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Abstract. Imagery is frequently used to model, represent and communi-
cate knowledge. In particular, graphs are one of the most powerful tools,
being able to represent relations between objects. Causal relations are
frequently represented by directed graphs, with nodes denoting causes
and links denoting causal influence. A causal graph is a skeletal pic-
ture, showing causal associations and impact between entities. Common
methods used for graphically representing causal scenarios are neurons,
truth tables, causal Bayesian networks, cognitive maps and Petri Nets.
Causality is often defined in terms of precedence (the cause precedes the
effect), concurrency (often, an effect is provoked simultaneously by two
or more causes), circularity (a cause provokes the effect and the effect re-
inforces the cause) and imprecision (the presence of the cause favors the
effect, but not necessarily causes it). We will show that, even though the
traditional graphical models are able to represent separately some of the
properties aforementioned, they fail trying to illustrate indistinctly all of
them. To approach that gap, we will introduce Fuzzy Stochastic Timed
Petri Nets as a graphical tool able to represent time, co-occurrence, loop-
ing and imprecision in causal flow.

Keywords: Imagery, causal relation, fuzzy petri networks.

1 Imagery and causality

Since ancient times, imagery has been used to illustrate concepts and actions [43].
In the very beginning, even if in a rudimentary form, cave paintings schemati-
cally represented cognitions about hunting or agricultural activities [2]. In lat-
est times, automata theory or Chomsky syntagmatic grammar are examples of
imagery tools dealing with abstract theories and deep concepts [6]. Thus, the
Turing machine as a central computing unit moving left and right on an infi-
nite tape according to a program pictorially illustrates the universal concept of
computability [36]. In the same way, Chomsky’s syntagmatic trees illustrate the
geometry of the sentences, depicting the node dominances that a flat description
is not able to portray.
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Imagery language is often opposed to verbal sentences, although both aim to
mirror the structure of our thoughts [26]. Oral language, and especially its com-
plement writing, was linked to the social demands of exchange control, codifying
laws or recording history in a reliable and precise way. In the scientific area, the
relevance of writing was reflected in the name adopted by a prominent school in
Philosophy of Science, e. g., ‘the statement view’. But as Popper said (1963:28)
[28]: “although clarity is valuable in itself, exactness or precision is not”. Under
the influence of iconoclastic religions, words have been considered since the Re-
naissance as the precise way to express thought, but lately the role of images
as a source of clarity has been vindicated. Thus, for the Larkin & Simon view
[18], imagery has advantages, favoring gathering information about a single ele-
ment by perceiving at a glance its role in the net, and so, facilitating perceptual
inferences, quite familiar to human beings and generally difficult to obtain by
other means. Imagery and written language work in different ways: while im-
agery illustrates topological relations, texts show sentence concatenations, but
both contribute to the knowledge acquisition, as Paivio [27] pointed out in his
Dual Coding Theory. In his view, cognition uses two different subsystems: the
imagery one, based on the observation of objects and events and the relations
among them, and the verbal one, attaching the representations in texts.

Aristotle advocated imagery as a tool for representing any kind of knowledge,
being concrete or abstract [3]. On the contrary, Kant supported that images are
suitable to represent perceptual information, but not abstract ideas [37]. Between
them, a new point of view can be considered: the third-person imagery [25]. That
approach changed the focus from a concrete or individual view to a general
or collective one, demanding a look from an third or neutral observer, and so
validating the role of imagery supporting abstract thoughts. We join the Aristotle
view about the functional role of imagery representing human knowledge, being
concrete or abstract if the third-person view is adopted. In this view, images have
a double role: they outline the essential traits of knowledge and make easier to
remember them [27].

Causality, a main characteristic of science, makes an extensive use of images
through graphs, a kind of pictures showing the cause-effect link typical of many
human cognitions or explanations [8]. Agreeing with the third-person imagery,
causal graphs permit to represent type and token causal relations, the latter con-
sidered as prototypes of the particular problems they illustrate. Causal graphs,
a kind of imagery representation, provide insight views of causal problems, sepa-
rating the wheat from the chaff, and supplying adequate explanations of intricate
puzzles, illustrating how a node is causally reached from the parent ones.

Causality is about causal relations, frequently addressed mathematics, phi-
losophy, ecology, economy or psychology [4]. These subjects used verbal descrip-
tions or mathematical equations to gather causal knowledge. But graphics are
not an exception: Philosophy or computational approaches make an extensive
use of them. In the sequel, we will show the role of graphs explaining some causal
properties associated with some well-known causal puzzles.
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2 Properties of causal relations: time, concurrency,
feedback and imprecision.

A causal relation, e = r(c) : c ∈ Uc, e ∈ Ue, Uc → Ue, represents a link between
the cause c (simple or complex that belongs to some set Uc of causes), and the
effect e, provoked by the cause that belongs to a set Ue. The intersection between
sets Uc and Ue can be void ∅, can have some elements in common or both sets
can be equal Uc = Ue, depending on the problem. Given the representation of a
particular problem, we could have that an effect ej of a cause cj , modelled by
the causal relation j, can be the cause ci of another effect ei of a causal relation
i. Hence, causes c and effects e are properties of objects o. From now on, we
will talk about objects, where being a cause or effect is a semantic property of
them. Causality is often represented by causal graphs. A causal graph is a pair
G = (V,E) where V is a set whose elements are called vertices, that are the
previously defined objects, and E is a set of causal directed relations between
pairs of objects that represent the causal semantic information of these objects.
E is, for a given problem, then a subset of the relations given by the set of all
possible relations between all the objects in a problem Ue = r(Uc). A graph
is a visual tool for illustrating associations between objects using nodes and
directed arrows. The arrows show the link between the cause and the effect, and
its direction, the flux of the causal influence. Graphs illustrate paradigmatically
the connection from cause Uc to effect Ue.

