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Abstract 

In this paper, the effectiveness of the genetic op- 
erations of the common genetic algorithms, such as 
crossover and mutation, are analyzed for small search 
range situations. As expected, the so-obtained e f l -  
ciency/performance of the genetic operations as quite 
different f rom thut of their large search range coun- 
terparts. To fill this gap, a lightweight genetic search 
algorithm is presented to  provide an eficient way for 
generating near optimal solutions for these kinds of ap- 
plications. 

1 INTRODUCTION 

Genetic algorithms (GAS) have been developed and 
applied to a variety of optimization and search prob- 
lems [I]. In the applications with large amounts of 
search points, it is impossible, due to execution time 
and storage space, to perform the brute-force (full) 
search for visiting all the points in the search space. 
GAS can help to find the global optima although a 
few computational overheads of the genetic evolution 
are required. While compared with the computational 
complexity of the full search, the evolution overheads 
are small and worthwhile. Nevertheless, when the 
search space is very small, the genetic evolution over- 
heads might overtake the computational complexity of 
applying the full search. This implies, in this situa- 
t,ion, it would be better to perform the full search di- 
rectly. However, the time constraint for these small 
search range applications is usually very tight. For ex- 
ample, in the motion estimation stage of video cod- 
ing [2], the ideal execution time for each 16 x 16 block 
search must be less than 3.95 x lo-' second. The com- 
putational complexity of the full search is still too high 
to satisfy the above requirement. The evolution over- 
heads of G.4s have to be reduced, so as to meet the 

embedded strict time constraint in the above applica- 
tions. 

GAS have been applied to these kinds of applications 
in the literature [3, 41. The huge computational com- 
plexity of the traditional GA-based search algorithms 
has made them become handicaps in real video cod- 
ing applications. In this paper, a lightweight genetic 
search algorithm (LGSA) will be presented. When 
GAS are applied in searching, the computational com- 
plexity comes mainly from the following two parts: ( I )  
the computations of evaluating the similarity between 
the search points and t'he reference template; (2) the 
computations of the genetic evolution. The first part 
is dominated by the number of the evaluated search 
points. Fewer computa,tions would be required if the 
number of the evaluated points is reduced. But, this re- 
duction involves the risk: of finding a bad solution. The 
second part is controlled. by the structure of the genetic 
evolution. Low control overheads bring less computa- 
tional complexity. In the LGSA, both the number of 
the evaluated points and the control overheads of ge- 
netic evolution can be reduced to meet the time con- 
straint of video coding. 

2 ANALYSIS O:F CROSSOVER EFFI- 
CIENCY 

In conventional GAS, the evolution is analyzed based 
on the schema theory [l]. The crossover disruption 
rates were defined as th.e probability that the schema 
is disrupted by crossover. For a good genetic algorithm, 
it is hoped that the crossover disruption rate of a highly 
fit schema will be very Ifow. In [l], an upper bound for 
the crossover disruption rate of a schema was given. 

Based on the primitive results of the schema theory, 
a further analysis was provided in [6]. It is concluded 
that at least in two situations where disruption is ad- 
vantageous: (1) when th,e population is quite homoge- 
neous, and (2) when the population size is too small to 
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provide the necessary sampling accuracy for complex 
search spaces. It is also known that smaller population 
sizes tend to become homogeneous more quickly. Be- 
cause population sizes are small when the search space 
is not large [7], the disruption will also be favorite in 
a small search space. The crossover productivity rate 
(i.e. disruption rate) will be denoted as Pelf. It is 
hoped that the crossover productivity rate will be large 
enough when the population becomes homogeneous. 

Besides the above two situations] disruption is also 
advantageous when real-time constraint is a must. In 
this situation, the generation number of genetic evolu- 
tion is not allowed to  be large. In order to probe more 
search points, the crossover productivity rate should be 
high, especially when an elitist selection is applied in 
the reproduction stage. 

In the previous analyses] the crossover disruption 
rates are discussed based on schemata (chromosome 
patterns) while applying conventional GAS. However, 
it is difficult to determine the fitness of a schema in the 
applications with various kinds of search spaces. An 
analysis of the crossover productivity rates based on 
a randomly given chromosome will be provided in the 
following. 

