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H5N1 avian influenza outbreak detection is a significant issue for early warning of epidemics. This 
paper proposes domain knowledge-based joint one class classification model for avian influenza 
outbreak. Instead of focusing on manipulations of the one class classification models, we delve into 
the one class avian influenza data-set, divide it into sub-classes by domain knowledge, train the sub-
class classifiers and unify the result of each classifier. The proposed joint method solves the one 
class classification and feature selection problems together. The experiment results demonstrate that 
the proposed joint model definitely outperforms the normal one class classification model on the 
animal avian influenza data-set.  
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1.   Introduction 

H5N1 avian influenza outbreak detection is a significant task with a big challenge, 
because there are a number of uncertain factors associated with the outbreaks 1 . The 
Asian lineage, highly pathogenic avian influenza (HPAI) virus sub-type H5N1 was first 
identified in Hong Kong in 1996 2, and worldwide outbreaks increased dramatically since 
2003. Now it has spread to more than 60 countries from Asian, to Europe and Africa 3. 
This epidemic has infected poultry and caused the culling of millions of birds resulting in 
a loss of billions in the poultry trade, and significant loss of human life. According to 
WHO 4, 502 humans have been infected and among them 302 of them have died. This 
virus can mutate according to its host and adapt to different environments 5, 6. Normally, 
the virus transmits from birds to mammals, but so far, it seems it cannot be transmitted 
between mammals 5. Water birds are believed to be the viral reservoir of influenza A 
viruses 7 but the transmitting mechanism is still unclear. Wild birds and human activities 
have broadened the channels for the virus to spread; for example, poultry farm, bird trade 
and wild birds’ migration 5, 8, 9 are all possible channels to spread the virus. In south Asia, 
free-grazing duck are also believed to be a major reason for virus transmission 10. 
Scientists are still struggling to discover the reasons for transmission.  

However, if we take outbreak events as our target observation and the normal status 
without outbreaks as the outliers, then detection turns into a typical one class 
classification (OCC) issue. The item “one class classifier” was first proposed by Moya 11 
and one class classification (OCC) has been studied in the area of the novelty detection 12, 
outlier detection 13 in signal processing and pattern recognition applications. At the 
outset, the focus of OCC is to identify novelties and get rid of them before processing 
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normal signals. This focus subtly changes to analyzing the target class in the research 
area of data mining 14, and OCC method has been developed and greatly advanced by 
Tax and Duin 15 by their idea of one class data description. OCC in data mining depicts 
the only labeled target class by a suitable model and detects the new case if it is in the 
boundary of the target class or if it is out of the boundary as an outlier.   

The situation of OCC is very common in real world. These one label tasks can often be 
encountered in the real world, for example, nuclear plant failure, a medical disease case, 
and identifying a type of web pages 16, 17. OCC has been widely used in many areas, such 
as cyber-intrusion detection, medical diagnosis, image processing,  fraud detection in 
financial industry 17, and defect detection in the fabric industry 18. Other applications 
include land cover classification 19, environmental monitoring 20 , document retrieval and 
classification 21, 22, vague stream data analysis 23 and the most promising application 
domain, which we will discuss next, is the medical and biological area. 

OCC methodology is especially suitable for medical and biological domain applications. 
Duin has mentions that OCC has been used in disease detection 24. In many medical 
diagnoses, the doctor only keeps the disease case data which can be used as the labeled 
target class, and all other diseases and healthy cases are taken as the outliers. In the area 
of epidemic disease for instance, avian influenza, animal cases are only reported if there 
are epidemic outbreaks in a poultry farm or a number of dead wild birds are identified.  
This is similar in OCC applications applied in gene science 25-28 where only target gene 
samples are available. The situation in these areas is approximately the same and 
researchers only focus on limited target samples, while outliers have a large population, 
such as healthy populations versus target disease subjects, or RNA of all other animals 
versus the target RNA gene pattern. 

Though OCC methods have many applications, there are limitations due to the nature of 
only one labeled class. Many researchers choose two-class or multi-class data-sets in 
their experiments 25, 26, 29, 30 to analyze the results. Other researchers artificially generate 
outliers for evaluation 27, 31. In real world examples, we can only obtain the target class 28 
such as avian influenza outbreaks. The outbreaks are a typical OCC issue with only one 
label, whilst other issues need to be addressed in depicting avian influenza animal 
outbreaks:  1) All the features leading to the outbreak are unclear because the H5N1 virus 
has mutated to adapt to the environment and the virus distribution channels are 
complicated 5. 2) The outbreak happens incidentally. This makes it hard to tell exactly the 
differences between the outbreak and the non-outbreak cases. The above two reasons 
make outbreak detection very difficult. First, the feature space is uncertain and hard to 
evaluate. The factors causing an outbreak are not clearly identified and refining of factors 
is difficult because we have only the target labels. Secondly, the possibilities of outbreaks 
decrease the necessity and the effectiveness of generating artificial outliers.  

Under this circumstance, we proposed an ensemble classifiers approach, joint sub-
classifier one class classification (JSC-OCC) method, to overcome these difficulties. The 
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ensemble classifiers have long been studied 32 and have been verified to improve the 
performance of the classification 33. Contemporary research for ensemble classifier is 
represented by bagging 34 and boosting 35 methods, and the extension of the two methods. 
These methods make full use of the original dataset by a different method of sampling to 
make the classification results more stable and accurate. However, this research has some 
limitations: Firstly, these methods have limitations of improving the individual base 
classifiers by the learning domain knowledge 36. In a real world dataset, the domain 
knowledge will significantly affect the classifying result, which is why we apply domain 
knowledge into the classification; secondly, many applications only focus on multi-class 
classification. There are many research applications on combination of classifiers 37, 38, 
but these applications mostly address multi-class classifications. In the real world, there 
are many one class classification problems which focus on the target class identification 
and are different to multi-class classification problems, which treat classes equally. 
Instead of seeking assistance from the second class in this research, we delve into the 
target cases by classifying the outbreak cases into sub-classes, training the classifiers 
separately and integrating the separated models. We apply a supervised feature selection 
method to the sub-class and achieve better results with only half of the features selected. 