If we define a causal relation by an edge e of the causal graph, this object has
four different properties. Inter alia, causal relations E, representing real world
problems, are sensitive to time et, concurrency ec, feedback ef , and imprecision
ei. We define these properties below.

2.1 Time

Let us consider that X is a cause of Y given a relation r. A causal relation
r(X,Y ) is also a function of time, T . That is: r(X,Y, T ), where T is the time
spent between the event X generates the event Y . Regarding time, according
to Taylor [41], causal relations ,E, satisfy the following properties: Irreflexivity:
Nihil is causa sui. That is, we can not have X → X, or r(X,X, T ), because the
sequence would be infinite. Anti-symmetry: Provided that X and Y are distinct,
if r(X,Y, T ), then we can not have r(Y,X, T ), again, because the sequence will
also be infinite. Precedence: If r(X,Y ), then X precedes Y . That is, X ∈ pa(Y ).

Precedence in causal relations shows the arrow of time: from cause to effect
and not the reverse. Even if time is a key factor in causation, it is important
to remark that it is not always considered by the usual graphical tools that
represent causality, as we will see later.

2.2 Concurrency

Frequently, an effect Y demands the simultaneous presence of several causes; i.
e., causality is often pluri-causality and concurrency is a type of that. We will
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denote the set of direct causes X of an effect Y as the one retrieved by the
function pa(Y ). We define that a cause X is direct of an effect B if a single edge
is needed to link both objects in a causal graph G(V,E). In this paper, we use
concurrency to denote co-occurrence of causes. Plural causality was paradigmat-
ically addressed by INUS causality [21]. Typically, an effect Y has a lot of causes
X, some of them possibly grouped into clusters Xj . Each cluster Xj is sufficient,
but not necessary, to provoke the effect Y , that is, rj(Xj , Y )∀j where j is the
index of a cluster. Causes Xj are groups of single factors X and each factor X is
an INUS (Insufficient but Nonredundant part of an Unnecessary but Sufficient)
condition for the effect Y . Each cluster Xj is a set of concurrent factors X able
to provoke the effect Y . At the end we have that pluri-causality relations r can

be all represented as: ∨Jj=1(∧Ii=1Xi)j → Y where Xi is an INUS, (∧Iji=1Xi)j = Xj

is a sufficient, but not necessary cluster, J is the number of clusters and Ij is
the number of INUS for a cluster j. Concurrency of causes is typical in causal
scenarios, but it is not addressed by all causal graphs, as we will show below.

2.3 Feedback

A causal process r(·, ·) frequently shows mutual influence. If an element X influ-
ences itself directly or indirectly, this is referred to as a causal loop, i.e., a closed
cause/effect feedback X → · · · → X. There are two main classes of causal loops:
In positive feedback loops, the loop leads to a reinforcing feedback as cycles
increase more and more. Consider f(x), g(y) as functions of random variables
and the graphical model f(x) → g(y) → · · · → f(x), where · · · can be from
zero to an indeterminate number of functions. If we define i ∈ Z as the i iter-
ation of the execution of every function of the graphical model f and g, then,
the positive feedback loop will always comply, for every one of its functions f :
f(x|i = j + 1) > f(x|i = j). On the other hand, in negative feedback loops, the
loop f(x)→ g(y)→ ··· → f(x) seeks an equilibrium balancing the fluctuations in
the output: if the output increases, the causal loop pushes the input value down
and if it decreases, it pushes the value up. Id est, E(f(x|i = j+n)) = f(x|i = j)
where n, j ∈ Z.

A special type of negative feedback is the one that involves a time delay. A
delay happens when it takes time before the effect plays out. In this case, the
feedback signal can arrive later, turning a positive feedback into a negative one.
E. g., sales increase orders, and more orders favor more sales, but if orders are
delayed (dotted line), sales may fall. Time delay breaks the balance. Feedback is
prevalent in economic or ecologic scenarios, where the notions of reinforcement
or balance have a relevant role. Finally, another property emerges if causation
is empirically scrutinized:

2.4 Imprecision

Causes X, effects Y and cause-effect links r(x, y) : x ∈ X, y ∈ Y are often qual-
ified by degrees ε ∈ [0, 1] (percentages) or if the causal relation representation is
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a text: adverbs w. These adverbs can be modelled by point estimations ε ∈ [0, 1]
or, as we will later describe, by probability distributions p(w) or fuzzy functions
f(w). These objects denote a measure of frequency, intensity, or strength, that
can be represented by point estimations or different probability mathematical
objects. Let us define a causal sentence as a text representation T that includes
a semantic meaning involving a causal relation between objects r(X,Y ). Causal
sentences t automatically mined from the short papers included in Hawking’s
Physics Colloquium [31] show that, even in hard science, causal descriptions
are not crisp, but imprecise, in so far as the causal links are frequently tinged
with semantic hedges or vague adjectives, as ‘too’, ‘definitely’ or ‘nearly’. Thus,
physical causality is frequently rather approximate than categorical. As we will
further see, we can model these adverbs a, by point estimations ε ∈ [0, 1] repre-
senting an adverb by a precise degree of uncertainty. As language is imprecise
and depends on context, the time frequency adverb a, given by its signficant,
may provide a plethora of significances, that is why Garrido [10] represents these
adverbs by probability distributions p(a|Θ), as we will further see.

