pertains to U .

Proof. Let us distinguish two cases here: 1. Assume V (0) = (e1 . . . en)
where ej ∈ C

m, j = 1, . . . ,m is the j-th standard basis vector. Then (9)
implies U(t) = (V (t) ∗) for all t. Thus if we can find a (time-dependent,
locally absolutely continuous) orthonormal basis of (ranV (t))⊥ then we can
fill up U(t) with it. This amounts to diagonalizing the orthogonal projection
t 7→ 1− V (t)V (t)∗ for which Kato provides a construction [28, Ch. II, §4.5]:
First define Q : [0, tf ) → C

m×m via

Q(t) := 1
2

[

d
dt(V (t)V (t)∗), V (t)V (t)∗

]

+ 1
2

[

d
dt(1− V (t)V (t)∗),1− V (t)V (t)∗

]

=(1− V (t)V (t)∗)V̇ (t)V (t)∗ − V (t)V̇ (t)∗(1− V (t)V (t)∗)

for all t ∈ [0, tf ). Note that Q is in L1
loc
([0, tf )) because it is the sum of

products of the L1
loc

function V̇ (t) and the bounded (hence5 L∞
loc
) functions

V (t), V (t)∗,1−V (t)V (t)∗ (cf. Appendix A). Moreover Q(t) is skew-Hermitian
for all t ∈ [0, tf ). Together this shows that the linear differential equation
(formally: the respective integral equation) Ẇ (t) = Q(t)W (t), W (0) = 1

5Because local absolute continuity of some f : I → V implies measurability of f (for
all t0 ∈ I , ε > 0 the intersection Bε(t0) ∩ I is compact; thus by assumption f |

Bε(t0)∩I
is

absolutely continuous, hence continuous, hence measurable), locally absolutely continuous
plus boundedness guarantees locally essentially bounded.
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has a unique solution W : [0, tf ) → U(m). Then Kato’s result shows that
W (t)(1−V (0)V (0)∗)W (t)∗ = 1−V (t)V (t)∗ for all t ∈ [0, tf ). We claim that

U(t) :=

(

V (t) W (t)

(

0
1m−n

))

—i.e. if W (t) = (A(t) B(t)) where A(t) is of same size as V (t), then U(t)
equals (V (t) B(t))—solves (9) and has all the desired properties:

• At time zero

U(0) =

(

V (0) W (0)

(

0
1m−n

))

=

(

1n 0
0 1m−n

)

= 1 .

• U(t) is unitary: a straightforward computation shows U(t)U(t)∗ =
V (t)V (t)∗+W (t)(1−V (0)V (0)∗)W (t) = V (t)V (t)∗+1−V (t)V (t)∗ = 1.

• U(t)V0 = U(t)(e1 . . . en) = V (t) for all t, meaning (9) holds.

• U(t) is locally absolutely continuous because V and W are.

• If V has some level of regularity (i.e. Ck or analytic) on some open
subinterval of [0, tf ), then Q is Ck−1 by definition so W is Ck again.
Thus U is Ck on said interval because both V and W are.

2. Now for the general case: given V with V (0) arbitrary, there certainly
exists U0 ∈ U(m) such that U∗

0V (0) = (e1 . . . en). Defining Ṽ (t) := U∗
0V (t)

turns (9) into Ṽ (t) = U∗
0V (t) = U∗

0U(t)V (0) = U∗
0U(t)U0Ṽ (0). Because

Ṽ (0) = (e1 . . . en) we can follow step 1 above to find Ũ(t) locally absolutely
continuous with Ũ(0) = 1 such that Ṽ (t) = Ũ(t)Ṽ (0),. This in turn yields a
locally absolutely continuous solution of (9) via U(t) := U0Ũ(t)U∗

0 .

Remark 4. Lemma 3 continues to hold if local absolute continuity of V is
replaced by regular continuity: as explained in the proof all we need is a (time-
dependent, continuous) orthonormal basis of (ranV (t))⊥ = ker (V (t)V (t)∗).
But the latter is equal to ran (1 − V (t)V (t)∗) [41, 5.15] so the existence of
a continuous basis is guaranteed by an old result of Doležal [19] (there, set
A(t) = 1 − V (t)V (t)∗). Finally this basis can be made orthonormal via the
usual Gram-Schmidt procedure which, importantly, preserves continuity.

Appendix C: Auxiliary Results Regarding (Lipschitz) Continuity

Recall that, given metric spaces (X, dX ), (Y, dY ), a map f : X → Y is
called Lipschitz continuous (or just Lipschitz ) if there exists K > 0 such
that dY (f(x1), f(x2)) ≤ KdX(x1, x2) for all x1, x2 ∈ X. Any such K is
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then referred to as Lipschitz constant of f . First we need the following well-
known relation between the norm of the derivative and Lipschitz constants
[16, (8.5.2)]:

Lemma 4. Let K ≥ 0, a real interval I, a complete normed space (X, ‖·‖X ),
and a continuous mapping f : I → X be given. If there exists an at most
countable subset I0 of I such that for all t ∈ I\I0, f has a derivative f ′(t) ∈ X

at t (w.r.t. I) 6 such that ‖f ′(t)‖X ≤ K, then f is Lipschitz continuous with
Lipschitz constant at most K.