The paper is organized as follows. Section 2 describes the OCC methods, rated OCC 
research work and reviews the limitations of the previous methods. Section 3 presents the 
motivation and the contents of the JSC-OCC method. Section 4 illustrates the method on 
the avian influenza animal outbreak data-set and the results show that the JSC-OCC 
method out-performs the normally applied OCC method. Section 5 concludes the paper. 

2.   OCC METHODS AND RELATED WORK 

There are many OCC methods which have been applied in many real world applications. 
We describe the concept of the OCC method and the related research results. 

2.1.   OCC methods 

The basic idea of OCC is described by two essential elements. The first is the distance, or 
the possibility of a new case for the target class. The second element is the threshold on 
this distance or possibility. Whether or not the new case belongs to the target class can be 
defined by the distance, less a threshold: 

  ))(()( ddIf θ<= yy   (1) 

or the possibility is larger than the possibility threshold: 

  ))(()( ppIf θ>= yy   (2) 

where (.)I is the indictor function, y  is the new case, )(yd  and )(yp is the distance and 
the possibility on the target class. dθ  and pθ is the distance and possibility threshold. 
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Different OCC method have different definitions of )(yd  or )(yp and the evaluation of 
the OCC method can compare the hypercube or the hypersphere volumes depicted 
by )(yd  or )(yp . The threshold value is a trade off between whether a new coming case 
is a target class or an outlier.  

OCC methods can be divided into three main categories: the density method, the 
boundary method and the reconstruction method 39. The density method applies statistical 
distribution to depict the target class probability density, and uses a threshold to 
distinguish targets from outliers. The density method examples are the Gaussian data 
description (GaussianDD) model, mixture Gaussian data description (MOGDD) and 
Parzen data description (ParzenDD) model. The boundary method draws a boundary 
including the targets with the minimum volume, such as support vector data description 
(SVDD) model and k-nearest neighbor data description (KNNDD) model. The 
reconstruction method reconstructs previous space by the prototype model or data 
compress model and identify targets and outlier after reconstruction, e.g.  k-means data 
description (KmeansDD) model, principal component analysis data description (PCADD) 
model, or the self-organizing map data description (SOMDD) model. In a real world 
application, different models will have different performances according to the 
implementation 39. The minimum spanning tree data description (MSTDD) method is a 
new promising method which out-performs many other previous one class data 
description methods by defining the target boundary of the minimum volume around the 
spanning tree 24. 

GaussianDD is a basic OCC density method, which apply Gaussian distribution to 
describe the one class case according to the Central Limit Theorem. The possibility of d-
dimensional targets x  is given by: 
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where u  is the mean value and Σ is the co-variance matrix. The target class should be a 
strict unimodal and convex density distribution. The main calculation cost is the 
inversion of the matrixΣ . The other density models are the extension of the GaussianDD 
model. 

SVDD model is a typical boundary OCC method which is different from one class 
support vector machine (SVM). One class SVM turns an OCC method into a two class 
classification method by defining the origin as a second class 17. But the SVDD model 
draws a minimum volume hypersphere to contain most of, or all of, the targets. SVDD is 
an optimization problem with the object as: 
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where a is the center and R is the radius of the hypersphere, iξ   is the slack variable and 
C is the variable to describe the trade off between the sphere volume and the number of 
the target objects rejected. After applying Lagrange multipliers to the problem we will 
have the dual problem: 

 
∑ ∑

= =

−=
N

i

N

ji
jijiiiiL

1 1,

).().( xxxx ααα
 (6) 

where ax ===≤≤ ∑∑ == i

N

i i

N

i ii NiC
11

,1,,...,1,0 ααα  

We can predict if a new case is accepted or not by: 
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If we substitute all the inner products ).( ji xx with a kernel function: 

 )().(),( jijik xxxx φφ=               (8) 

Then the problem can be mapped into an inner product space. 

K_meansDD method is a very simple reconstruction method. It applies prototype vectors 
kμ to minimize the error: 

  ∑ −=
i

kik
)min( 2μxε   (9) 

Where kμ is the vector of k-means center, ix  is the target case vector. Different 
reconstruction methods have different error measuring methods. More details of SVDD 
and other OCC methods are described by Tax 39. 

 

Many new OCC methods and improvements have been discovered. These methods can 
be mainly categorized as localization and combinations.  Localization tunes the 
parameters according to the local properties which differ from the global ones. The 
localization method has been applied to KNNDD 17 and Gupta 29; it combines local and 
global searches to improve the one-class information ball (IC-IB) method. The 
combination method combines different models to obtain better results and has been 
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explored in OCC modeling. Combining density estimator with two class probability 
estimator has been proposed 30. The normal ensemble methods are applied in gene 
science 26 and the combination of the OCC model with different data-sets has also been 
studied 27.  Statistical learning and case-based reasoning combination methods have also 
been  proposed to integrate the similarity measure and Bayesian statistical information to 
identify novelties 40. Only a few research methods deal with the genuine one class issue 
30, where it is impossible or improbable to obtain an outlier. This situation will make 
many proposed methods unsuitable, including information from the outliers.   

2.2.   Feature selection issue in OCC 

Feature selection chooses high variance features and removes low variance ones, but 
target class label provides no information at all 31. This means only unsupervised feature 
selection methods can be applied under this circumstance. Villalba 41 evaluated four 
feature selection algorithms and concluded that the Q-α algorithm and locality preserving 
projections (LPP) have better performance. Generally, unsupervised methods cannot 
compare with supervised ones. Most unsupervised dimension reduction methods just 
compress the original feature space into a smaller dimensions, which hardly explains the 
meaning of each dimension, for example LPP and PCA method 42.The most promising 
supervised feature selection method is mutual information feature selection, for instance 
the minimum-redundancy maximum-relevancy (mRMR) method 43, which makes full use 
of mutual information between the features and class labels to select the feature group 
with most variation. 