Despite the empirical support, vagueness or imprecision have not always ac-
commodation in the typical graphs representing causality. Concurrency, time,
looping and imprecision seem to be usual and relevant aspects involved in many
causal processes but insufficiently addressed by graphical methods. Neurons,
bayesian networks, cognitive maps or probabilistic causal graphs supply tools
for depicting positive, negative, proximate, uncertain, distant and single or plu-
ral causality, but neurons exclude imprecision, bayesian networks do not take
time into account, cognitive maps do not consider independence in concurrent
causality and probabilistic causal graphs do not consider feedback loops. In this
paper, we will propose the Fuzzy Stochastic Timed Petri nets (FSTPN) [20] as
a tool that can contribute to represent co-occurrence, time, feedback and impre-
cision in causal flux. Although co-occurrence is an aspect inherent to basic Petri
Nets (PN) (Murata, 1989), time was only incorporated in a later evolution of
them known as Timed PN (TPN) [23]. It should be mentioned that, although
TPN still lack mechanisms to deal with imprecision, FSTPN can represent the
vagueness involved in the probability of the transitions firing. Thus, FSTPN
seem to be a useful tool for representing concurrent systems accounting for time
parameters and fuzzy probabilistic causal influences. To accomplish this aim, the
rest of the paper is structured as follows: First, traditional visual methods for
representing causality are presented. Then, we illustrate deficiencies of the afore-
mentioned methods. We provide a fuzzy stochastic timed Petri nets overcome
these issues. Lastly, we summarize the contributions of the proposed method.

3 Graphical methods for representing causal relations.

We introduce a review of graphical causal methods that represent some of the
properties of causal relations that we have described previously.
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3.1 Neurons.

Neurons were firstly considered by Lewis [19] as a way to represent causal rela-
tions c(·, ·). A neuron N is an oriented graph N(V,E) with nodes V denoted by
circles symbolizing the cause x ∈ V or the effect y ∈ V and causal links · → ·
depicting the causal influence X → Y ∀X,Y ∈ V . Circles are usually labeled
with lower case letters. Circles may be shaded or not. If shaded, that we will
represent as a normal cause X they are actives and, thus, ready to transmit a
causal influence X → Y ∀X,Y ∈ V . If not (in blank, that we will represent as
X) they are inoperative and cannot pass any influence to the connected nodes
V . Links between nodes · → · are represented by arcs →, which can end in an
arrow, which we will represent as · � ·, or in a circle, that we will represent as
·( ·. If ended in an arrow, a connection X � Y is stimulatory; if finished in a
circle X ( Y , inhibitory. Let us suppose an arrow that connects a node X with
a node Y , that is X → Y . The arc stimulates X � Y or inhibits X ( Y only
if X is active, not inactive X. If Y receives both a stimulatory X � Y and an
inhibitory arrow Z ( Y , inhibition cancels stimulation. Briefly, neurons satisfy
the following principles: A neuron X is activated if it is stimulated by at least
another neuron Y � X and is not inhibited by any other neuron Z ( Y . A
neuron X is not activated X if it is inhibited by one or more neurons Y( X.
Lastly, the start neurons have no outside connections. They are active if they
are shaded.

Neurons admit neither time nor imprecision and although they accept pluri-
causality, using the syntax of neurons we cannot force the concurrence of two
or more nodes causing the effect. If a node is active, it can cause the effect by
itself, the other node is not necessary. But in many causal scenarios, the joint
contribution of two or more causes for reaching the effect is demanded.

3.2 Boolean functions.

Representing cause X and effect Y , Boolean functions f(b) involve binary values
b for variables and logic formulas for modeling indicative or factual causation.
Variables are supposed to be independent of each other, X ⊥⊥ Y , and the causal
influence is calculated in terms of the present (1), X, or absent (0), X, causes,
provoking (1), Y or not (0) the effect Y . For example, let us suppose that a
surgical team consists of 4 persons (A,B,C,D), one of them being the chief
surgeon (A). The decision to perform a surgery on a patient (S) is made by
simple majority and the vote of the chief surgeon has a double value in case of
a tie. The following formula f(b) represents the approval of the action:

(¬A∧B∧C∧D)∨(A∧¬B∧¬C∧D)∨(A∧¬B∧C∧¬D)∨(A∧¬B∧C∧D)∨
(A∧B∧¬C∧¬D)∨(A∧B∧¬C∧¬D)∨(A∧B∧C∧¬D)∨(A∧B∧C∧D).

So, the action is caused if A does not vote positively but B, C and D do or
if A and D vote positively but B and C do not. The previous canonic formula
is a maxiterm that can be shortened into an equivalent one using minimization
algorithms, as the Quine-McCluskey method [32] or the Karnaugh maps [15].
Boolean functions f(b) do not show dependencies between indirect causes nor
approach time or imprecision.
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3.3 Causal Bayesian networks.

Bayesian networks are probabilistic graphical models G(V,E) that use Bayesian
inference for the computation of the probability of an effect Y given causes X
where all the causes and effects are modelled by random variables [14]. Con-
cerning the described properties of causal relations introduced in the previous
section, Bayesian networks try to overcome the limitations of Boolean functions
mentioned above by: Detecting the indirect influence of a cause X in the rest of
the graph G. Representing imprecision or uncertainty, using random variables
p(x), generally associated to Gaussian distributions. Checking independence be-
tween variables in the causal process. Concretely, the absence of edges E on
bayesian networks model conditional independences between causes and effects.

Indirect influence depends on the dependency diagnoses between random
variables, changing according to: The interventions made on the graph G and
the structure of the graph given by its edges. An edge between a cause X and
an effect Y is modelled by a factor P (Y |X) of the joint distribution modelled
by the Bayesian network.

