
Bond University
Research Repository

The accumulated experience ant colony for the travelling salesman problem

Randall, Marcus; Montgomery, James

Published in:
International Journal of Computational Intelligence and Applications

DOI:
10.1142/S1469026803000938

Licence:
Free to read

Link to output in Bond University research repository.

Recommended citation(APA):
Randall, M., & Montgomery, J. (2003). The accumulated experience ant colony for the travelling salesman
problem. International Journal of Computational Intelligence and Applications, 3(2), 189-198.
https://doi.org/10.1142/S1469026803000938

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository
coordinator.

Download date: 27 Apr 2024

https://doi.org/10.1142/S1469026803000938
https://research.bond.edu.au/en/publications/42615eeb-8ae6-4b33-860c-4f0ee907ff46
https://doi.org/10.1142/S1469026803000938

The Accumulated Experience Ant Colony for
the Travelling Salesman Problem?

Marcus Randall, James Montgomery??

School of Information Technology
Bond University, QLD 4229

Ph: +61 7 5595 3361
Fax: +61 7 5595 3320

{mrandall, jmontgom}@bond.edu.au

Abstract. Ant colony optimisation techniques are usually guided by
pheromone and heuristic cost information when choosing the next ele-
ment to add to a solution. However, while an individual element may
be attractive, usually its long term consequences are neither known nor
considered. For instance, a short link in a TSP may be incorporated into
an ant’s solution, yet, as a consequence of this link, the rest of the path
may be longer than if another link was chosen. The Accumulated Expe-
rience Ant Colony uses the previous experiences of the colony to guide in
the choice of elements. This is in addition to the normal pheromone and
heuristic costs. The results indicate that on some problems this helps to
find improved solutions to the travelling salesman problem.

Keywords: Ant colony optimisation, travelling salesman problem.

1 Introduction

Ant Colony Optimisation (ACO) meta-heuristics have proved to be remarkably
successful in solving a range of discrete optimisation problems. The core prin-
cipal on which these techniques operate is to use a collective memory of the
characteristics of the problem being solved, built up over time. Each ant con-
sults this memory when augmenting its solution. This memory usually stores the
colony’s preference for adding a particular element with respect to the current
element. For instance, given a travelling salesman problem (TSP) in which a
Hamiltonian circuit of minimum total length is sought, an ant would choose the
next city based on the pheromone amount associated between the current city
and the potential next city in conjunction with the distance. The accumulated
experience ant colony (AEAC) adds another dimension to this by considering
how the choice of elements affects the solution quality after it has been incorpo-
rated. As such, we have modified the characteristic element selection equations
? We wish to acknowledge the Australian Research Council for their financial assis-

tance to this research.
?? This author is a PhD scholar supported by an Australian Postgraduate Award.

Electronic version of an article published at International Journal of Computational Intelligence and Applications, 3(2), 189-198.
 © World Scientific Publishing Company. https://doi.org/10.1142/S1469026803000938

to incorporate a weighting term for the accumulated experience component. This
weighting is based on the characteristics of partial solutions generated within the
current iteration. Elements that appear to lead to better solutions are valued
more highly, while those that lead to poorer solutions are made less desirable.

Heusse, Gurin, Snyders and Kuntz [3] propose a similar information sharing
system for routing in packet-switched networks, called Co-operating Asymmet-
ric Forward routing (CAF routing). Nodes in CAF routing send out agents to
calculate the current delay on network routes. The exact route each agent takes
is based on the same routing information used for normal data packets, but
is modified by information gathered by agents travelling on the same route in
the opposite direction. Thus, CAF routing uses knowledge gathered from many
agents to report on the current state of network routes. This differs from AEAC,
however, which uses accumulated experience in a heuristic fashion to estimate
the utility of individual solution elements.

This paper is organised as follows. Section 2 has a brief overview of ACO while
Section 3 explains how we adapt it to incorporate the accumulated experience
component. Section 4 shows the results of AEAC on some benchmark TSPs
while Section 5 gives the conclusions of this work.

2 ACO

ACO is an umbrella term for a number of similar meta-heuristics [2]. The Ant
Colony System (ACS) [1] meta-heuristic will be described here in order to demon-
strate the underlying principals of ACO.