For an n-point crossover, the crossover productiv- 
ity rate can be derived as follows. The n crossover 
points divide each chromosome into (n  + 1) segments] 
i.e., Ca = Ca, + Ca2 -k . . '  $- Can+, and Cb = c b l  -f 
Cb2 + . . . + Cb,+l .  At the initial derivation, n is as- 
sumed to be an odd number. An n-point crossover can 
be identically represented as shown in Fig. l (b) .  The 
corresponding crossover productivity rate can then be 
calculated as 

3 ANALYSIS OF MUTATION EFFI- 
CIENCY 

In conventional GAS, mutation is applied to probe 
the search points that can not be reached by the 

crossover operations. The mutation probability is usu- 
ally small so as not to spoil the population and ruin the 
chromosomes with good fitness. When the crossover 
operations are taken out from the genetic evolution, 
due to their inefficiency in a small search space situ- 
ation] the task of probing new search points must be 
done by the mutation operations. It should be guar- 
anteed that every legal search point can be reached 
by mutating any selected chromosomes. The neces- 
sary generation number for a selected chromosome to 
be mutated into any other chromosomes should also 
be small if the time constraint is an important issue. 
For a selected chromosome, it is hoped that the chro- 
mosome can change to  any other chromosomes with 
higher probability. If an efficient mutation operation is 
applied, the probability of transferring any given chro- 
mosome to the other chromosomes should be identical 
after a small number of iterations] such that there is 
not any search point which is hard to be reached from 
the selected chromosome. 

To improve the mutation efficiency, the mutation 
probability has to be increased; however, the accu- 
mulated evolution information will also be destroyed 
which makes the genetic search somewhat like the ran- 
dom search. Unless an elitist selection is applied in 
the reproduction stage to  maintain the evolution infor- 
mation, the genetic search will degrade to the random 
search if the mutation probability is high. When an 
elitist selection is applied to avoid the disruption of 
population by mutation] the mutation invariance (or 
unchanged) rate for a selected chromosome would be 
very low. The probability of transferring one chromo- 
some to other different chromosomes is proportional to 
the mutation efficiency. 

The probability for a chromosome Ci to be mutated 
into another chromosome Cj is 

where P ,  is the mutation probability, IC the chromo- 
some length, and H ( C , ,  Cj) the Hamming distance be- 
tween Ci and Cj. A mutation efficiency matrix can 
then be formed as 

where t is the generation number and 

mi';' = P,ff(i,  j )  (5) 

Assume the selected chromosome is strong (;.e., with 
high fitness value), such that  it and its offsprings will 
always be selected in the reproduction stage. When the 
crossover stage is disabled, the mutation efficiency can 
be calculated according to iWt. 
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Fig. 2 shows the mutation efficiency for the case of 
chromosome length k = 2. In Fig. 2(a), the average 
mutation disruption rates with three different muta- 
tion probabilities P, = 0.01, 0.5, and 0.99, are de- 
picted, where the mutation disruption rate is defined 
to be the mean value of the probabilities for a selected 
chromosome being mutated into distinct chromosomes 
in the search space. The variances of the probabilities 
of being mutated into various chromosomes are shown 
in Fig. 2(b). 

In conventional GAS, a small mutation probability 
is usually selected, for example, P, = 0.01 is suggested 
in [8]. It can be seen from Fig. 2(a) that the average 
mutation disruption rate is very low in the early gen- 
erations. The average disruption rate increases slowly 
while the generation number increases. The average 
disruption rate will reach the upper bound 0.25 after 
more than one hundreds generations. In order to pro- 
mote the mutation efficiency, the mutation probability 
is increased. If the mutation probability approaches 1, 
e.g. P, = 0.99, it is found that the average disruption 
rate will bounce between two extreme values. More- 
over, by comparing Fig. 2(a) and (b), it  is found that 
the variance of the disruption rates is very large when 
the average disruption rate is high. The probabilities of 
transferring each chromosome to all other chromosomes 
are still very low. Hence, increasing the mutation prob- 
ability will not improve the mutation efficiency well. If 
a compromised value is used, e.g. P, = 0.5, the av- 
erage disruption rate will retain to 0.25. Under this 
condition, the mutation efficiency will be better than 
that of the previous two cases; however, the invariance 
rate will still be 1 - 0.25 x 3 = 0.25. This invariance 
rate is still too high to improve the mutation efficiency 
for each chromosome. 

Fig. 3 shows the mutation efficiency for the case of 
k = 5. The results are very similar to that of the case 
of k = 2. Because, when the search space is larger there 
are more chromosomes, the average disruption rates are 
therefore becoming smaller since the disruption rates 
should be always less than 1. The chromosome length 
is larger, in this case, so that the mutation efficiency 
is better (0.03 x 31 > 0.25 x 3). A smaller generation 
number is required for the curves of different mutation 
probabilities to converge to the value 1/32. Although 
the mutation efficiency is better when the chromosome 
length is larger, the resultant efficiency is still not high 
enough. 