A Bayesian network represents independence of events using conditional
probabilities P (·|·). Formally, a Bayesian network is a directed acyclic graph
(DAG) G(V,E) that models a joint distribution of conditional distributions. The
nodes V represent events that are modelled by random variables and the directed
arcs E represent causal relations or factors that appear in the joint probability
distribution. Nodes are labeled with variables (capital letters) and variables can
be instantiated to data, by sampling over the probability distributions p(·) that
are associated to the random variables modelled by the nodes. The root nodes
(parent nodes pa(X) of a random variable X) are modelled with a priori proba-
bilities p(X|θ), where θ is the set of a priori parameters of the probability distri-
bution p(X) and the children nodes with conditioned probabilities p(Y |pa(Y )),
which represents the probability of a node conditioned upon its parents pa(·).
Independence is adequately illustrated by conditional probability: X is proba-
bilistically independent of Y conditioned on Z if ∀X,Y, Z, P (X|Y,Z) = P (X|Z);
e. g., once the Z value is known, the value of Y does not change the probability
of X. But independency diagnosis can vary, ibid, if interventions are performed
on the nodes, as we will further observe.

Consider a graph representing the following causal relations B → A, C → A,
A → E. The effect A is represented by the conditional probability p(A|B,C) ,
id est, A is caused by B or C, having B ⊥⊥ C, since there is no arrow from B to
C or vice versa. Nonetheless, we can conjecture that there be some relationship
between B and C because both events are causes of A. Suppose that we check A
and observe that it happens. In that case, knowing the value of one of the causes
(e.g., B) informs us about the other cause (C), opening now a communication
between them. Even though causal Bayesian networks deal with imprecision
through probability distributions and independency diagnoses in causality, they
do not address time and feedback influence. But causal loops are usual in social
and ecological scenarios, where, in addition, time plays a key role.
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3.4 Fuzzy cognitive maps.

First approached by Tolman [42], a cognitive map M is a graphical tool for the
spatial representation of a situation, favoring, at a quick glance, the identifica-
tion of the items i involved in the scene as well as the links eij between them,
where eij is a link from the item i to the item j. Later, Axelrod [1] used cogni-
tive maps to represent political scenarios with various events or agents causally
linked. Kosko [17] extended cognitive maps to fuzzy cognitive maps in order to
host imprecision and uncertainty, characteristic of many daily settings. In so
far as the multiple-valued or fuzzy cognitive maps include the Boolean ones as
a particular case, next we will address the more general case. Fuzzy cognitive
maps are graphs G(V,E) with nodes V labeled by concepts. A concept vi con-
sists of a modifier, often an adjective or a noun, and a quantity (or its negation),
usually an adverb. For instance, social stability, instability can cause increasing,
decreasing of prices, being stability, instability; increasing, decreasing quantities
and social, prices modifiers. Like Bayesian networks, fuzzy cognitive maps illus-
trate causal influences r(vi, vj , c) from a cause vi to an effect vj decreasing, being
neutral or increasing, which is given by the categorical variable c = [+,−, ·], but
unlike Bayesian networks, they score the causal impact using ordinate values
[+,−, ·], and not a measure of probability b ∈ R[0,1]. As it has been described,
influence admits three valuations: (a) positive (favoring the effect, +), (b) neg-
ative (inhibiting the effect, −) or (c) neutral (causing no influence on the effect,
no mark). Thus, initially, fuzzy cognitive maps used a trivalent logic, a special
type of fuzzy logic for representing the causal influence.

Kosko [17] expanded the qualification of the causal influence from three-
valued logic [+,−, ·] to infinite valued one and later, to a linguistic-valued fuzzy
logic. Regarding infinite valued logic, the links can take values in the interval
e ∈ R[−1,1]: the sub-interval ep ∈ R(0,1] denoting positive causality, the interval
en ∈ R(−1,0] negative causality and the value 0 the absence of causal influence.
Thus, −0.2 denotes a small negative causal influence and 0.6 means a rather
positive causal influence.

Values are aggregated using t-norms and t-conorms, a class of binary oper-
ators to model conjunction ·∧ ∈ R[0,1]· and disjunction ·∨ ∈ R[0,1]· in multiple-
valued and fuzzy logic (Nguyen, 2006). Typical norms are min(x, y) (minimum or
Gödel t-norm), x · y (product t-norm) or max(x+ y− 1, 0) (Lukasiewicz t-norm)
and typical t-conorms are max(x, y) (maximum or Gödel t-conorm), x+y−x ·y
(product t-conorm, probabilistic sum) or min(x + y, 1) (Lukasiewicz t-conorm,
bounded sum).

The most genuinely fuzzy extension of fuzzy cognitive maps was the linguistic-
valued one [17]. Now, the links E between nodes V are labeled with fuzzy quan-
tifiers q ∈ R[0,1] that are associated with an adverb ai → qi (many, most, a lot,
etc.) that are aggregated using t-norms and t-conorms quoted above.

Managing linguistic values, fuzzy-valued cognitive maps facilitate knowledge
representation and inference in a human style, furnishing a flexible and realistic
tool for handling vague causal influence. Ecological or political systems, areas of
frequent fuzzy cognitive maps applications [16], are largely dependent on time.
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For instance, geopolitical influence systems are chronologically dependent. Fuzzy
time cognitive maps, first approached by [11], included temporary annotations
txy in relations between nodes X →txy Y , denoting a delay txy before the effect
Y is reached.

In fuzzy time cognitive maps, directed arcs X → Y can denote positive
R ∈ [0, 1] or negative causal influence R ∈ [−1, 0] from the cause X to the effect
node Y , and the delay is represented by t ∈ Z. Numbers denoting time delays
can be understood to represent time according to units as hours, days, etc. Fuzzy
time cognitive maps illustrate imprecision, loops and time in causal links, but
not concurrency, while there is no way to ask the joint action of two or more
causes for achieving an effect.