The above review indicates that we can investigate limitations of current OCC methods 
in dealing with real world examples. Avian influenza outbreak event detection is this type 
of issue. Firstly, a genuine OCC problem can only obtain the target label, which means 
that we cannot obtain all the other class data without outbreak events. If we can  provide 
some definite outliers for the OCC models, the classifier can tune 31 and the result will be 
significantly improved. This means that many OCC techniques which tune on the second 
class samples are not suitable. Secondly, the supervised features selection should not be 
applied because the outbreak factors are unclear and we need to select features. 
Therefore, we can only apply the unsupervised feature selection method. We next present 
our own approach for dealing with this real world OCC problem. 

3.   Joint Sub-Classifier OCC Method 

We describe the motivation and the detailed processes of our JSC-OCC method step-by-
step. 

3.1.   The motivation of proposed method 

The OCC method is designed for resolving the classification problem when the training 
data-set only has one label. If there is only one class labeled as target, e.g. the avian 
influenza outbreak events, we can improve the OCC method with the following method. 
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We divide the outbreak events into sub-categories to discover whether the new sub-class 
of the outbreak events can help improve the OCC models to detect if a new coming case 
is likely to be an outbreak or not. On one hand, if the sub-classes can be grouped closely 
together and at same time apparently appear separate to each other, then we can apply the 
OCC method for each sub-class, then combine every OCC sub-classifier to obtain a better 
result. On the other hand, if the sub-groups cannot be separated from each other, then we 
should select the most suitable features to help classify the sub-classes.  

The basic idea is shown very clearly in Fig. 1 by a Two-D SVDD method. We provide a 
well separated three sub-class example in Fig. 1 (a). The three black line circles are the 
SVDD boundaries for the sub-classes. The magenta dashed line is the SVDD boundary 
for the labeled one class. In this context, the joint three circle boundaries are better than 
the one big circle because they have less volume. Therefore, if we can find a well 
separated sub-class and the features which can help separate the sub-class, then we can 
improve the detection effectively. In Fig. 1(b), we cannot observe that the combination of 
sub-class circles improved the precision of the OCC method, or the combination cannot 
reduce the volume of the OCC boundary. This means that the three sub-groups on this 
feature space cannot improve the classification effectiveness.  
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a) three well separated sub-classes and features                  b) three poorly separated sub-classes and features 

Fig 1. One class SVDD and three separated sub-classes SVDD  

 
Therefore, we must address two issues: first, we delve into one class and divide it into 
well separated sub-classes; second, we select good features to improve the separated 
effect. In the medical domain, epidemic domain and biological domain, the first task is 
naturally completed by the domain expert. In the medical domain, the doctor will 
separate samples of an illness into slight, and severely ill groups, male and female 
groups, or young and old categories. In the epidemic disease domain such as avian 
influenza, the sub-class can be wild bird affected events and poultry farm events. This 
means the first task is resolved by domain knowledge. The second task is also easy to 
accomplish because we can select the features according to the sub-class labels. The 
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previous unsupervised feature selection task becomes a supervised feature selection and 
we can easily resolve the two problems at the same time.  

3.2.   Processes of the JSC-OCC method 

The combining method concludes the following 5 steps: 

Step 1. Divide all the one class cases into sub-classes by domain knowledge; 

Even though we have only one class label, we can divide the one class into sub-classes by 
applying domain knowledge. The effective sub-class needs to be carefully considered. In 
avian flu epidemic domain, there are many ways to group the outbreak events such as the 
outbreak seasons, the locations and so on. Nevertheless, if we consider the transmission 
of the virus and the mobility of the population, we can divide the affected population 
upon different sub-groups as wild species, backyard free range poultry and farm poultry. 
The wild birds have the maximum mobility, the backyard birds have limited mobility and 
the farm poultry has the less mobility.  We don’t need to divide the farm poultry as 
broiler chickens, layer chickens, or turkey and so on, because we consider that the 
transmission ways to the farm maybe similar, e.g. mainly by human activities.  

The dividing task is fully depended on the domain knowledge and the research objective. 
If we have enough details of the domain knowledge, then the sub-classes will contain the 
more variation information. If the objective is different, the classification standard will be 
different. For example, if we need to undertake research into the vaccine effect of 
poultry, we must divide farm or free-range poultry into vaccinated and unvaccinated 
groups. If we only consider the transmission methods of the virus, we only need to divide 
the birds into the previous mentioned three sub-groups.  

Step 2: Select the most variation features according to the sub-classes; 

Here, we select features which help enforce the classification effect. In medical and 
epidemical areas, it is normal that there will be many factors associated with the disease 
case and is important to group the factors and select the suitable ones. In the normal OCC 
method, we apply only the unsupervised feature selection method, but here we can select 
features by either unsupervised or supervised methods because we have sub-class labels 
which allow selection of features based on the sub-class labels. This provides a lot more 
choice than previous OCC models, for example, we can apply mRMR method to select 
the features. 

Step 3: Train the OCC classifier on each sub-class; 

We apply each sub-class cases as training data-set to train sub-OCC models. We can 
either use the same OCC classifier on different sub-class data, or we can use different 
OCC classifiers on different sub-class data. We then obtain several sub one class 
classifiers.  
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Step 4: Combine three sub-classifiers to union into a joint OCC model. 

We combine the sub-classifiers’ results to obtain a joint result. We choose to join the 
results of the sub-classifiers by logical ‘or’ operator. Suppose we have n  classifiers, for 
each new coming case x , the final result can be obtain by: 

 )()(
1


n

i
i xCxI

=

=     (10) 

iC  is the ith classifier, )(xCi  is true if x is detected as a target class and I is the output of 
joining the output results. If one of the classifiers classifies the input case as target, the 
final output is the target class. The whole process is shown in Fig. 2 
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Fig 2 The JSC-OCC method processes 

4.   Experiment and Result Analysis 

The experiment is conducted on the avian influenza data-set collected from the internet. 
Some features are transformed by GIS software before input to the model. We apply 
Matlab platform and DD_Tools 44 to perform the experiments. 

