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Abstract
In this paper, we propose an approach for affective  

representation of movie scenes based on the emotions  
that  are  actually  felt  by  spectators.  Such  a  
representation  can  be  used  for  characterizing  the  
emotional content of video clips for e.g. affective video  
indexing and retrieval, neuromarketing studies, etc. A  
dataset  of 64 different scenes from eight movies  was  
shown  to  eight  participants.  While  watching  these  
clips, their physiological responses were recorded. The  
participants  were also  asked  to  self-assess  their  felt  
emotional  arousal  and  valence  for  each  scene.  In  
addition,  content-based  audio-  and  video-based  
features were extracted from the movie scenes in order  
to  characterize  each  one.  Degrees  of  arousal  and  
valence  were  estimated  by  a  linear  combination  of  
features  from physiological  signals,  as  well  as  by  a  
linear  combination  of  content-based  features.  We  
showed  that  a  significant  correlation  exists  between  
arousal/valence  provided  by  the  spectator's  self-
assessments,  and  affective  grades  obtained  
automatically  from either  physiological  responses  or  
from  audio-video  features.  This  demonstrates  the  
ability of using multimedia features and physiological  
responses to predict the expected affect of the user in  
response to the emotional video content.

Keywords:  Multimedia  indexing  and  retrieval, 
affective personalization and characterization, emotion 
recognition  and  assessment,  affective  computing, 
physiological signals analysis. 

1. Introduction
The amount of available digital multimedia content 

has greatly increased during the last decade. Powerful 
and novel multimedia indexing and retrieval methods 
have  thus  become  essential  to  sift  through  such 
abundance.  In  this  paper  we  propose  to  use  the 
emotion that is actually felt by a given spectator as an 
indexing feature, in addition to more classical features 
like  those  based  on  video  analysis  of  the  media 
content. In order to demonstrate that for movie scenes 
affect can be represented by grades we compared self-
assessment  of  the  emotional  content  of  scenes,  with 

affective  grades  automatically  estimated  from 
physiological  responses  and  multimedia  content 
analysis.

The affective and emotional  preferences of  a user 
play an important role in multimedia content selection. 
Imagine  you  feel  bored  and  you  are  looking  for  an 
entertaining movie. How can a system understand your 
affective  preferences?  What  are  your  real  affective 
preferences?  These  questions  are  hard  to  answer, 
because  user  emotional  preferences  depend on many 
aspects  such  as  context,  culture,  sex,  age,  etc.  A 
“personal content delivery” [1] system which considers 
one's  emotional  preferences  should  answer  these 
needs.  This  paper  introduces  an  affective 
representation method that can operate at the core of 
such a system. 

To  estimate  affect,  physiological  responses  are 
valued  for  not  interrupting  users  for  self  reporting 
phases. In addition, affective self-reports might be held 
in doubt because the participant cannot remember all 
the  different  emotions  he/she  had  during  the 
experiment, and/or might misrepresent his/her feelings 
due to self presentation  (i.e.  the participant  wants  to 
show he/she  is courageous  whereas  in reality he/she 
was scared) or for pleasing the experimenter [2]. Self-
assessment  is  however  necessary as  ground truth,  to 
show  that  the  physiological  measurements  are  valid 
and  also  to  train  the  affect  representation  system. 
Finally,  while  self  reports  are  unable  to  represent 
dynamic changes, physiological measurements give the 
ability  of  measuring  the  user  responses  dynamically 
[3]. 

Affect based video content characterization requires 
the understanding  of  the intensity and  type  of  affect 
which is expected to be evoked in the user (audience) 
while watching a movie/video. There are only a limited 
number  of  studies  on  content-based  affective 
representation/understanding  of  movies,  and  these 
mostly rely on self-assessments or population averages 
to obtain the emotional content of a movie [1;4].

Wang and Cheong [4] used content-based audio and 
video  features  to  classify  basic  emotions  elicited  by 
movie  scenes.  They  classified  audio,  into  music, 



speech  and  environment  signals  and  processed  them 
separately  to  shape  an  audio  affective  vector.  They 
combined this vector with video-based features such as 
key lighting, and visual excitement to generate a scene 
affective vector, which was classified and labeled with 
emotions. Hanjalic et al.  [1] introduced “personalized 
content  delivery”  as  a  valuable  tool  in  affective 
indexing  and  retrieval  systems.  They  first  selected 
video- and audio- content based features based on their 
relation  to  the  arousal  and  valence  space  that  was 
defined  as  an  affect  model  for  affect  ([5];  see  also 
Section  2  of  this  paper).  Combining  these  features, 
they  then  estimated  arising  emotions  in  this  space. 
While the arousal  and valence  grades  could  be used 
separately for indexing, they combined those grades by 
following their temporal pattern in this arousal/valence 
space. This allowed determining an affect curve shown 
to be useful for extracting video highlights in a movie 
or sport video.