In the LGSA, each gene of a chromosome is altered 
by adding one of the following three values, 0,  1, -1, 
with identical probabilities, for every k generations. 
In the kth generation, the mutation invariance rate is 
equal to 1/2k. The mutation efficiency of the LGSA, 

in the kth generation, is shown in Table. 1, where two 
kinds of chromosome lengths are tested. It is found 
that, within a small rmmber of generations, the mu- 
tation efficiency of the LGSA will be better than that 
of the conventional ones. Moreover, the corresponding 
average mutation disruption rates will be higher and 
the variances of the disruption rates will be smaller. 
Notice that the mutation invariance rates of the LGSA 
are reasonably small as compared with that of the con- 
ventional mutation approach, as shown in Figs. 2 and 3. 

4 THE LIGHTWEIGHT GENETIC 
SEARCH ALGORITHM 

Assume the central point of the two-dimensional 
search space S locates at ( 2 ,  e ) .  The ith chromosome, 
Ci for i = 0 , 1 ,  . . ., N -- 1, of the population set is de- 
fined as 

and the relative location is 

(mt, .a) = (z, - 2 ,  YZ - e ) ,  0) 
where ( x i ,  yi) denotes {,he location of the search point 
associated with the chromosome and the codeword size 
k depends on the size of the search space. If the search 
spaceis{(i,j)l-w< i , j  5 w-l}, thevalueofkwil lbe 
[10g2(2w)l, where r.1 is a ceiling function. The values 
of the genes are derived from the associated relative 
location, that is 

where mod denotes th’e module operation and 1.1 is 
a floor function. The relative location can be one-to- 
one encoded into a series of genes with values of 0 and 
1. And the relative location (mi, n;) can be calculated 
from the values of the genes by 

k-I  

j = O  

k - I  

ni 
j=O 

Although the values of the genes might not equal 0 or 
1 after mutation; however, they can be transferred to 
a relative location without any ambiguity. 
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Each chromosome has an associated fitness value 
which is defined as 

where di is the matching value of the search point rep- 
resented by the i th chromosome, D is a difference func- 
tion, and U and S are the unit step function and the 
delta function, respectively. When the target of the 
search problem is to  find a point with the minimum 
matching value, the difference function is defined as 

D ( d i ,  JT)  = dT - d i ,  (13) 

where d, is the r t h  minimum matching value among 
the N values, {dili = 0, 1,. . ., N - l}. If the target is 
the global maximum, the difference function is defined 
as 

D(di,  d r )  = di - &, (14) 
where 2, is the r t h  maximum matching value. The 
constant r determines how many chromosomes, at  
most: should be selected as seeds in the reproduction 
stage for producing a rival population. The chromo- 
somes with larger fitness values, in the current popula- 
tion set, will have higher probability to be selected as 
seeds for generating the rival population. This proba- 
bilistic scheme of selecting the seeds of the new gener- 
ation is known as the probabilistic reproduction. Be- 
cause the value of U D ( d z , z r l  is either 0 or l, there needs 
no multiplication for computing the fitness values. 

The reproduction method used in this work is similar 
to the weighted roulette wheel method [l]. For each 
chromosome Ci, an incidence range ri is calculated as 

(151 ri  = [ f k  E",=, f k  ) 
cfcr fk ' fk ' 

where fk is the fitness value of the kth chromosome in 
the population, and '[' and ')' denote closing and open- 
ing boundaries, respectively. When the incidence range 
of each chromosome has been determined, N real num- 
bers ai for i = 0 ,1 ,  . . . , iV - 1, are randomly generated, 
where 0 5 ai < 1. The value of ai will be bounded by 
some incidence range r j ,  that is, ai E rj .  The j t h  chro- 
mosome Cj is then selected as a seed to generate the 
rival population. It is possible that one chromosome 
can be selected twice or more. Because N real random 
numbers are generated, N seeds will be selected and 
placed in the mating pool. 

After the reproduction stage, the seeds in the mating 
pool are transferred into candidate chromosomes of the 
new population set by mutation. Assume the current 
chromosome to be processed is [mi nilt, where mi = 
[ ~ l i , k - l a i , k - 2 . .  .Ui,o] and ni = [b i ,k - lb i ,k -%.  . . bi ,o] .  In 

the j t h  generation, two genes ai,= and bi ,z  are varied, 
where z = k - 1 - ( j  mod I C ) .  