3.5 Probabilistic causal graphs for representing causal text
sentences.

Text causal sentences are representation that often involve a set of causes X and
effects Y and a time frequency adverb a that expresses how probable is that,
given the set of causes X, the set of events Y occur. We can also represent that
information, as we have seen, in a probabilistic causal graph G(V,E).

An important issue happens when we have several text causal sentences con-
cerning the same cause and effect but a different time adverb a. If we want to
build a knowledge graph that represents the average time frequency of the event
Y given by the cause X, that is p(Y |X), and we have processed text causal
sentences with different adverbs, then, how do we properly represent that un-
certainty? If the same adverb a, depending on the context, maps to a different
degree of uncertainty, how do we properly represent that?

Garrido [10] proposed an ad-hoc approach by using a slight modification on
Bayesian networks to deal with an accurate model to represent that information,
applying it to the detection of fake news [9]. In a first step [22], a process retrieved
all the causal sentences w of a text and stored the most representative ones as
cause, effect and modifier tuples (c, e,m) [29] [30]. With that tuples w, we can
build a weighted graph G(V,E) where causal relations r(c, e,m) are weighted by
a quantity m ∈ R[0, 1] representing uncertainty. The model let us compute the
probability of an event Z that was not directly a cause of an effect X but an
indirect one linked by other set of causes. For example, if we have X → Y → Z,
we can compute p(Z|X,Y ) as p(Z|X,Y ) = p(Z|Y )p(Y |X). More generally,

p(Z|Xn, ..., X1) = p(Z|Xn)
∏n−1

i=1 p(Xi+1|Xi). The difference with Bayesian net-
works is that we are specifically modelling the probability of the connection
between two causes and not the probability of the cause as if it was an event. In
bayesian networks, we are modelling p(X), here, we just assume that p(X) = 1.

The previous approach was enhanced [10] as the probability of a link was
being modelled by a point estimation m ∈ R[0, 1] and, depending on the context
where the adverb appear, this m can vary. To model this uncertainty, we associ-
ated to each adverb a a probability distribution p(m), typically a Gaussian, asso-
ciated m to the mean of the distribution and also providing a standard deviation
to represent the uncertainty of the adverb. Each link p(Y |X) is a joint probability
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distribution of all the tuples t retrieved from text where we can find an effect Y ,
cause X and an adverb m that is converted into a probability distribution p(m).
Then, p(Y |X) =

∏n
i=1 p(Y |X,mi), id est, we are marginalizing the adverbs, gen-

erating a joint probability distribution of all the causal sentences involving Y
and X. We can still compute p(Z|Xn, ..., X1) = p(Z|Xn)

∏n−1
i=1 p(Xi+1|Xi) as

in the previous approach or sample a point estimation of the uncertainty of an
indirect effect by sampling the first cause relation and then following the link of
events.

The new approach can represent time, in the sense that a new causal text
modify each link p(Y |X) by adding a new factor p(Y |X,mi) but not by having
a representation t of the delay. This approach does also not solve feedback lops,
as it assumes that there does not exists tuples as r(c, e,m) in the texts. Having
reviewed all the most important causal graphical models, we have shown that
none of them accurately model the properties mentioned in Section 2, being
necessary the proposal of a new graphical causal model that represents them.

4 Causal puzzles refractory to be adequately represented
by standard graphical tools.

In spite of the fact that concurrency, time, loops and imprecision are frequent
in classical causal puzzles, traditional graphs show limits representing them. In
this section, we mention some examples illustrating the deficiencies of the de-
scribed methods. Regarding concurrency and time, neurons have the problem of
symmetrical and asymmetrical overdetermination. Concerning imprecision and
time, causal Bayesian networks have the fizzling and trumping issues.

Let us describe the symmetrical overdetermination problem. A causal sce-
nario is over-determined when the effect is caused jointly by two causes [35].
Suppose that, for being cured, the joint action of two drugs a and b are needed.
For instance, for curing Helicobacter Pylori, clavulanic acid and amoxicillin must
be administered (a ∧ b → c). According to the posed problem, c demands the
concurrency of two causes (a and b) to be activated. But attending the definition
of neuron, it is not possible to guarantee that. Since a and b nodes are active,
the link is stimulatory in both cases and c is activated independently by a or by
b.

On the other hand, we have the asymmetrical overdetermination issue. A
situation is asymmetrical over-determined when a cause c preempts the other to
provoke the effect e [12]. For example: Let a and b be two incompatible drugs,
each of which is sufficient to mitigate an illness. Choosing one of the two drugs
means forgetting the other, avoiding thus possible adverse reactions. The effect
may be caused by two factors inhibiting each other; so, if they were activated
at the same time, the effect vanishes. Time and anticipation are essential in this
example to achieve the effect on a track. But anticipation is not considered by
neurons.

Having reviewed the problems with neurons, now we illustrate issues of causal
Bayesian networks. Imprecision in causal flux are addressed by Bayes Nets in
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a probabilistic frame. Suppes [39] coined positive causality posing that a cause
provokes an effect if it increases its probability: i.e., C causes E if P (E|C) >
P (E). This postulate has been questioned and the following are some of the
most common objections. They fall mainly into two categories. First, fizzling,
where a cause may be less likely than other one and yet being the cause of the
effect. Second, trumping, where a cause may be as likely as the other one and
nevertheless failing to contribute at all to the effect.