4.1.   Data source 

One section of avian influenza animal outbreak data was obtained from reports on the 
website: http://www.oie.int/downld/AVIAN%20INFLUENZA/A_AI-Asia.htm; the other 
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data was obtained from Nature News reporter Dr Declan Butler 
(http://www.nature.com/news/author/Declan+Butler/index.html). Each record contains 
the outbreak time, outbreak location, infected population, location type, and so on. The 
data-set has records dated from 2003 to 2009. If the outbreak location is a farm, the dead 
bird numbers or infected numbers on the farm do not affect other farms. For processing 
purposes, we count this farm event as only one event. Dead wild bird events are counted 
as one event even if only one dead bird is identified. The other feature data is collected 
from the internet, such as poultry density, poultry and wild bird trade, population density, 
from http://www.fao.org ; other geographic data is collected from http://eros.usgs.gov/, 
http://www.ngdc.noaa.gov, etc. These data will first be pre-processed by GIS software, 
and then processed to obtain the feature information of an outbreak event by Matlab. The 
basic location data from OIE reports has errors, for example the wrong information of 
longitude and latitude, which indicates a location in the sea and we cannot obtain correct 
information from them, so record this as missing data. After removing the missing data, 
we have 5,600 cases. Each case has 24 features plus the affected bird type information. 
All these features are shown in Table 1. 

Table 1 All the selected features 

No Features Descriptions 

1 'latitude' Latitude 
2 'logitude' Longitude 
3 'clim_tmp' Temperature 
4 'clim_wet' Wet days 
5 'clim_tmx' Daily Maximum Temperature 
6 'clim_tmn' Daily Minimum Temperature 
7 'clim_frs' Ground frost frequency 
8 'clim_vap' Water vapour 
9 'clim_dtr' Diurnal temperature range 
10 'clim_cld' Cloud cover 
11 'pop_den' Population density 
12 'pty_den' Poultry density 
13 'rail_den' Rails line density 
14 'mrail_den' Main rails line density 
15 'road_den' Road line density 
16 'water_line' River line density 
17 'hydro_den' Main hydro point density 
18 'pmeat_trd' Poultry meat import volume 
19 'bird_trd' Live bird import volume 
20 'elevation' Elevation 
21 'bat_cover' BAT Land cover type 
22 'month' Month 
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23 'year' Year 

24 'migr_rsk' 
Near how many migration 
routes 

25 'bird_type' Affected bird population type 
 

These 25 features are possible features associated with the avian influenza outbreak. We 
select only 25, classified as climate factors, geographic factors, poultry density factor, 
transportation factors, water factor, bird trade and wild bird migratory information. For 
example, the bird migratory risk is defined by the following processes: there are eight 
main bird migratory routes around the world – the ‘migr_rsk’ features are calculated by 
how near the outbreak location is to how many the migration routes. If the minimum 
distance to a bird migratory route is less than 300 km, we count the ‘migr_rsk’ attribute 
once. The transportation level is measured by the line density per km2 of railroad length 
and road length. The indicator of poultry meat trade is calculated from the quantities of 
tons of imported poultry meat divided by the country total area, and the same is done 
with the live bird trade.   

4.2.   Experiment result and analysis 

Here, we follow the steps of the proposed JSC_OCC method and conduct the experiment 
on an avian influenza data-set. 

Step 1. Divide all the one class cases into sub-classes by domain knowledge; 
In avian flu outbreak events, the affected birds can be divided into three sub-classes as 
wild birds, backyard birds and farm poultry. We divide into these three sub-class taking 
into consideration the mobility of the populations. Wild birds have the greatest mobility, 
farm poultry has the lowest mobility, and backyard birds have limited mobility. The 
movements of birds should be connected with the transmission of the viruses. The 
‘bird_type’ is chosen as the sub-class label and the remaining 24 will be applied by the 
OCC method. The whole data-set can be divided into 1,086 wild bird affected cases, 
1,169 backyard poultry affected cases, and 3,345 farm poultry bird affected cases.  

Step 2: Select the most variation features according to the sub-classes; 
This step applies the mRMR feature selection method and we only choose 12 features, or 
half, of the total features to illustrate our approach. The 12 selected features are 
“'elevation', 'rail_den', 'bird_trd', 'pmeat_trd', 'clim_wet', 'road_den', 'mrail_den', 'year', 
'clim_tmp', 'migr_rsk', 'logitude', 'month'”.  

Step 3: Train the OCC classifier on each sub-class; 
The training data-set randomly selects 80 percent of each sub-class case. We also merge 
the three training data-sets in to a fourth data-set as a comparison. We then have four 
trained OCC models. The OCC models applied are GaussianDD model, MOGDD model, 
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ParzenDD model, SVDD model, 1NNDD model, KNNDD model, KmeansDD model, 
PCADD model and SOMDD model. We choose the rejected threshold as 0.1 and apply 
the default parameters of DD_tools. 

Step 4: Combine three sub-classifiers to union into a joint OCC model. 
We combine the trained three sub-classifiers by the results as (1). Finally, the test data is 
the same as the 20 percent of remaining data. The results of the experiments are shown in 
Table 2 and Table 3. Table 2 is the experiment with all the features and Table 3 illustrates 
the result with only 12 selected features. 