There are eight mutation operators, {(G, yp) jp  = 
0 , 1 , .  . ., 7}, which can be adopted in our implementa- 
tion, that is 

where p is a random integer whose value is between 
0 and 7. Because the chromosomes are randomly se- 
lected and put on the mating pool, it is not necessary 
to generate a random number for determining the value 
of p .  We simply set p to be (i mod 8).  The mutation 
operators are therefore defined as, 

c p  = (-l)"([p + 1 - 1(1+ l)] 

V P  - - ( - l )qP+ 1 - 1(Z+ l)] 

N chromosomes are selected from the union of the 
original population set and the rival population set (2N 
chromosomes in total) according to the fitness values. 
Each chromosome can only be selected once. The chro- 
mosomes with larger fitness values will be picked up as 
the members of the new population set and go through 
the next iteration of the genetic evolution. Although 
the chromosomes have to be sorted in this survival com- 
petition stage, the overhead is not high because the 
population size is usually not large in the LGSA. In 
GA, the new chromosomes generated from the original 
ones are not guaranteed to have larger fitness values. 
The survival competition stage is included in the LGSA 
to prevent the chromosomes from being replaced by the 
new ones with poorer fitness values because the maxi- 
mum generation number will be restricted to be quite 
small so as to cope with the tight time constraint. 

The chromosome with the maximum fitness value 
is selected from the current population as a possible 
solution. The possible solution might be replaced by 
the other ones from one generation to  the others. The 
iteration will be terminated when the termination con- 
ditions are satisfied. There are three termination con- 
ditions in the LGSA: (1) the possible solution is not 
updated for a predetermined period of generations; (2) 
the matching value of the possible solution is better 
than a predefined threshold; ( 3 )  the iteration number 
reaches the given maximum generation bound. 

The computational cost of generating a random 
number is not low. In conventional GA-based applica- 
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tions, the search space is usually large and the time con- 
straint is not an important issue, hence the computa- 
tional cost required to generate random numbers is tol- 
erable. However, when GAS are applied to time critical 
applications, such as the block matching of video cod- 
ing, the cost of generating random numbers becomes a 
critical issue because the search space is relatively small 
and the time constraint is extremely tight. In con- 
ventional GAS, random numbers have to be generated 
in the reproduction, the crossover, and the mutation 
stages. Nevertheless, the random number generator is 
only called in the reproduction stage of the LGS.A. 

In conventional GAS, crossover is usually applied. 
The purpose of performing crossover is to randomly 
exploit new search points. Because the search space 
is not large in the LGSA, there are no large amounts 
of local optima in the search space. The effectiveness 
of crossover is not prominent; therefore, the crossover 
stage is not included in the LGSA for complexity re- 
duction. 

Because weaker chromosomes might propagate 
stronger chromosomes, they are not excluded in the 
new population set of the conventional GAS. The pop- 
ulation will be gradually mature after a long period of 
generations. That is, weaker chromosomes will not hin- 
der the population from being mature; however, they 
will bring large harms to the LGSA in which the gen- 
eration number of evolution is restricted to be small. 
To solve this problem, in the LGSA, a survival com- 
petition stage is included. It ensures that the quality 
of each chromosome in the current population set is 
better than the old ones. 

There are two kinds of mutation operators used in 
the traditional GA-based implementation: changing a 
gene’s value (i) from 0 to 1, or (ii) from 1 to 0. Gen- 
erally, the mutation probability is very low so as not 
to impair the overall quality of a given population. In 
the LGSA, the mutation probability is relatively high 
so the evolution of chromosomes is relatively violent. 
Fortunately, the bad effect of high mutation rate will 
be totally controlled by the survival competition. In- 
terestingly, lots of search points will be explored due to 
high mutation rate although there is no crossover stage 
in the LGSA. 

Because the evolution of chromosomes is slow, the 
maximum and the average generation numbers are 
la,rge in conventional GAS, and so are the required 
average computations for finding the extreme value. 
Therefore, both the control overheads and the cost of 
performing extreme value finding are tremendous. In 
the LGSA, the evolution is relatively violent and the 
quality of chromosomes is well controlled by the sur- 
vival competition stage, so the maximum generation 

number is small and the control overheads of chromo- 
some evolution are also reduced. Moreover, the cost for 
extreme value finding of the LGSA i s  relatively small 
because most of the irrelevant search points have been 
excluded. 

5 CONCLUSION 

In this paper, some important issues of the genetic 
evolution, such as the efficiency of crossover and muta- 
tion operations and the global convergence property are 
analyzed. It follows froiii the analyses, when the search 
space is small, the efficiency of the crossover operation 
is not good enough for deserving the required computa- 
tions. It is also hard to adjust the mutation probability 
to promote the efficiency of the conventional mutation 
operations. In the proposed LGSA, the computational 
complexity is well controlled by taking the characteris- 
tics of smaller search space into account. 
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Figure 1. (a) The N-point crossover, (b) an equivalent representation of an n-poznt crossover 
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Figure 2. Mutation eficiency of chromosome length b = 2 :  (a) the average mutation disruption rates, (b)  the 
variances of the disruption rates for different chromosomes. 
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Figure 3. Mutation eflciency of chromosome length k = 5: (a)  the average mutation disruption rates, (b)  the 
variances of the dzsruption rates for different chromosomes. 
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