The first case, known as fizzling, refers to a very probable causal factor that
contributes to the effect without being its cause. To illustrate this puzzle, a
variant of the preemption story was presented: a is a quiet and responsible
person and b a very known vandal. Both a and b have a stone in hand and a
lamppost in front of them. The probability that the lamp suffers a damage (D) is
greater in the presence of b that by the presence of a. In any case, the probability
that b breaks the lamp is less that 1 and the probability that a does the same is
greater that 0. If a throws the stone, inhibit the action of b, who presumably will
desist from throwing his stone if the lamppost is already broken. Let suppose
that, in an unexpected rage behavior, a throws the stone against the lamppost
breaking it. Although it was more likely that b broke the lamp, it was a who did.
Of course, the fizzled disposition of b it was not the cause of the breakage of the
lamppost, but its presence increased the probability of such event. Moral: the
presence of b favors the effect, but is not sufficient for its causation. Anticipation
is determinant for the causal assignment. In the previous story, Bayesian Nets
do not consider temporal precedence.

Trumping shows that even two causes being equally likely to produce the
effect, the cause that happens before surpass the other, becoming the actual
cause. The effective cause is sufficient, but not necessary, for causing the effect.
The next story illustrates trumping [34]: In a magical land are two wizards,
Merlin (Me) and Morgana (Mo). Each of them can throw a spell on the Prince,
turning him, at midnight, a frog. The laws of magic say that the first spell to
occur during the day will be the one that causes the effect. And it is a matter of
fact that Merlin casts his spell (SMe) in the morning and Morgana (SMo) in the
afternoon. At midnight the Prince turns into a frog (FP ) and there is no doubt
that Merlin’s spell was the cause. Merlin’s action did not disable the Morgana’s
one; if one of them has no effect, the other does. Although both are equally likely
to cause the effect, Merlin preempts Morgana acting before. Merlin is the cause
even if he had the same probability as Morgana to provoke the effect. Using
Bayesian causal networks, a possible representation of this puzzle is shown in
Figure 1, left:

This network is an example of converging connection or explaining away. Re-
call that causal converging links say that if a node conclusion changes certainty
because receives evidence, it opens the communication between its parents. Re-
lated to the above graph, if about FP we only know that it may be caused from
SMe or SMo , their parents are independent, i.e, to have evidences about one of
them as a possible cause do not change the certitudes about the other (knowing
that Merlin casts the spell does not indicate anything about Morgana’s behav-
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Fig. 1. Causal network representing trumping (left). Depicting causal influence from
the node SMe to the node SMo (right).

ior). But if some evidence about FP is provided and information about one of the
causes is available, the potential influence of the other cause can be reassessed.
In the above graph, if we know that the Prince is now a frog and that is due to
the Merlin’s spell, then the confidence in Morgana as a possible cause diminishes
(who first spell disallows the other and the only chance for Morgana is to act at
the same time as Merlin does, although this case is not considered in the puzzle).
In order to represent the Merlin’s temporal precedence as a preemption factor
for the Morgana’s action, we may be tempted to modify the previous network
and replace it with the network shown in Figure 1, right. But causal Bayesian
networks are governed by the following postulate: if evidence is provided about
a node, the causal arrows reaching it are deactivated but all that start from
it remain active. Instantiating the node SMe means breaking the relation with
the node Me but maintaining the causal flux from SMe to SMo and FP , even if
the arrow is excitatory in both cases and it does not cancel the node SMo as a
possible influence of FP . In causal networks inhibitory links have no represen-
tation. ‘Acting before’ is key to correctly interpret that puzzle, but inhibitory
arcs and temporal precedence has no representation in standard causal Bayesian
networks. Petri Nets contribute to solve those deficiencies.

5 A Fuzzy Stochastic Timed Petri Net approach.

A Petri net (PN) is a graphical tool for modeling dynamic processes. A PN
[40] is a DAG showing the following components. Tokens representing resources
in a broad sense, being physical or intangible, denoted by black dots. Places
are locations where tokens are stored waiting to be transferred, denoted by a
small circle. A circle containing a dot represents a place containing a token.
Lastly, transitions, depicting changes in the status of the places and their tokens,
representing actions and places, conditions. Places are connected with transitions
by directed arrows. Let t be a transition. Each place p having an arrow from
p to t is an input place of t. Each place p having an arrow from t to p is an
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output place of t. Places are marked with tokens. A transition is enabled, for a
given marking, if and only if all its input places have at least one token. Once a
transition is fired, a token from each of its input places is removed and a token to
each of its output places is added. So, if a transition is enabled, a new marking
is reached, performing the dynamic behavior of the net.

Formally, a PN is a quintuple PN = (P, T, I, O,M0), where: P = {p1, p2, ..., pm}
is a finite set of places. T = {t1, t2, ..., tn} is a finite set of transitions, P ∪T = ∅.
I : (PxT ) → N, is an input function defining directed arcs from places to
transitions. I(ti, pj) represents the number of arcs connecting a place pj with
a transition ti. O : (TxP ) → N, is an output function defining directed arcs
from transitions to places. O(ti, pj) represents the number of arcs connecting a
transition ti with a place pj . Parallel arcs connecting a place to a transition or
vice versa are represented by a single directed arc labeled with its weight, w. If
w = 1, the arc is not labeled. M0 : P → N is the initial marking.

Marking is the number of token in places. Once a PN is executed, the number
and positions of places dynamically change according to the transition firing,
governed by the enabling rule and the firing rule, both managing the flows of
tokens in the net:

A transition t is enabled if the number of tokens of each input place p of t is
greater than or equal to the weight of the directed arc connecting p to t. On the
other hand, a transition t is enabled if the number of tokens of each input place
p of t is greater than or equal to the weight of the directed arc connecting p to
t.

A transition without any input place is a source transition and one without
any output place is a sink transition. A source transition is unconditionally
enabled and the firing of a sink transition consumes but does not generate any
token.

Consider the following PN illustrated in Figure 2, left:

Fig. 2. Petri net representations.