Table 2 Experiment with all features 

 
 

training data  

Wild bird 
(Tdata1) 

Backyard 
poultry 

(Tdata2) 

Farm 
poultry 
(Tdata3

) 

Tdata4
=(Tdata
1+Tdat

a2 
+Tdata

3) 

 

Correct 
classified 

rate of 
model on  
same test 

data 

Sub-OCC1  
correct 

rate 

Sub-OCC2 
correct 

rate 

Sub-
OCC3 
correct 

rate 

OCC 
collect 

rate 

JSC-
OCC 

collect 
rate 

Gaussian 0.1891 0.4674 0.6976 0.9037 0.9304 
Parzen 0.1436 0.1499 0.3702 0.5674 0.5932 
Kmeans 
(k=5) 0.2417 0.5843 0.7208 0.8912 0.9322 
knn 0.2971 0.4451 0.8073 0.8921 0.934 
som 0.2614 0.4442 0.8127 0.9037 0.9349 
nn 0.7538 0.9233 0.9269 0.9197 0.9973 
mog(5) 0.1855 0.397 0.6789 0.8912 0.9144 
Svdd 
(σ=100) 0.1508 0.6111 0.4906 0.6441 0.802 
pca 0.215 0.5343 0.7056 0.8974 0.942 
mst 0.5566 0.4853 0.1124 0.0321 0.8037 
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Table 3  Experiments results with only 12 features 

 
 

Training data  

Wild bird 
(Tdata1) 

Backyard 
poultry 

(Tdata2) 

Farm 
poultry 
(Tdata3

) 

Tdata4
=(Tdata
1+Tdat

a2 
+Tdata

3) 

 

Correct 
classified 

rate of 
model on  
same test 

data 

Sub-OCC1  
correct 

rate 

Sub-OCC2 
correct 

rate 

Sub-
OCC3 
correct 

rate 

OCC 
collect 

rate 

JSC-
OCC 

collect 
rate 

Gaussian 0.2087 0.5192 0.6878 0.9019 0.9438 
Parzen 0.1561 0.1945 0.4648 0.6842 0.7047 
Kmeans 
(k=5) 0.2774 0.5165 0.7145 0.9153 0.9402 
knn 0.3363 0.3854 0.7966 0.901 0.9313 
som 0.3301 0.4665 0.694 0.8965 0.9295 
nn 0.7948 0.9135 0.9072 0.9224 0.9955 
mog(5) 0.1847 0.4282 0.6967 0.8992 0.9242 
Svdd 
(σ=100) 0.1641 0.521 0.4755 0.6798 0.7583 
pca 0.2257 0.4987 0.7047 0.901 0.9634 
mst 0.5709 0.5085 0.1133 0.0375 0.7895 

 

The evaluation standard is obvious for comparing the correct classification rate to the 
target class, the true positive (TP) rate. In Table 2 and Table 3 the correct classification 
rates are rates on the whole testing data. We observe that the JSC-OCC method can 
outperform the normally applied OCC models and we conclude from the two tables that, 
whether we apply feature selection first or not, the JSC-OCC model will outperform the 
normal OCC model on the outbreak data-set. Though the sub-OCC models on the testing 
data have a low TP rate, the JSC-OCC model performances improve significantly, as we 
expected.   

We also compare Table 3 to Table 2 with the TP rate of applying all the features, and 
only half of the features. From the data we observe that five out of ten combined models 
with the selected 12 features in the experiments outperform the combined models with all 
24 features. These five combined JSC-OCC models are the GaussianDD, ParzenDD, K-
meansDD, MogDD and PCADD models. But the results of JSC-OCC with only the 12 
features data-set have more accuracy than the results of the normal OCC method on the 
24 data-set. Five models gain better performances with selected features and this means 
the feature selections on the sub-class will not decrease the FP rate of JSC-OCC models. 
We haven’t tuned the parameters of the SVDD model, so it has the lower accuracy. The 
1NNDD sub-classifiers have very high accurate rate which means they are not sensitive 



Instructions for Typing Manuscripts (Paper’s Title)     15 
 
with the groups divided. But the JSC-OCC result based on 1NNDD still has better 
performance. We also notice that MSTDD performed poorly, which is said to outperform 
many other models. We explain this by pointing out that MSTDD is a more strict OCC 
method with the minimum volume boundary, which means it can only perform best when 
the outliers are identified clearly. In the real world one class problem, you really cannot 
provide a clear description of the outlier. So the strict MSTDD will perform poorly 
compared with other OCC models.  

5.   Discussion 

The JSC-OCC method will improve the accuracy of the classification provided we have 
the domain knowledge to divide the whole population into sub-groups. Sometimes it is 
very difficult, or even impossible, to obtain the knowledge to divide the sub-classes. 
Under these circumstances, we can still classify the data-set by clustering. Whether or not 
the unsupervised sub-classes improve the accuracy of OCC models is an interesting 
problem for study. Clustering method is the most common unsupervised classification 
method, and we classify the outbreak cases into three sub-classes by k-means and the 
spectral clustering method separately, and conduct the JSC-OCC method on these two 
sub-classes. We do the experiments both on the 'all features' and selected' 12 features' 
data-sets and the results are listed in Table 4 and Table 5. 

Table 4 K-means: Three sub-groups with all features: 

 
 

24 
feature

s 
 

 12 
feature

s 
 

 

Correc
t 

classifi
ed rate  

OCC JSC-
OCC 

improve
d or not 

OCC JSC-
OCC 

Impoved 
or not 

Gaussi
an 0.8839 0.9062 TRUE 0.8786 0.8902 TRUE 
Parzen 0.5839 0.5893 TRUE 0.6786 0.6759 FALSE 
Kmean
s (k=5) 0.8848 0.8902 TRUE 0.8768 0.8982 TRUE 
knn 0.883 0.9116 TRUE 0.9054 0.9116 TRUE 
som 0.8848 0.8911 TRUE 0.8938 0.8777 FALSE 
nn 0.9304 0.9982 TRUE 0.933 1 TRUE 
mog(5) 0.8911 0.8777 FALSE 0.8938 0.8759 FALSE 
Svdd 
(σ=100
) 0.6232 0.5839 FALSE 0.6357 0.7018 TRUE 
pca 0.9062 0.9429 TRUE 0.8964 0.9509 TRUE 
mst 0.0455 0.9982 TRUE 0.0375 0.9991 TRUE 
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Table 5 Spectral clustering: Three sub-groups: 

 
 

24 
feature

s 
 

 12 
feature

s 
 

 