ACS can best be described with the TSP metaphor. Consider a set of cities,
with known distances between each pair of cities. The aim of the TSP is to find
the shortest path to traverse all cities exactly once and return to the starting
city. ACS is applied to this problem in the following way. Consider a TSP with N
cities. Cities i and j are separated by distance d(i, j). Scatter m ants randomly
on these cities (m ≤ N). In discrete time steps, all ants select their next city
then simultaneously move to their next city. Ants deposit a substance known as
pheromone to communicate with the colony about the utility (goodness) of the
edges. Denote the accumulated strength of pheromone on edge (i, j) by τ(i, j).

At the commencement of each time step, Equations 1 and 2 are used to select
the next city s for ant k currently at city r. Equation 1 is a greedy selection
technique favouring cities which possess the best combination of short distance
and large pheromone levels. Equation 2 balances this by allowing a probabilistic
selection of the next city.

s =
{

arg maxu∈Jk(r)
{
τ(r, u)[d(r, u)]β

}
if q ≤ q0

Equation 2 otherwise (1)

pk(r, s) =

{
τ(r,s)[d(r,s)]β∑

u∈Jk(r) τ(r,u)[d(r,u)]β
if s ∈ Jk(r)

0 otherwise
(2)

2

Electronic version of an article published at International Journal of Computational Intelligence and Applications, 3(2), 189-198.
 © World Scientific Publishing Company. https://doi.org/10.1142/S1469026803000938

Note that q ∈ [0, 1] is a uniform random number and q0 is a parameter. To
maintain the restriction of unique visitation, ant k is prohibited from selecting
a city which it has already visited. The cities which have not yet been visited
by ant k are indexed by Jk(r). It is typical that the parameter β is negative so
that shorter edges are favoured. Linear dependence on τ(r, s) ensures preference
is given to links that are well traversed (i.e. have a high pheromone level). The
pheromone level on the selected edge is updated according to the local updating
rule in Equation 3.

τ(r, s)← (1− ρ) · τ(r, s) + ρ · τ0 (3)

Where:

ρ is the local pheromone decay parameter, 0 < ρ < 1.
τ0 is the initial amount of pheromone deposited on each of the edges.

Upon conclusion of an iteration (i.e. once all ants have constructed a tour),
global updating of the pheromone takes place. Edges that compose the best
solution are rewarded with an increase in their pheromone level. This is expressed
in Equation 4.

τ(r, s)← (1− γ) · τ(r, s) + γ ·∆τ(r, s) (4)

∆τ(r, s) =
{
Q
L if (r, s) ∈ globally best tour
0 otherwise.

(5)

Where:

∆τ(r, s) is used to enforce the pheromone on the edges of the the solution
(see Equation 5).
L is the length of the best (shortest) tour to date while Q is a problem
dependent parameter [1].
γ is the global pheromone decay parameter, 0 < γ < 1.

3 Accumulated Experience Ant Colony

The AEAC described herein is based on ACS, although it is possible to apply
it in a range of ACO meta-heuristics. Essentially a new term w is incorporated
into Equations 1 and 2 giving Equations 6 and 7 respectively.

s =
{

arg maxu∈Jk(r)
{
w(r, u)τ(r, u)[d(r, u)]β

}
if q ≤ q0

Equation 2 otherwise (6)

pk(r, s) =

{
w(r,s)τ(r,s)[d(r,s)]β∑

u∈Jk(r) w(r,u)τ(r,u)[d(r,u)]β
if s ∈ Jk(r)

0 otherwise
(7)

Given that u ∈ Jk(r), w(r, u) represents the relative weighting of link (r, u)
compared to all other choices from node r, 0 ≤ w(r, u) ≤ 2. This is calculated for

3

Electronic version of an article published at International Journal of Computational Intelligence and Applications, 3(2), 189-198.
 © World Scientific Publishing Company. https://doi.org/10.1142/S1469026803000938

all ants that have incorporated link (r, u) into their solution within the current
iteration. If link (r, u) has been found to lead to longer paths after it has been
incorporated into the solution, then the weighting w(r, u) < 1. On the other
hand, if the reverse is the case, then w(r, u) > 1. If the colony as a whole has
never incorporated link (r, u), its weighting is simply 1. Therefore, links that
have historically been shown to induce shorter overall paths will be favoured
over those that have not. This represents a longer term approach than just using
pheromone alone.