The initial marking M = (p1, p2, p3, p4) of the PN corresponding to figure 12
is M0 = (2, 2, 0, 0). t1 is the only transition enabled. Firing it, we reach a new
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marking M1 = (0, 1, 1, 0, 0). Now, t2 or t3 can be fired. If t2 is activated, the new
marking is M2 = (0, 1, 0, 1, 0) and if t3 is fired, M3 = (0, 1, 0, 0, 1).

PN can be used to model realistic problems as the next one of the job offer
and demand. Imagine a situation in which there is a permanent job offer and
three demands of employment, represented by Figure 2, right.

The initial marking is M0 = (3, 1, 0, 0) and t1 is the only transition enabled.
Firing it, a new marking M1 is reached: M1 = (2, 0, 1, 0). Now, t2 and t3 are
enabled, getting the new marking M2 = (2, 1, 0, 1). Enabling t3 assures a perma-
nent job offer to every possible demand as the loop suggest. It can be easily seen
that the described Petri Nets can model prototypical scenarios of dynamic sys-
tems like the following ones: representing a sequential execution where transition
t2 can be enabled only if another transition t1 is fired. The temporal constraint
‘t1 precedes t2 ’ or ‘t2 after t1 ’ can be modelled. They can model a case of con-
flict: both transitions are enabled by the place p1, but the firing of one of them
disables the other. In this case, assigning probabilities is a usual way to decide in
case of conflict. Petri Nets can also symbolize concurrency, e. g., processes that
cooperate to achieve a common goal: the firing of a transition t1 can put a token
on two places p2 and p3. Lastly, we can model synchronization: Let a transition
t1 be enabled only if places p1 and p2 have a token, hence modeling the joining
operation. Sowa firstly used basic PN in causal representation [38], modeling
the ‘Yale shooting problem’, originally proposed by [13] in the context of non-
monotonic temporal reasoning (Cf. Hans and McDermott, 1986) and adapted
by Sowa to be represented with PN. The puzzle refers to a dynamic scenario
involving two relevant properties: being loaded (something concerning to a gun)
and being alive (something concerning to a victim) and two actions performed
in sequence: wait and shoot. The initial situation is that the gun is loaded and
the victim is alive and a kind of law of inertia is assumed: usually, properties of
things do not change from an initial situation s0 to others subsequent situations
s1 , s2 , etc. But the victim may die if in a subsequent situation the gun is fired.
Nevertheless, non-monotonic logics do not lead to that conclusion because they
disregard the relevance that the causal dependencies have in defeasible knowl-
edge. Sowa aimed to use a single PN to show the relations between the properties
and actions involved in the Yale shooting problem:

Next, we use PN to represent some of the aforementioned causal puzzles. As
concurrence in Petri Net are attached to transitions, we will refer the simulta-
neous presence of causes with the ‘co-occurrence’ word.

5.1 Co-occurrence and overdetermination.

Causal overdetermination can be illustrated using PN as a case of synchroniza-
tion. Recall that in symmetrical overdetermination two different causes must con-
tribute to provoke the desired effect. For example, to eradicate the Helicobacter
Pylory bacterium, clarithromycin and amoxicillin should be jointly administered
(Figure 4, left).

In order to the transition be fired, this PN requires the sincronization of
both tokens, becoming dependent places. Remember that in asymmetrical over-
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Fig. 3. Petri Net modeling the Yale shooting problem (redrawn from fig. 4.20 of Sowa
[38])

Fig. 4. Representing co-occurrence of places with PN (left). Representing asymmetrical
over-determination as conflict in a Petri Net. (right)

determination two causal factors contribute to provoke the effect, but they are
incompatible each other and the first triggering the action inhibits the other.
This puzzle can be represented as a case of conflict in Petri Nets (Figure 4,
right).

Inhibition with Petri Nets is modeled inserting an extra node (labeled ‘pa-
tient’). To provide a remedy, two ‘medicines’ and a patient should be considered.
If a medicine is used by the patient, the patient node loses its token and the other
possible transition is deactivated. In this case, delays on transitions are not re-
quired and the puzzle becomes adequately represented using a single PN. Note
that, unlike Bayes Nets, dependence or independency in PN is a property of
the transitions, not of the nodes. In PN, independency is largely related with
concurrence. A transition is independent from other if it can be triggered before,
after or at the same time; it is dependent if it depends on which other node or
transition is enabled.

5.2 Alternative causes

Recalling the example of section 2.2, the voters contributing to the final decision
were summarized by the Boolean formula: (A ∧ (B ∨ C ∨ D)) ∨ (B ∧ C ∧ D),
meaning that a surgery decision is performed if A votes positively, and B or C
or D votes positively or if B and C and D votes positively. The PN representing
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the (A∧B)∨ (A∧C)∨ (A∧D)∨ (B ∧C ∧D) denoting that several alternative
clusters of necessary causal factors are sufficient to provoke the action. Disjunc-
tive causes have a no transparent representation in PN, because even if we can
represent every cluster as a synchronization of causal factors, the surgery can
be caused by the concurrency of all of them (A ∧ B ∧ C ∧D). So, the attempt
to represent that case with a basic Petri Net is incomplete, because a dummy
transition connecting the existing ones would be required. Basic PN considers
neither time, nor probability, even if time and indetermination have a promi-
nent role in discrete-event systems involving causal links. Nevertheless, Merlin
and Ramchandani [5] separately extended ordinary PN for including time delay
in two different ways: firing and enabling durations.

In a basic PN, if a transition is enabled, it can be fired, moving input tokens
from one place to another. But if time is considered, the transition will have a
time delay. This means that input tokens are instantly transferred, but output
tokens are not generated until the time delay is not surpassed. When a transition
fires, input tokens are instantly transferred and output tokens just generated,
but are not in disposition to enable new transitions until the delay associated to
the target place is exceeded.