Correc
t 

classifi
ed rate  

OCC JSC-
OCC 

improve
d or not 

OCC JSC-
OCC 

Impove
d or not 

Gaussi
an 0.8858 0.8956 TRUE 0.8787 0.9001 TRUE 
Parzen 0.6021 0.6004 FALSE 0.6459 0.661 TRUE 
Kmean
s (k=5) 0.9019 0.9197 TRUE 0.8831 0.9135 TRUE 
knn 0.9019 0.9019 FALSE 0.9019 0.9072 TRUE 
som 0.9019 0.8956 FALSE 0.8938 0.8992 TRUE 
nn 0.9411 0.9946 TRUE 0.9277 0.9938 TRUE 
mog(5) 0.8956 0.8876 FALSE 0.8912 0.8876 FALSE 
Svdd 
(σ=100
) 0.6343 0.7145 TRUE 0.7074 0.6467 FALSE 
pca 0.8983 0.9081 TRUE 0.8965 0.9108 TRUE 
mst 0.0419 1 TRUE 0.041 1 TRUE 

 

Table 4 lists the comparisons between results of JSC-OCC and OCC on the K-means 
three sub-groups and Table 5 lists the comparisons between results of JSC-OCC and 
OCC on the three spectral clusters. The experiments have been conducted with ten OCC 
models on both 'all features' and '12 features' data-sets. From Table 4, we observe that 
eight OCC models employing the JSC-OCC method perform well on the 24 features 
data-set and seven OCC models employing the JSC-OCC method perform better on the 
12 features data-set. From Table 5 we also observe similar results with six out of ten JSC-
OCC models performing better on 24 features data-set and eight out of 10 JSC-OCC 
models performing better on 12 features data-set. We cannot reach a conclusion that 
unsupervised sub-classes improve the accuracy of the JSC-OCC method because not all 
JSC-OCC methods provide better results than the normal OCC method.  

However, the above experiments are conducted on the three sub-groups data-set. In fact, 
we can have different number of sub-groups, so we conduct the experiments on two to 
twenty sub-groups on the 24 features data-set to compare the performances between JSC-
OCC method and normal OCC method. This time we only apply six OCC models as 
GaussianDD, MoGDD, ParzenDD, SOMDD, K-meansDD and KNNDD models. We still 
applied K-means and spectral clustering methods to cluster the data-sets. The results are 
shown in Figure 3 and Figure 4. 



Instructions for Typing Manuscripts (Paper’s Title)     17 
 

 
2 4 6 8 10 12 14 16 18 20

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Cluster number

TP
 r

at
e

K-means cluster JSC-OCC ture positive rate

 

 

Gaussian
Mog(5)
Parzen
SOM
K-means(k=5)
KNN

2 4 6 8 10 12 14 16 18 20
0.85

0.9

0.95

1

1.05

1.1

Cluster number

TP
 im

pr
ov

ed
 r

at
io

K-means cluster JSC-OCC TP improved ratio

 

 

Gaussian
Mog(5)
Parzen
SOM
K-means(k=5)
KNN

 
Figure 3 (a) JSC-OCC FP rate on different K-means sub-groups. (b) JSC-OCC FP rate improved ratio on 
different K-means sub-groups 
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Figure 4 (a) JSC-OCC FP rate on different spectral clustering sub-groups. (b) JSC-OCC FP rate improved ratio 
on different spectral clustering sub-groups 

 

The TP rates and TP rate improved ratio of JSC-OCC on different number of K-means 
sub-groups are shown in Figure 3 and similar results on spectral cluster sub-groups are 
shown in Figure 4. The TP rates of JSC-OCC are illustrated in Figure 3 (a) and Figure 4 
(a). The TP rate improved ratio is calculated by the TP rate of JSC-OCC method divided 
by the TP rate of OCC method and is listed in Figure 3 (b) and Figure 4 (b). We find that 
TP rates of JSC-OCC method fluctuates with the variations of cluster number. There are 
no obvious trends with almost all the JSC-OCC models except TP rates of SOMDD and 
MoGDD models show a slightly decreased trend. The results are similar for both TP rate 
on K-means sub-groups and for TP rate on Spectral cluster sub-groups. We conclude that 
the unsupervised cluster number has no obvious effect on the TP rate of the JSC-OCC 
method and some OCC models performances degenerate. We also found that most of the 
TP rate improved ratios are above one and this situation is clearer in Figure 4 (b) with the 
TP rate improved ratios on spectral cluster sub-groups. This phenomenon indicates that 
TP results on most of the sub-groups of the data-set can be improved and it is most 
obvious with spectral clustering sub-groups.  
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The last observation from Figure 3 and Figure 4 is that the TP improved ratio is limited in 
comparison to the supervised sub-groups. The average TP improved ratio of supervised, 
or knowledge based, JSC-OCC method is 1.0699 and the minimum TP improved ration is 
1.0295. The two ratios are shown in Figure 3 (b) and Figure 4 (b) as black hard line and 
magenta dashed line. It is clear that most FP improved ratios on unsupervised sub-groups 
are lower than the magenta dotted line- the minimum TP improved ratio on knowledge-
based sub-groups.  

6.   Conclusions 

This paper proposes a JSC-OCC model for real world genuine one class problems. 
Instead of focusing on the OCC models, we delved into the OCC data-set and developed 
divided sub-classes and combined sub-classifiers model: the JSC-OCC method. In 
genuine one class problems, especially in the medical and biological domains, the sub-
classes are a natural exploration method. Therefore, the proposed method is very practical 
in these application areas. The experiments show the results that we expected and 
indicate improved performances to normally applying the OCC method. 

The proposed JSC-OCC method also helps features reduction. Without outlier 
knowledge, genuine one class problems can only select features by an unsupervised 
method. With sub-classes identified, the supervised feature selection method can be 
applied to the sub-class. Most of the unsupervised feature selection or dimension 
reduction techniques just compress the original feature space into a target feature space 
and the selected features cannot be explained. This difficulty can also be overcome by 
applying the JSC-OCC method. Though we change the feature selection object, the 
experiments show that this feature selected union model will not decrease performance. 
We conclude that the appropriate sub-class of data-set and features makes the JSC-OCC 
model perform extremely well.  