The value of w is updated at the beginning of each step for all links that are
reachable by an ant during that step. This reduces computation time without
affecting the algorithm’s overall behaviour, as it is not necessary to evaluate the
probability (Equation 7) of links that cannot be considered by an ant. Before
calculating w, the costs of the partial tours so far constructed are linearly scaled
in the range [-1, 1], where -1 is the scaled value of the minimum length path
and 1 is the corresponding value for the maximum length path. Then, for a
given link (r, u), w(r, u) is calculated by the following. The mean scaled cost of
all paths that have used (r, u) is computed and, in the case of a minimisation
problem such as the TSP, subtracted from 1. Hence, if (r, u) has been used
predominantly in shorter paths, the mean of the scaled costs will be closer to
-1 and as such the value of w(r, u) will be closer to 2. In the opposite situation,
where a link has been used predominantly in longer paths, the correspondingly
higher mean scaled cost will yield a value of w closer to 0. It is worth noting
that as the number of ants that have used (r, u) approaches m, w(r, u) will in
general approach 1 given a uniform distribution of partial tour costs. This is
because it becomes difficult to determine the individual contribution of (r, u) to
the cost of solutions. The algorithm for updating w for all links is summarised
in Figure 1 while Equation 8 is for a single link. The computational overhead
associated with updating w is O(n2).

w(r, s) =

{
1− 1

|A(r,s)|
∑
a∈A(r,s)

c(a)−cmid
cmax−cmid if |A(r, s)| > 0

1 otherwise
(8)

Where:

cmin and cmax are the costs of the minimum and maximum partial tours
respectively.
cmid is the linear mid-point between cmin and cmax.
c(a) is the cost of the partial tour constructed by ant a.
A(r, s) is the set of all ants that have incorporated link (r, s) into their
respective solutions.

4 Computational Experience

A control strategy (normal ACS) and the AEAC are run in order to evaluate the
performance of the system. Table 1 describes the TSP instances [5] with which
the AEAC meta-heuristic is tested.

4

Electronic version of an article published at International Journal of Computational Intelligence and Applications, 3(2), 189-198.
 © World Scientific Publishing Company. https://doi.org/10.1142/S1469026803000938

Determine cmin and cmax

cmid ← (cmax + cmin)/2
For each ant a

c′(a)← (c(a)− cmid)/(cmax − cmid)
End For

For each link (r, s) adjacent to an ant

If |A(r, s)| > 0 Then

c′a∈A(r,s) ← mean of c′(a) for all a in A(r, s)
w(r, s)← 1− c′a∈A(r,s)

Else

w(r, s)← 1
End If

End For

Where:

c′(a) is the scaled cost of the partial solution constructed by ant a.

Fig. 1. Algorithm for calculating w for each link.

The computing platform used to perform the experiments is a 550 MHz Linux
machine. The computer programs are written in the C language. Each problem
instance is run across 10 random seeds. The ACS parameter settings are given
in Table 2.

4.1 Results

The results are given in Tables 3 and 4. The first contains the results of the con-
trol strategy while the latter contains the AEAC results. The minimum (Min),
median (Med), maximum (Max) and inter-quartile range (IQR) are used to
summarise the results.

AEAC performed well on a number of the problems, achieving lower mini-
mum costs on bays29, eil51, st70, pr76 and ch130, and equivalent minimum
costs on gr24, hk48 and eil76 compared to the control strategy. On gr24,
bays29 and hk48 it found the optimal solution, while the control strategy only
found the optimal for gr24 and hk48. On all problems up to 200 cities, the
median cost achieved by AEAC was within 3.3% of the optimal cost.

The upper bounds on costs reported by AEAC were also better than the
control strategy on a number of the problems. This result, in conjunction with
the generally smaller IQR exhibited by AEAC, suggests that AEAC focuses the
search onto a smaller area of the solution space.