In fact, firing and enabing durations are similar ways to represent time in
a Petri Net. The difference is only about the delay is positioned, whether in
transitions or places. When time is assigned to a place, we denote the amount
of time that the tokens generated by the transitions are off for enabling new
transitions. When time is allocated in a transition, each input token has the
same delay and is the transition delay what decides when the output tokens
emerged. In the sequel, we will consider time associated to transitions. Time gets
representation in Petri Nets extending the classic PN definition to the Timed
Petri Nets (TPN): TPN = (P, T, I, O,M0, τ), where P, T, I, O and M0 is as in
PN and τ : T → R+ is a function that associates transitions with time delays.
TPN enables the representation of time in a negative causal loop.

5.3 Time delays in causal loops

Recall the example of the three orders of sales that are made in a shop. That
fact is represented in a PN putting three tokens in the input place (sales). So,
a transition t1 may be fired as many times as tokens are. Let us suppose that
the delay associated to the transition t1 is null (e.g., when a sale is made, an
order is executed) and the delay of transition t2 is 4, denoting 4-days standby in
applying the order. Then, as the orders are made effective three days after the
sales, the store may be out of supply, stopping the sales.

5.4 Probability, time, trumping and fizzling.

Regarding the representation of the trumping and fizzling puzzle, both of them
involve time, co- occurrence and also vagueness or indetermination. Indetermi-
nation is introduced in Petri Nets using probabilities. Stochastic Timed Petri
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Net (STPN) is an evolution of TPN dealing with probability in timed transi-
tions [23] [7]. In a STPN, a transition is qualified with a probable firing delay
value. Formally, STPN = (P, T, I,O,M0, τ,∧), where P, T, I, O, M0 , τ , is as
in TPN and ∧: T → R is a function that associates stochastic probability delays
to transitions.

Fig. 5. Representation of time and imprecision in a STPN (left). Representing trump-
ing as a conflict in a Petri Net with delays and probabilities. (right)

Next, we will show how to represent time and imprecision involved in the
trumping and fizzling puzzle using a STPN showing a conflict case. Regarding
trumping, it can be modeled with a STPN as a situation of conflict assigning
probabilities and delays to transitions. The STPN shown in Figure 5 is a case of
conflict labeled with time delays and probability marks.

We remain to represent the fizzling. Fizzling is a causal puzzle concerning a
pluri-causal situation in which the effective cause is not the one that provides
the greater probability to the effect: a is a quiet and responsible person and b
is a vandal. a anticipates b being the cause of the breakage of the lamppost.
The fizzled disposition of b is not the cause of the effect, although his presence
highly increases the probability of it. ‘Highly’ is a vague probability qualification
and fuzzy set theory provides a way to measure that imprecise estimation. Al-
though both deal with imprecision, crisp and fuzzy probability differ. Meanwhile
probability theory deals with randomness, fuzzy set theory approaches vague-
ness. Fuzzy set theory probabilities can be numerical, based on fuzzy events
or linguistic. First, regarding numerical probability, Zadeh’s formula [44] makes
probability equal to the integral, or a sum in the discrete case, of an expectation.
Regarding linguistic probability, the unit interval values must be distributed; i.e.,
we have to fix a membership function to each probability predicate or by a func-
tion. Thus, fuzzy set theory provides tools to manage imprecise probabilities as
‘highly probable’ and fuzzy Petri Nets might benefit of its management, for ex-
ample, using them as thresholds to trigger transitions in the fizzling puzzle. The
fizzling puzzle involves fuzzy probabilities and, then, a Fuzzy Stochastic Timed
Petri Net (FSTPN) is required to model it. A FSTPN assigns fuzzy probabil-



18 Alejandro Sobrino, Eduardo C. Garrido-Merchán, and Cristina Puente

ities to delays in transitions. Formally, FSTPN = (P, T, I,O,M0, τ, µ), where
P, T, I, O, M0 and τ is as in STPN and µ:T → R+ ∪ Γ is a function that
associates to each transition a real value in R+ or a linguistic label [24], sug-
gesting that the underlying probability to the transition is approximate rather
than crisp. The FSTPN shown in Figure 6 illustrates how to represent time and
fuzzy indetermination, characteristic of the fizzling puzzle:

Fig. 6. Representing fizzling as a conflict in a Petri Net with delays and fuzzy proba-
bilities

6 Concluding remarks

Although regular graph methods are useful for dealing with causal attributes,
they fail to represent co-occurrence, time, circularity and fuzzy indetermina-
tion together. To overcome these difficulties, we pointed at the Fuzzy Stochastic
Timed Petri Nets as a tool that can contribute to represent all of them. Petri
Nets and its extensions seems to be particularly appropriate for representing
material causation, based on the view that causes are physically connected to
their effects and the causal link transfer a mark from the cause to the effect.
The movements of tokens in PN from one place to another through transitions
illustrate this flow from cause to effect. However, this interpretation presents
some difficulties, some related to causality and others specific to the PN.

Regarding a causal scenario, negative causality [33] is a major objection. In
some cases the absence of a fact causes the effect and so, nothing is transferred
though the causal channel. In that case, no mark is transmitted from the cause
to the effect; it is rather the absence that causes the effect. PN are not able
to represent negative causality: only if there are tokens moving in the net, the
dynamic of the event is reflected. Pluricausality and multiple effects present also
problems to be modeled in PN, because the representation of disjunctive events
has redundancies. Even if it is possible to represent alternative causes in PN,
the semantic of the net does not have a direct reading. And the same goes for
multiple effects.
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