The proposed JSC-OCC method also has better performance on unsupervised clustering 
groups if we choose a suitable OCC model, cluster method and cluster number. However, 
large cluster numbers degenerate the JSC-OCC performances. We also found that the 
spectral cluster method is better than the K-means cluster method when applying JSC-
OCC. The results of the JSC-OCC method on unsupervised sub-clusters cannot compete 
with our proposed method on knowledge based sub-clusters. 

Further research into this method will select appropriate sub-classes. There should be 
enough cases in the data-set, otherwise there will not be enough cases in the divided the 
sub-data-set. Sometimes the imbalances in the sub-classes will also affect the CS-OCC 
method. If there are no sub-classes in the data-set, we will apply the clustering model to 
cluster the data-set into sub-classes. Though this is not as natural as the more meaningful 
sub-class, this may be a solution for this kind of problem. The main concern is to find an 
appropriate cluster number. These issues will be investigated in future research.  

 



Instructions for Typing Manuscripts (Paper’s Title)     19 
 
Acknowledgments 

The work presented in this paper was supported by the Australian Research Council 
(ARC) under Discovery Project DP088739. Special thanks to Dr Declan Butler for 
providing an important data-set which was used in this study. 

References 

1. M. Bramer, S. Crone, J. Guajardoand R. Weber, A study on the ability of Support Vector 
Regression and Neural Networks to Forecast Basic Time Series Patterns. In Artificial 
Intelligence in Theory and Practice, (Springer Boston, 2006), pp 149-158. 

2. S. Vong, B. Coghlan, S. Mardy, D. Holl, H. Seng, S. Ly, M. J. Miller, P. Buchy,Y. 
Froehlich, J. B. Dufourcq, T. M. Uyeki, W. Limand T. Sok, Low frequency of poultry-to-
human H5NI virus transmission, southern Cambodia, 2005. Emerg Infect Dis 12 (2006) 
1542-7. 

3. OIE UPDATE ON HYGHLY PATHOGENIC AVIAN INFLUENZA IN ANIMALS 
(TYPE H5 and H7). http://www.oie.int/eng/info_ev/en_AI_avianinfluenza.htm (20/11),  

4. WHO, Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) 
Reported to WHO. 2010. 

5. M. Gauthier-Clerc, C. Lebarbenchonand F. Thomas, Recent expansion of highly 
pathogenic avian influenza H5N1: a critical review. Ibis 149 (2007) 202-214. 

6. J. D. Brown, D. E. Stallknechtand D. E. Swayne, Experimental infection of swans and 
geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerg 
Infect Dis 14 (2008) 136-42. 

7. H. Chen, G. J. D. Smith, S. Y. Zhang, K. Qin,J. Wang, K. S. Li, R. G. Webster, J. S. M. 
Peirisand Y. Guan, Avian flu H5N1 virus outbreak in migratory waterfowl. Nature 436 
(2005) 191-192. 

8. A. M. Kilpatrick, A. A. Chmura, D. W. Gibbons, R. C. Fleischer, P. P. Marraand P. 
Daszak, Predicting the global spread of H5N1 avian influenza. Proceedings of the 
National Academy of Sciences (PANS) 103 (2006) 19368-19373. 

9. T. Weberand N. Stilianakis, Ecologic immunology of avian influenza (H5N1) in 
migratory birds. Emerg Infect Dis 13 (2007) 1139-1143. 

10. M. Gilbert, X. Xiao, D. U. Pfeiffer, M. Epprecht, S. Boles, C. Czarnecki, P. 
Chaitaweesub, W. Kalpravidh, P. Q. Minh, M. J. Otte, V. Martinand J. Slingenbergh, 
Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia. Proceedings of 
the National Academy of Sciences (PANS) 105 (2008) 4769-4774. 

11. M. M. Moya, M. W. Kochand L. D. Hostetler One-class classifier networks for target 
recognition applications, in World Congress on Neural Networks, Portland, 1993, pp 797-
801. 

12. M. Markouand S. Singh, Novelty detection: a review--part 1: statistical approaches. 
Signal Processing 83 (2003) 2481-2497. 

13. V. J. Hodgeand J. Austin, A Survey of Outlier Detection Methodologies. Artificial 
Intelligence Review 22 (2004) 85-126. 

14. B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smolaand R. C. Williamson, Estimating 
the Support of a High-Dimensional Distribution. Neural Computation 13 (2001) 1443-
1471. 



20     Jie Zhang, Jie Lu and Guangquan Zhang 
 
15. D. M. J. Taxand R. P. W. Duin, Support Vector Data Description. Mach. Learn. 54 

(2004) 45-66. 
16. H. Yu, J. Hanand K. C. Chang, PEBL: Web Page Classification without Negative 

Examples. IEEE Transactions on Knowledge and Data Engineering 16 (2004) 70-81. 
17. C. Varun, B. Arindamand K. Vipin, Anomaly detection: A survey. ACM Comput. Surv. 

41 (2009) 1-58. 
18. H. Bu,J. Wangand X. Huang, Fabric defect detection based on multiple fractal features 

and support vector data description. Engineering Applications of Artificial Intelligence 22 
(2009) 224-235. 

19. C. Sanchez-Hernandez, D. S. Boydand G. M. Foody, One-Class Classification for 
Mapping a Specific Land-Cover Class: SVDD Classification of Fenland. IEEE 
Transactions on Geoscience and Remote Sensing 45 (2007) 1061-1073. 

20. H. Garcesand D. Sbarbaro, Outliers detection in environmental monitoring databases. 
Engineering Applications of Artificial Intelligence 24 (2011) 341-349. 