Above 100 cities, AEAC performed worse than the control strategy on all
problems except ch130. On the problems with more than 130 cities, the median
costs achieved by AEAC were between 0.5% and 8.5% of those achieved by the
control strategy. However, as the number of cities increases, so does the gap

5

Electronic version of an article published at International Journal of Computational Intelligence and Applications, 3(2), 189-198.
 © World Scientific Publishing Company. https://doi.org/10.1142/S1469026803000938

Table 1. TSP instances used in this study.

Instance Description Optimal Cost

gr24 24 cities 1272
bays29 29 cities 2020
hk48 48 cities 11461
eil51 51 cities 426
berlin52 52 cities 7542
st70 70 cities 675
eil76 76 cities 538
pr76 76 cities 108159
kroA100 100 cities 21282
ch130 130 cities 6110
d198 198 cities 15780
kroA200 200 cities 29368
lin318 318 cities 42029
rd400 400 cities 15281
pcb442 442 cities 50778
att532 532 cities 27686

Table 2. Parameter settings used in this study.

Parameter Value

β -2
γ 0.1
ρ 0.1
m 10
q0 0.9

iterations 3000

6

Electronic version of an article published at International Journal of Computational Intelligence and Applications, 3(2), 189-198.
 © World Scientific Publishing Company. https://doi.org/10.1142/S1469026803000938

Table 3. Results for control strategy.

Problem Cost CPU Time (seconds)
Instance Min Med Max IQR Min Med Max IQR

gr24 1272 1278 1328 1 18 18 18 0
bays29 2026 2035 2066 7 26 26 27 0
hk48 11461 11491 11847 78 71 71 71 0
eil51 430 435 441 4 79 80 80 0
berlin52 7542 7855 8002 313 83 83 83 0
st70 686 708 739 26 150 150 150 0
eil76 546 558 564 5 198 198 198 0
pr76 108308 109878 112456 837 177 177 178 0
kroA100 21292 21393 22030 474 304 304 305 0
ch130 6265 6321 6538 129 519 520 520 0
d198 15954 16101 16253 209 1186 1186 1194 1
kroA200 29749 30318 30896 541 1230 1231 1232 1
lin318 45716 47121 48144 1162 3062 3064 3066 1
rd400 16396 16709 17493 355 4945 4946 4948 2
pcb442 60970 63025 64858 1614 5971 6024 6113 32
att532 33941 35335 36441 1498 8743 8758 8768 4

Table 4. Results for AEAC.

Problem Cost CPU Time (seconds)
Instance Min Med Max IQR Min Med Max IQR

gr24 1272 1278 1279 0 101 101 102 0
bays29 2020 2030 2038 0 111 111 111 0
hk48 11461 11600 11824 0 164 164 170 0
eil51 427 432 437 0 174 175 175 0
berlin52 7547 7790 8148 0 178 178 179 0
st70 678 687 712 0 258 258 259 0
eil76 546 555 559 0 289 290 290 0
pr76 108274 109735 112725 1621 289 289 290 0
kroA100 21373 21512 21915 97 442 442 443 0
ch130 6180 6269 6407 119 692 693 693 1
d198 16044 16209 16465 175 1492 1493 1494 1
kroA200 29769 30203 31135 594 1538 1539 1544 2
lin318 46713 50651 53244 2090 3768 3771 3775 4
rd400 17922 18124 20073 189 5980 5984 5990 4
pcb442 64866 66333 68394 1640 7268 7272 7283 4
att532 36271 36989 38049 670 10512 10521 10547 8

7

Electronic version of an article published at International Journal of Computational Intelligence and Applications, 3(2), 189-198.
 © World Scientific Publishing Company. https://doi.org/10.1142/S1469026803000938

between the solutions’ costs produced by AEAC and the corresponding optimal
costs.

The computational overhead associated with calculating w adversely affects
the CPU time used by AEAC. On all problems AEAC had longer CPU times
than the control strategy. This effect is particularly evident on the smaller prob-
lems, but decreases in proportion to the inverse square of the number of cities.
This decay is to be expected, however, as the procedure for determining w only
considers the reachable links at each step. Since the number of ants remains
constant, the number of reachable links at each step also decays with the inverse
square of the number of cities.