Affective systems require methods for automatically 
assessing  user's  emotional  state.  Computerized 
emotion assessment gained interest over the last years. 
Most of  current  methods focus on facial  expressions 
and speech analysis.  However,  these methods cannot 
always  be  relied  upon  since  users  are  not  always 
speaking or turning their head towards the camera lens. 
With  the  advancement  of  wearable  systems  for 
recording  peripheral  physiological  signals,  it  is 
becoming  more  practically  feasible  to  employ  these 
signals  in  an  easy-to-use  human  computer  interface 
[6;7].  We  therefore  concentrated  on  the  use  of 
peripheral physiological signals for assessing emotion, 
namely:  galvanic  skin  resistance  (GSR),  blood 
pressure which provided heart rate, respiration pattern, 
and skin temperature. In order to record facial muscles 
activity  we  also  used  electromyograms  (EMG)  from 
the Zygomaticus major and Frontalis muscles. At this 
stage  of  the  study,  we  opted  for  not  using 
electroencephalograms  (EEG)  due  to  the 
cumbersomeness  of  the  apparatus  and  acquisition 
protocols, although EEG's have been shown to be very 
useful for assessing emotions [6;8-11].

This  paper  demonstrates  a  first  step  towards 
benefiting  from  actual  physiological  responses  for 
creating  affect-based  tools.  Personalized  emotional 
profiles can be determined and subsequently used for 
affect  based video indexing.  Peripheral  physiological 
signals  were  first  recorded  for  monitoring  the 
arousal/valence grades of  participants’ emotion while 
they  were  watching  a  movie  scene.  In  order  to 
understand  the  user’s  emotional  behavior,  sets  of 
features extracted from the physiological signals were 
linearly combined to obtain an estimate for the arousal 
and  valence  grades.  These  grades,  assessed  while 
watching  movie  scenes,  can  be  used  as  a  new 
dimension of information in a user’s personal affective 
profile.  Multimedia  content-based  features  were  also 

extracted  from  the  scenes  by  audio  and  video 
processing.  The correlation between the self-assessed 
arousal/valence  values  and  those  computed  from 
physiological features was determined, as well as the 
correlation between these self-assessed arousal/valence 
values  and  those  obtained  from multimedia  features. 
The correlation between the physiological signals and 
the  multimedia  features  was  also  investigated  to 
determine  which  multimedia  features  give  rise  to 
which type of emotion. All correlations are shown to 
be significant: physiological responses of participants 
can  characterize  video  scenes,  and  audio-visual 
features  can  fairly  reliably  be  used  to  predict  the 
spectator's  felt  emotion.  The  variation  between 
participants of those content-based features that were 
the most correlated with self-assessment demonstrates 
the  need  for  considering  personal  preferences  in 
affective  indexing  of  multimedia  contents.  Finally  it 
can  be  noted  that  we  did  not  focus  on  temporal 
changes  in  arousal  and  valence  space,  rather  we 
investigated the average  affect  related to each movie 
segments of interest (scenes). 

The remainder of this paper is organized as follows. 
Section 2 presents some background on representation 
of affect and on the arousal/valence model to represent 
emotions.  Section  3  elaborates  on  data  acquisition, 
feature extraction and selection, and how features are 
combined for representation. The experimental results 
are  given  in  Section  4  and  finally  conclusions  are 
presented in Section 5.
2. Affective representation

Emotions  are  not  discrete  phenomena  but  rather 
continuous  ones.  Psychologists  therefore  represent 
emotions  or  feelings  in  an  n-dimensional  space 
(generally 2- or 3-dimensional). The most famous such 
space, which is used in the present study and originates 
from cognitive theory, is the 2D valence/arousal space. 
Valence  represents  the  way  one  judges  a  situation, 
from  unpleasant  to  pleasant;  arousal  expresses  the 
degree of felt excitement, from calm to exciting. Cowie 
used  the  valence/activation  space  (similar  to  the 
valence/arousal  space)  to model and assess emotions 
from  speech  [7;12].  Although  such  spaces  do  not 
provide any verbal description, a point in such space 
can be mapped to a categorical feeling label.