The next auxiliary result is concerned with estimating the distance be-
tween Lipschitz curves which intersect at certain points.

Lemma 5. Let I ⊆ R be a bounded from below, closed interval. Moreover let
If be a closed and isolated subset of I with strictly increasing enumeration
(tj)j∈N, N ⊆ N such that

∆(If ) := sup
{

|s− t| : s, t ∈ I \ If such that conv({s, t}) ⊆ I \ If
}

<∞ ,

that is, each connected component of I \ If has (finite) length at most ∆(If ).
Now given any normed space (X, ‖·‖X ) and f, g : I → X Lipschitz continuous
with respective Lipschitz constants Kf ,Kg > 0, if one has f(t) = g(t) for all
t ∈ If , then

‖f − g‖sup ≤ (Kf +Kg)∆(If ) .

Proof. W.l.o.g. N = N; the case |N| < ∞ is proven analogously. Defining
t0 := min I (which exists by assumption) we find I = [t0,∞) =

⋃∞
j=0[tj , tj+1).

This lets us compute

‖f − g‖sup = sup
t∈I

‖f(t)− g(t)‖X

= max
{

sup
t∈[t0,t1)

‖f(t)− g(t)− f(t1) + g(t1)‖X ,

sup
j∈N

sup
t∈[tj ,tj+1)

‖f(t)− g(t)− f(tj) + g(tj)‖X
}

≤ max
{

sup
t∈[t0,t1)

‖f(t)− f(t1)‖X + sup
t∈[t0,t1)

‖g(t)− g(t1)‖X ,

sup
j∈N

sup
t∈[tj ,tj+1)

(

‖f(t)− f(tj)‖X + ‖g(t)− g(tj)‖X
)}

≤ (Kf +Kg)max
{

sup
t∈[t0,t1)

|t− t1|, sup
j∈N

sup
t∈[tj ,tj+1)

|t− tj |
}

= (Kf +Kg) sup
j∈N0

|tj − tj+1| = (Kf +Kg)∆(If ) .

6This means that there exists f ′(t) ∈ X such that ‖ f(t+h)−f(t)
h

− f ′(t)‖X → 0 as h → 0
under the additional condition t+ h ∈ I for all h small enough [25, Def. 3.2.3].
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We conclude this appendix by asserting Lipschitz continuity of the matrix
logarithm on the unitary group. This complements the more known fact that
the exponential on the unitary algebra has Lipschitz constant 1, i.e. for all
H1,H2 ∈ C

n×n Hermitian it holds that ‖eiH1−eiH2‖∞ ≤ ‖H1−H2‖∞ (follows
from Eq. (5)).

Lemma 6. The following statements hold:

(i) Given z ∈ C, |z| = 1 there exists φ ∈ (−π, π] such that z = eiφ and
2|φ| ≤ π|z − 1|.

(ii) Given U ∈ C
n×n unitary there exists H ∈ iu(n) such that U = eiH and

2‖H‖∞ ≤ π‖U − 1‖∞ .

Proof. (i): Given z on the unit circle there exists (unique) φ ∈ (−π, π] such
that z = eiφ. We compute

π|z − 1| = π|eiφ − 1| = π
√

(cos(φ)− 1)2 + (sin(φ))2 = π
√

2(1 − cos(φ)) .

Combining the double-angle formula cos(φ) = 1 − 2(sin(φ2 ))
2 with Jordan’s

inequality 2
π ≤ sin(α)

α —the latter being true for all α ∈ [−π
2 ,

π
2 ] [1, Ch. 4.3]—

one finds 1 − cos(φ) ≥ 2φ2

π2 for all φ ∈ [−π, π]. This results in the desired

estimate π|z − 1| = π
√

2(1 − cos(φ)) ≥ π
√
2

√
2
π |φ| = 2|φ| .

(ii): Because U is unitary it is normal and has eigenvalues of absolute
value one. Thus there exist V ∈ C

n×n unitary as well as z1, . . . , zn ∈ C with
|z1| = . . . = |zn| = 1 such that U = V diag(z1, . . . , zn)V

∗ [27, Thm. 2.5.4]. By
(i) there exist φ1, . . . , φn ∈ (−π, π] such that zj = eiφj and 2|φj | ≤ π|zj − 1|
for all j = 1, . . . , n. Define H := V diag(φ1, . . . , φn)V

∗; this Hermitian matrix
satisfies U = eiH by construction. Using unitary invariance of the operator
norm one finds

π‖U − 1‖∞ = π‖V diag(z1, . . . , zn)V
∗ − V V ∗‖∞

= π‖diag(z1 − 1, . . . , zn − 1)‖∞
= max

j=1,...,n
π|zj − 1| ≥ max

j=1,...,n
2|φj | = 2‖H‖∞ .
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