5 Conclusions

The AEAC approach relies on historical information and patterns developed
over time in order to calculate which element to add to a solution at a particular
step of the algorithm. An alternative approach is to use speculative information
about an element by looking ahead at all (or some) of the possible future choices.

Our AEAC performed most successfully on the smaller problems (those with
less than 100 cities), finding the optimal solution to three and equalling or better-
ing the best solution found by the control strategy. It appears to produce more
consistent results than the control strategy, although it remains to be shown
whether this has any significant effect on its performance. As the number of
cities exceeds 100, AEAC’s performance becomes poorer. It is possible that this
is because the number of links increases with the square of the number of cities.
Hence, as the number of cities increases, the proportion of links which have been
incorporated into solutions decreases, thereby reducing the amount of informa-
tion available to calculate meaningful values of w. This may have detrimental
effects on larger problems, as those links that have been used attract a weighting
while most others do not, unfairly biasing the search away from some links and
towards others. Future work could investigate ways of estimating the value of w
for those links that have not yet been used. This should improve the performance
of AEAC on larger problems by making the comparisons between used and un-
used links fairer. Another technique for gathering the required information is to
use a greater number of ants, although this would have a negative impact on the
algorithm’s computational requirements.

An important limitation of the AEAC described is that experience is only
accumulated over a single iteration and then discarded. At the beginning of each
iteration none of the links have been chosen and so there is no information avail-
able to adjust their weightings. It is likely that this limitation greatly restricts
the performance of AEAC. Future work will involve accumulated experience
strategies that use experience gathered over all iterations. One such scheme is
to keep track of the mean cost of complete solutions that have made use of each
link. This is an extended form of the AEAC described here and may be better
able to make objective evaluations of the utility of each link. Furthermore, if
the cause of AEAC’s poor performance on large problems is due to the lack of

8

Electronic version of an article published at International Journal of Computational Intelligence and Applications, 3(2), 189-198.
 © World Scientific Publishing Company. https://doi.org/10.1142/S1469026803000938

accumulated knowledge on a large proportion of links, then this scheme may
help to overcome the problem. Over the course of many iterations, information
will be gathered about many more links than those used in just one iteration.
We would expect this to lead to improved performance in our AEAC.

The AEAC is part of a wider strategy that is looking at ways of producing
generic strategies to enhance ant based meta-heuristics [4]. Our next step is to
determine how well AEAC applies across a range of problems, particularly those
in which there is no obvious relation between adjacent elements.

References

1. Dorigo, M. and Gambardella, L. (1997) “Ant Colony System: A Cooperative Learn-
ing Approach to the Traveling Salesman Problem”, IEEE Transactions on Evolu-
tionary Computing, 1, pp. 53-66.

2. Dorigo, M. and Di Caro, G. (1999) “The Ant Colony Optimization Meta-heuristic”,
in New Ideas in Optimization, Corne, D., Dorigo, M. and Golver, F. (eds), McGraw-
Hill, London, pp. 11-32.

3. Heusse, M., Gurin, S., Snyders, D., and Kuntz, P. (1998). “Adaptive agent-driven
routing and load balancing in communications networks”, Advances in Complex
Systems, 1, pp. 237-254.

4. Randall, M. (2001) “A General Framework for Constructive Meta-heuristics”, Op-
erations Research/Management Science at Work: Applying Theory in the Asia
Pacific Region, Springer Verlag, Berlin (in press).

5. Reinelt, G. (1991) “TSPLIB - A Traveling Salesman Problem Library”, ORSA
Journal of Computing, 3, pp. 376-384.

9

View publication statsView publication stats

Electronic version of an article published at International Journal of Computational Intelligence and Applications, 3(2), 189-198.
 © World Scientific Publishing Company. https://doi.org/10.1142/S1469026803000938

https://www.researchgate.net/publication/220606203

	Introduction
	ACO
	Accumulated Experience Ant Colony
	Computational Experience
	Results

	Conclusions