In  order  to record their felt emotions,  participants 
were asked to grade each movie scene by arousal and 
valence grades using self-assessment Manikins (SAM) 
[13]. The arousal grade represented the level of arousal 
or excitement felt when watching the scene while the 
valence grade represents the felt pleasantness.
3. Material and methods
3.1. Overview

A video dataset of 64 movie scenes was created (see 
Section  3.3)  from  which  content-based  low-level 
features  were extracted. Experiments were conducted 



during which physiological signals were recorded from 
spectators. After each scene, the spectator self-assessed 
his/her  arousal  and  valence  levels.  To  reduce  the 
mental  load  of  the  participants,  the  protocol  divided 
the  show  into  2  sessions  of  32  movie  scenes  each. 
Each of these sessions lasted approximately two hours, 
including  setup.  Eight  healthy  participants  (three 
female  and  five  male,  from  22  to  40  years  old) 
participated in the experiment. Thus, after finishing the 
experiment three types of affective information about 
each movie clip were available: 
 multimedia content-based information extracted 
from audio and video signals;
 physiological responses from spectators’ bodily 
reactions (due to the autonomous nervous system) and 
from facial expressions;
 self-assessed  arousal  and  valence,  used  as 
‘ground truth’ for the true feelings of the spectator.
Since video scenes were showed in random order, the 
occurrence of high and low arousal and valence values 
in  the  self-assessed  vectors  (64  elements  each)  does 
not  depend  on  the  order  in  which  scenes  were 
presented. 

Next,  we  aim  at  demonstrating  how  those  true 
feelings  about  the  movie  scenes  can  be  obtained  by 
using  the  information  that  is  either  extracted  from 
audio  and  video  signals  or  contained  within  the 
recorded  physiological  signals.  To  this  end,  features 
that  are  likely to  be  influenced  by affect  have  been 
extracted from the audio and video content as well as 
from the physiological signals. Thus a (single) feature 
vector  composed  of  64  elements  highlights  a  single 
characteristic (for instance, average sound energy)  of 
the 64 movie scenes. In a similar way feature vectors 
were extracted from the physiological signals. As one 
may  expect,  a  single  feature,  e.g.  average  sound 
energy,  may not  be  equally  relevant  to  the  affective 
feelings  of  different  participants.  In  order  to 
personalize  the  set  of  all  extracted  features,  an 
additional  operation  called  relevant-feature  selection 
has  been  implemented.  During  the  relevant-feature 
selection  for  arousal,  the  correlation  between  the 
single-feature  vectors  and  the  self-assessed  arousal 
vector  is  determined.  Only  the  features  with  high 
absolute correlation coefficient (| ρ | above 0.25 and p-
value  below  0.05)  were  subsequently  used  for 
estimating arousal. A similar procedure was performed 
for valence. It will be shown that accurate estimates of 
the self-assessed arousal and valence can be obtained 
based on the relevant feature vectors for physiological 
signals as well as from the relevant feature vectors for 
audio and video information.
3.2. Experiments

The  participants  were  first  informed  about  the 
experiment,  the meaning of  arousal  and  valance,  the 
self-assessment  procedure,  and  the  video  content.  In 

emotional-affective  experiments  the  bias  of  the 
emotional  state  (participants'  mood)  needs  to  be 
removed. To allow leveling of feature values over time 
a baseline is recorded at each trial start by showing one 
short  30s.  neutral  clip  randomly selected  from clips 
provided by the Stanford psychophysiology laboratory 
[14].

Figure 1 presents the experimental protocol and its 
timing. Each trial started with the user pressing the “I 
am ready” key which started the neutral clip playing. 
After  watching  the  neutral  clip,  one  of  the  movie 
scenes was played. Movie scenes were selected from 
the dataset in random order. After watching the movie 
scene, the participant filled in the self-assessment form 
which  popped  up  automatically.  In  total,  the  time 
interval  between  the  starts  of  consecutive  trials  was 
approximately  three  to  four  minutes.  This  interval 
included playing the neutral clip, playing the selected 
scene,  performing  the  self-assessment,  and  the 
participant-controlled rest time.