21. T. Onoda, H. Murataand S. Yamada, Non-Relevance Feedback Document Retrieval 
based on One Class SVM and SVDD. In International Joint Conference on Neural 
Networks, 2006 (IJCNN '06) Vol. (IEEE, Vancouver, Canada, 2006), pp 1212-1219. 

22. L. Manevitz, M. and M. Yousef, One-class svms for document classification. J. Mach. 
Learn. Res. 2 (2002) 139-154. 

23. X. Zhu,X. Wuand C. Zhang, Vague One-Class Learning for Data Streams. In Ninth IEEE 
International Conference on Data Mining, 2009 (ICDM '09), Vol. (IEEE, Miami, 
FL,USA, 2009), pp 657-666. 

24. P. Juszczak, D. M. J. Tax, E. P. Kalskaand R. P. W. Duin, Minimum spanning tree based 
one-class classifier. Neurocomputing 72 (2009) 1859-1869. 

25. Y. Xuand R. G. Brereton, Diagnostic Pattern Recognition on Gene-Expression Profile 
Data by Using One-Class Classification. Journal of Chemical Information and Modeling 
45 (2005) 1392-1401. 

26. J. C. Setubal, S. Verjovski-Almeida, E. J. Spinosaand A. C. P. L. F. de Carvalho, 
Combining One-Class Classifiers for Robust Novelty Detection in Gene Expression Data. 
In Advances in Bioinformatics and Computational Biology, (Springer Berlin / Heidelberg, 
2005),pp 54-64. 

27. A. Bairoch, S. Cohen-Boulakia, C. Froidevaux, J. Reyesand D. Gilbert, Combining One-
Class Classification Models Based on Diverse Biological Data for Prediction of Protein-
Protein Interactions. In Data Integration in the Life Sciences, (Springer Berlin / 
Heidelberg, 2008),pp 177-191. 

28. M. Yousef, S. Jung, L. C. Showeand M. K. Showe, Learning from positive examples 
when the negative class is undetermined--microRNA gene identification. Algorithms Mol 
Biol 3 (2008) 2. 

29. G. Guptaand J. Ghosh, Robust one-class clustering using hybrid global and local search. 
In Proceedings of the 22nd international conference on Machine learning, Vol. (ACM, 
Bonn, Germany, 2005). 

30. W. Daelemans, B. Goethals, K. Morik, K. Hempstalk, E. Frankand I. Witten, One-Class 
Classification by Combining Density and Class Probability Estimation. In Machine 
Learning and Knowledge Discovery in Databases, (Springer Berlin / Heidelberg, 2008), 
pp 505-519. 



Instructions for Typing Manuscripts (Paper’s Title)     21 
 
31. O. Kaynak, E. Alpaydin, E. Oja, L. Xu, D. Taxand K.-R. Müller, Feature Extraction for 

One-Class Classification. In Artificial Neural Networks and Neural Information 
Processing — ICANN/ICONIP 2003, (Springer Berlin / Heidelberg, 2003), pp 177-177. 

32. R. Polikar, Ensemble based systems in decision making. Circuits and Systems Magazine, 
IEEE 6 (2006) 21-45. 

33. T. Windeatt, Accuracy/Diversity and Ensemble MLP Classifier Design. Neural 
Networks, IEEE Transactions on 17 (2006) 1194-1211. 

34. L. Breiman, Bagging predictors. Machine Learning 24 (1996) 123-140. 
35. R. E. Schapire, The strength of weak learnability. Machine Learning 5 (1990) 197-227. 
36. B. Vermaand A. Rahman, Cluster Oriented Ensemble Classifier: Impact of Multi-cluster 

Characterisation on Ensemble Classifier Learning. Knowledge and Data Engineering, 
IEEE Transactions on PP  1-36. 

37. F. N. Julia, K. M. Iftekharuddinand A. U. Islam, Dialog Act Classification Using 
Acoustic And Discourse Information Of Maptask Data. International journal of 
computational intelligence and application 9 (2010) 289-311. 

38. L. Rokach, O. Maimonand O. Arad, Improving Supervised Learning by Sample 
Decomposition. International Journal of Computational Intelligence and Application 5 
(2005) 37-53. 

39. D. M. J. Tax. One-class Classification. Doctoral thesis, (Delft University of Technology, 
2001). 

40. P. Perner, Concepts for novelty detection and handling based on a case-based reasoning 
process scheme. Engineering Applications of Artificial Intelligence 22 (2009) 86-91. 

41. S. Villalbaand, P. Cunningham, An evaluation of dimension reduction techniques for 
one-class classification. Artificial Intelligence Review 27 (2007) 273-294. 

42. H. Farvareshand M. M. Sepehri, A data mining framework for detecting subscription 
fraud in telecommunication. Engineering Applications of Artificial Intelligence 24 (2011) 
182-194. 

43. H. Peng, F. Longand C. Ding, Feature Selection Based on Mutual Information: Criteria of 
Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 27 (2005) 1226-1238. 

44. D. M. J. Tax DDtools, the Data Description Toolbox for Matlab. 
http://homepage.tudelft.nl/n9d04/dd_tools.html  

 
 


	1.    Introduction
	2.    OCC METHODS AND RELATED WORK
	2.1.    OCC methods
	2.2.    Feature selection issue in OCC

	3.    Joint Sub-Classifier OCC Method
	3.1.    The motivation of proposed method
	3.2.    Processes of the JSC-OCC method
	Step 1. Divide all the one class cases into sub-classes by domain knowledge;
	Step 2: Select the most variation features according to the sub-classes;
	Step 3: Train the OCC classifier on each sub-class;
	Step 4: Combine three sub-classifiers to union into a joint OCC model.


	4.    Experiment and Result Analysis
	4.1.    Data source
	4.2.    Experiment result and analysis
	Step 1. Divide all the one class cases into sub-classes by domain knowledge;
	Step 2: Select the most variation features according to the sub-classes;
	Step 3: Train the OCC classifier on each sub-class;
	Step 4: Combine three sub-classifiers to union into a joint OCC model.


	5.    Discussion
	6.    Conclusions
	Acknowledgments
	References