In  the  self-assessment  step  for  evaluating  arousal 
and valence, the SAM Manikin pictures with a slider to 
facilitate self-assessment of arousal and valence were 
used  (see  Figure  2).  The  sliders  correspond  to  a 
numerical  range  of  [0,  1]  while  the  numerical  scale 
was not shown to the participants.

Figure 2. Arousal and valence self-
assessment: SAM manikins and sliders.

3.3. Data
3.3.1. Movie scenes dataset

To  create  the  video  dataset,  we  extracted  video 
scenes from eight movies selected either according to 
similar studies (e.g. [1;4;6;14]), or from recent famous 
movies.  The  movies  included  four  major  genres: 
drama,  horror,  action,  and  comedy.  Video  clips  used 
for this study are from the following: Saving Private 
Ryan (action), Kill Bill, Vol. 1 (action), Hotel Rwanda 

Figure 1. Experimental protocol.
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(drama),  The  Pianist  (drama),  Mr.  Bean’s  Holiday 
(comedy),  Love  Actually  (comedy),  The  Ring, 
Japanese version (horror) and 28 Days Later (horror). 
The  extracted  scenes,  eight  for  each  movie,  had 
durations  of  approximately one  to  two minutes  each 
and  contained  an  emotional  event  (judged  by  the 
authors).
3.3.2. Physiological signals

Peripheral  signals  and  facial  expression  EMG 
signals  were recorded  for  emotion assessment.  EMG 
signals  from  the  right  Zygomaticus  major  muscle 
(smile, laughter) and right Frontalis muscle (attention, 
surprise) were used as indicators of facial expressions. 
Galvanic  skin  resistance  (GSR),  skin  temperature, 
breathing pattern (using a respiration belt) and blood 
pressure (using a plethysmograph) were also recorded. 
All  physiological  data  was  acquired  via  a  Biosemi 
Active-two  system  with  active  electrodes,  from 
Biosemi Systems (http://www.biosemi.com). The data 
were recorded with a sampling frequency of 1024 Hz 
in  a  sound-isolated  Faraday  cage.  Examples  of 
recorded physiological signals in a surprising scene are 
given  in  Figure  3.  The  GSR and  respiration  signals 
were respectively smoothed by a 512 and a 256 points 
averaging  filters  to  reduce  the high  frequency noise. 
EMG signals were filtered by a Butterworth band pass 
filter  with  a  lower  cutoff  frequency  of  4  Hz  and  a 
higher cutoff frequency of 40 Hz.

Figure 3. Physiological response (participant 
2) to a surprising action scene. The following 

raw physiological signals are shown: 
respiration pattern (a), GSR (b), blood 

pressure (c), and Frontalis EMG (d). The 
surprise moment is indicated by an arrow.

3.4. Feature extraction
3.4.1. Audio and video content-based features

Sound has an important impact on user’s affect. For 
example  according  to  the  findings  of  Picard  [15], 
loudness  of  speech  (energy)  is  related  to  evoked 
arousal, while rhythm and average pitch are related to 
valence. The audio channels of the movie scenes were 
extracted  and  encoded  into  monophonic  information 
(MPEG layer 3 format) at a sampling rate of 48 kHz, 

and their amplitude range was normalized in [-1,  1]. 
All of the resulting audio signals were normalized to 
the same amplitude range before further processing. A 
total of 79 low-level  audio features  were determined 
for each of the audio signals. These features, listed in 
Table  1,  are  commonly  used  in  audio  and  speech 
processing and audio classification [16;17].

Wang  et  al  [4] demonstrated  the  relationship 
between  audio  type’s  proportions  and  affect,  where 
these  proportions  refer  to  the  respective  duration  of 
music, speech, environment, and silence in the audio 
signal of a video clip. To determine the three important 
audio types (music, speech, and environment), silence 
was  first  identified  by  comparing  the  audio  signal 
energy  of  each  sound  sample  with  a  pre-defined 
threshold  empirically  set  at  5×10-7.  After  removing 
silence, the remaining audio signals were classified by 
the three classes  support  vector  machine (SVM).  We 
implemented a three class audio type classifier using 
support  vector  machines  (SVM  with  polynomial 
kernel) operating on audio low-level features in a time 
window  of  one  second.  Despite  some  classes 
overlapping  (e.g.  presence  of  a  musical  background 
during a dialogue),  the classifier  was usually able to 
recognize  the  dominant  audio  type.  The  SVM  was 
trained utilizing more than 3 hours of audio, extracted 
from movies and labeled manually.  The classification 
results were used to form 4 bins (3 audio types and 
silence) normalized histogram; these histogram values 
were  used  as  affective  features  for  the  affective 
representation.  MFCC  (Mel  frequency  cepstral 
coefficients),  LPCC  (Linear  prediction  cepstral 
coefficients)  and  the  pitch  of  audio  signals  were 
extracted using the PRAAT software package [18].

Movie scenes have been segmented at the shot level 
using the OMT shot segmentation software [19]. Video 
clips  were  encoded  into  MPEG-1  format  to  extract 
motion  vectors  and  I  frames  for  further  feature 
extraction.  We used  the OVAL library (Object-based 
Video  Access  Library)  [20] to  capture  video  frames 
and extract motion vectors. 

From a movie director's point of view, lighting key 
[4;22] and  color  variance  [22] are  important 
parameters to evoke emotions. We therefore extracted 
lighting  key  from  frames  in  the  HSV  space  by 
multiplying  the  average  value  (V  in  HSV)  by  the 
standard deviation of the values (V in HSV).   Color 
variance was obtained in the CIE LUV color space by 
computing the determinant of the covariance matrix of 
L, U, and V. 

The  average  shot  change  rate,  and  shot  length 
variance were extracted to characterize video rhythm. 
Hanjalic  et  al.  [1] showed  the  relationship  between 
video  rhythm  and  affect.  Fast  object  movements  in 
successive frames are also an effective factor to evoke 
excitement.  To  measure  this  factor,  the  motion 
component  was  defined  as  the  amount  of  motion  in 



consecutive  frames  computed  by  accumulating 
magnitudes of motion vectors for all B and P frames.

Colors and their proportions have an effect to elicit 
emotions.  In  order  to use  colors  in the list  of  video 
features, a 20 bin color histogram of hue and lightness 
values  in  the  HSV space  was  computed  for  each  I 
frame and subsequently averaged over all frames. The 
resulting averages in the 20 bins were used as video 
content-based features. The median of L value in HSL 
space was computed to obtain the median lightness of 
a frame. Shadow proportion or the proportion of dark 
area in a video frame is another feature which relates 
to  affect  [4].  Shadow  proportion  is  determined  by 
comparing  the  lightness  values  in  HSL color  space 
with an empirical threshold. Pixels with lightness level 
below this threshold (0.18 [4]) are assumed to be dark 
and in shadow in the frame.

Table 1. Low-level features from audio signals.
Feature set Extracted features

MFCC MFCC coefficients, derivative and autocorrelation 
of MFCC, each 13 features [16]

Energy Average energy of the audio signal [16]

LPCC 
LPCC (16 features), derivative of LPCC

 (16 features), [16]

Time 
frequency

Spectrum flux, spectral centroid, delta spectrum 
magnitude, band energy ratio, dominant pitch 

frequency[16;17] 
ZCR Zero crossing rate [16]

Silence ratio Proportion of silence in a time window [21]

3.4.2. Physiological features
GSR provides  a  measure  of  the  resistance  of  the 

skin by positioning two electrodes on the tops of two 
fingers  and  passing  a  negligible  current  through  the 
body.  This resistance decreases due to an increase of 
sudation,  which  usually  occurs  when  one  is 
experimenting  emotions  such  as  stress  or  surprise. 
Moreover, Lang et al. discovered that the mean value 
of the GSR is related to the level of arousal [23]. (See 
Table 2 which summarizes the list of features extracted 
from physiological signals.)

A plethysmograph measures  blood pressure in the 
participant’s  thumb.  This  measurement  can  also  be 
used  to compute  heart  rate  by identification of  local 
maxima (i.e. heart beats) and inter-beat periods. Blood 
pressure  and  heart  rate  variability  correlate  with 
emotions, since stress can increase blood pressure [7]. 
Pleasantness  of  stimuli  can  increase  peak  heart  rate 
response [23], and heart rate variability decreases with 
fear, sadness, and happiness [24]. 

Table 2. Features from peripheral signals.
Peripheral signal Extracted features

GSR

Average skin resistance, average of 
derivative, mean of derivative for negative 
values only(average decrease rate during 

decay time), proportion of negative samples 
in the derivative vs. all samples

Blood flow
(Plethysmograph)

Average blood pressure, heat rate, heart rate 
derivative, heart rate variability, standard 

deviation of heart rate

Respiration

Band energy ratio (energy ratio between the 
lower (0.05-0.25Hz) and the higher (0.25-
5Hz) bands), average respiration signal, 

mean of derivative (variation of the 
respiration signal), standard deviation, 

dynamic range or greatest breath, breathing 
rhythm (spectral centroid)

EMG Zygomaticus Energy
EMG Frontalis Energy

Eye blinking rate Rate of eye blinking per second, extracted 
from the Frontalis EMG

Skin Temperature Range, average, minimum, maximum, 
standard deviation

Skin temperature was also recorded since it changes 
in  different  emotional  states  [23].  The  respiration 
pattern  was  measured  by  tying  a  respiration  belt 
around the chest of the participant. Slow respiration is 
linked  to  relaxation  while  irregular  rhythm,  quick 
variations,  and cessation of respiration correspond to 
more  aroused  emotions  like  anger  or  fear  [24;25]. 
Regarding  the  EMG  signals,  the  Frontalis  muscles 
activity  is  a  sign  of  attention  or  stress  in  facial 
expressions.  The  activity  of  the  Zygomaticus  major 
was also monitored, since this muscle is active when 
the user is laughing or smiling [26]. Most of the power 
in the spectrum of an EMG during muscle contraction 
is in the frequency range between 4 to 40 Hz. Thus, the 
muscle activity features were obtained from the energy 
of  EMG  signals  in  this  frequency  range  for  the 
different muscles. 
The rate of eye  blinking is another  feature,  which is 
correlated with anxiety  [27]. Eye-blinking affects the 
EMG signal that is recorded over the Frontalis muscle 
and results in easily detectable peaks in that signal.
3.5. Feature selection and regression

The relevance of features for affect was determined 
using linear correlation between each extracted feature 
and the users’ self-assessment, as motivated in Section 
3.1 In this study, a significant correlation between two 
vectors  was  supposed  to  exist  when  the  absolute 
correlation exceeded 0.25 ( | ρ | > 0.25) with p-value 
below 0.05. The p-value represents the probability that 
a randomly selected vector would lead to a ρ value that 
is at least as large as the one observed. 

We  now  demonstrate  how  user-felt  arousal  and 
valence can be estimated, based on the physiological or 
content-based  features  which  were  found  to  have  a 
significant  correlation  with  the  self-assessed  valence 
and arousal. For each participant, a training set of 42 
scenes was formed by randomly selecting 42 of the 64 
movie  scenes  and  the  corresponding  feature  values. 
The remaining 22 scenes served as a test set. 

In  order  to  obtain  an  estimate,  based  on  the 
significantly correlated features,  of the user’s arousal 
and  valence,  all  significantly  correlated  features  are 
weighted and summed as is indicated in Eq. (1), where 



ŷ(j) is  the estimate of  arousal/valence grade,  j is  the 
indexing number of a specific movie scene {1,2,..,64}, 
xi(j) is  the  feature  vector  corresponding  to  the  i-th 
significantly correlated feature,  Ns is the total number 
of significant features for this participant, and wi is the 
weight that corresponds to the i-th feature.
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In order to determine the optimum ŷ, the weights in 
Eq. (1) were computed by means of a linear relevance 
vector machine (RVM) from the Tipping RVM toolbox 
[28].  This  procedure  was  applied  on  the  user  self 
assessed  arousal/valence,  y(j),  and  on  the  feature-
estimated  arousal/valence,  ŷ(j),  over  all  42  movie 
scenes in the test set as can be seen in (2). 

This  procedure  is  performed  four  times  for 
optimizing the weights corresponding to:

• physiological features when estimating valence,
• physiological features when estimating arousal,
• multimedia features when estimating valence,
• multimedia features when estimating arousal.
In  a  first  step  weights  are  computed  from  the 

training set. In  the second step, the obtained weights 
were applied to the test set, and the mean squared error 
between the resulting estimated arousal/valence grades 
and self assessed arousal/valence was examined. These 
two steps were repeated 1000 times. Each time the 42 
movie  scenes  of  the  training  set  were  randomly 
selected  from  the  total  of  64  scenes  while  the  22 
remaining  scenes  served  as  the  test  set.  The  results 
from  this  cross-validation  will  be  presented  in  next 
Section.

4. Experimental results
The  correlations  between  multimedia  features, 

physiological  features  and  self  assessments  were 
determined.  Table  3  shows,  for  each  participant,  the 
features  which  had  the  highest  absolute  correlations 
with that participant’s self-assessments of arousal and 
valence.  Table  3.a  shows  results  for  physiological 
features  whereas  Table  3.b  shows  results  for 
multimedia features

Table 3. Physiological and multimedia 
features with the highest absolute 

correlation with self assessments for 
participants 1 to 8.

(a) Physiological features
Arousal ρ Valence ρ

1 EMG Frontalis 0.39 EMG Zygomaticus 0.66
2 EMG Frontalis 0.57 EMG Frontalis -0.63

3 Respiration band 
energy ratio 

0.42 EMG Zygomaticus 0.58

4 Blood pressure -0.29 EMG Zygomaticus. 0.43
5 EMG Zygomaticus 0.46 EMG Frontalis -0.47

6 Eye blinking rate -0.32 Average of GSR 
derivative. 

-0.45

7 GSR standard 0.55 EMG Zygomaticus 0.69

deviation 
8 Blood pressure -0.33 EMG Zygomaticus 0.56

(b)Multimedia Features
1 13th LPC coefficient -0.35 Last MFCC coeff. 0.50

2 Last MFCC 
coefficient

-0.54 14th bin of hue 
histogram (bluish)

0.43

3 Audio signal energy
-0.4 Last MFCC 

coefficient
0.5

4 First autocorrelation 
MFCC coefficient 

0.40 3rd autocorrelation 
MFCC Coefficient 

0.35

5 Motion component 0.32 Motion component -0.47

6 11th autocorrelation 
MFCC coefficient 

-0.43 5th bin of lightness 
histogram

-0.39

7 12th autocorrelation 
MFCC coefficient 

0.45 Key lighting 0.41

8 Motion component 0.38 15th bin of hue 
histogram (purplish)

-0.48

For physiological signals, the variation of correlated 
features  over  different  subjects  illustrates  the 
difference  between  participants’  responses.  While 
blood  pressure  was  more  informative  regarding  the 
arousal level of participants 4 and 8, EMG signals and 
thus  facial  expressions  were  more  important  to 
estimate arousal in participants 1, 2, and 5. The large 
variation  between  participants  regarding  which 
multimedia  features  have  the  highest  absolute 
correlation value with their self assessment, indicates 
the  variance  in  individual  preferences  to  different 
audio  or  video  features.  For  instance  more  motion 
component leads to more arousal and excitement and 
less valence and pleasantness for participant 5, which 
means that the participant  had a negative feeling for 
exciting  scenes  with  large  amount  of  movement  in 
objects or background.

Table 4 shows, for all participants,  the correlation 
coefficients  between  four  different  pairs  of 
physiological features and multimedia features. These 
eight  features  have  been  chosen  from  the  features 
which  have  significant  correlation  with  self 
assessments  and  thus  more  importance  for  affect 
characterization.  The  correlations  show  that 
physiological responses are significantly correlated to 
changes  in  multimedia  content.  As  an  example,  the 
negative  correlation  between  EMG  Zygomaticus 
energy  and  the  15th bin  of  the  hue  histogram 
(corresponding  to  purple)  shows  that  increasing  this 
color in the video content results in less Zygomaticus 
activity, thus less pleasantness or valence.

Table 4. The linear correlation ρ values btw. 
multimedia features, and physiological 

features which are significantly correlated 
with self assessments (participants 1 to 8).

EMG 
Zygomatic. 
energy/Key 

lighting

Skin temp. 
standard 

deviation /5th 

MFCC 
autocorrelation 

coefficient 

Skin temp. 
range/ Shot 

length 
variation

EMG 
Zygomatic. 
energy/ hue 
histogram’s

15th bin 



1 0.24 - - -0.41
2 0.62 0.44 0.42 -0.41
3 0.46 0.40 0.56 -0.34
4 0.40 0.32 0.43 -0.30
5 0.36 0.39 0.58 -
6 0.44 0.31 0.51 -0.32
7 0.47 0.34 0.27 -0.43
8 0.54 0.34 0.42 -0.45

Table 5. Average mean squared error (EMSE), 
between estimated arousal/valence grades 
and self assessments (participants 1 to 8).

Arousal with 
physiological 

features

Arousal 
with 

Multimedia 
features

Valence with 
physiological 

features

Valence 
with 

multimedia 
features

1 0.044 0.047 0.020 0.031
2 0.030 0.038 0.020 0.032
3 0.034 0.034 0.026 0.043
4 0.037 0.036 0.023 0.023
5 0.028 0.031 0.060 0.047
6 0.043 0.040 0.052 0.037
7 0.025 0.032 0.018 0.026
8 0.031 0.027 0.014 0.017

The  accuracy  of  the  estimated  arousal/valence  is 
evaluated  by  computing  the  mean  squared  error 
between  the  estimates  and  the  self  assessments  of 
arousal/valence  (Table  5).  The  mean  squared  error 
(MSE) was calculated 1000 times when varying the 22 
samples  in  the  test  set,  using  the  cross  validation 
technique discussed in section 3.5. 

 










1000

1

22

1

2)ˆ(
1000

1

i

N

j
ijij

test
MSE

test

yy
N

E (2)

The MSE was computed by Eq. 2 where N test  is the 
number  of  test  samples  (here  22)  and  ŷij is  the 
estimated  arousal/valence  in  i-th  iteration  for  j-th 
sample in test set. The computation used the obtained 
grades  from  both  physiological  features  and 
multimedia content  features  of  each  subject.  Since it 
was easier to self assess valence on the video dataset, 
better  results  have  been  obtained  for  valence 
estimation.  All  MSE values  are  considerably smaller 
than a random level estimation MSE (around 0.17).

5. Conclusion
In  this paper,  an affective characterization method 

for movie scenes is proposed based on emotions that 
are  felt  by  spectators.  Physiological  responses  of 
participants  were  recorded  while  watching  movie 
scenes  and  key  features  were  extracted  from  these 
responses.  By  computing  correlations  between  these 
key  physiological  features  and  the  users’  self-
assessment  of  arousal  and  valence,  it  was  identified 
which physiological features are essential for accurate 
estimation of arousal/valence. Such accurate estimates 
provide  us  with  a  continuous  assessment  of  affect 
which can serve as a ground truth for affect estimation. 
For  example  Zygomaticus  EMG  signals  which 

represent smile and laughter have high correlation with 
valence (Table 3).

Furthermore,  content  based  multimedia  features 
were  extracted  from  the  movies  scenes.  Their 
correlations with both physiological features and users' 
self-assessment  of  arousal/valence  were  shown to be 
significant.  A  procedure  was  proposed  to  actually 
estimate  user's  affect  in  response  to  movie  scenes 
based  on  selected  multimedia  content  features. 
Predicting user's affect opens the door to many novel 
applications.  One  is  personalized  content  delivery 
systems  with  configurable  emotional-based 
preferences.  Users  will  watch  a  training  set  of  short 
movie  clips;  after  configuration,  the  system  will  be 
able  to  predict  the  users'  response  to  new  movie 
scenes.  A  similar  strategy  is  applicable  to 
neuromarketing  where  consumers'  reactions  to 
marketing stimuli could be predicted.

 The movie scenes did not necessarily correspond to 
very  strong  emotions;  some  of  them  contained  just 
mild  and  tranquil  scenes.  These  were  intentionally 
selected because the final application was not only to 
characterize  affect,  but  also  to  show  the  ability  to 
estimate  different  amplitudes  of  emotions.  The  final 
application  will  have  to  index  all  types  of  different 
movie  scenes  from highly  intense  ones  to  calm and 
fairly neutral. 

Felt  emotions  from  the  movie  scenes  where 
determined  without  any  a  priori  assumptions  on 
arousal/valence values.  It  would however be possible 
to use the genre of movies (e.g., drama, comedy, etc.) 
as prior knowledge for better affect estimation. 

Participants  exhibit  markedly  different  emotional 
reactions  to  movie  scenes.  These  differences  can  be 
explained  by  different  factors,  e.g.,  personalities, 
general mood during experiments, or varying personal 
standards  for  self-assessment  of  true  feelings.  This 
shows the need for  affect  profiling to be,  at  least  in 
part,  user-dependent.  The  exact  physiology  behind 
emotional  processes  is  still  under debate.  We do not 
intend in this work to explain affective mechanisms in 
the  brain,  but  rather  to  employ  the  widely  accepted 
measures  of  valence  and  arousal  as  features  for 
multimodal  human-computer  interaction  and  for 
affective video characterization. In the future we aim at 
more precisely assessing which are the most important 
content-based  multimedia  features  able  to  elicit 
specific emotions. Studies involving more participants 
are  also  needed  to  determine  which  emotional 
responses are individual and which are common to all 
users.
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