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We present an approach for the semantic integration of geoscience data, and a system
implementing this approach. Specifically, we demonstrate the use of data ontologies and
application of markup languages for semantic integration of data and services. We intro-
duce a domain level object ontology, called Earth and Planetary ONTology (EPONT)
to explore, extract, and integrate information from heterogeneous geologic data sets. As
proof of concept, we define the DIA engine, an extensible infrastructure for the Dis-
covery, Integration, and Analysis of geoscience data, tools, and services. DIA provides
a collaborative environment where scientists can share their resources (e.g., geochemi-
cal data, filtering services, etc.) by registering them through well-defined ontologies. We
envision the DIA infrastructure to also use other classes of ontologies, namely process
and service, for knowledge creation.
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1. Introduction

In recent years, geoscientists have moved towards using the Web as a medium to
exchange and discover vast amounts of data. The current practice is dominated by
establishing methods to access data with little emphasis on capturing the meaning
of data to facilitate interoperability and integration. Some common methods for
integration include schema integration leading to the use of mediated schemas that
provide a uniform query interface for multiple resources [31]. Methods using peer
data management [3, 77] allow participating data sources to retrieve data directly
from each other, holding the promise to extend data integration to the Internet
scale. However, such query capabilities require syntactic and semantic mapping
across resources to be effective. Multi-level ontologies are therefore a pre-requisite
for semantic integration. In this paper, we adopt the definition of an ontology as a
set of knowledge terms, including the vocabulary, the semantic interconnections, and
rules of inference and logic for some particular topic [29]. This paper emphasizes the
need to develop community-based transformative capabilities that would result in
a semantic interoperability and integration infrastructure for data and knowledge
sharing. We use the geosciences domain to illustrate key findings and presented
approach.

It is well-recognized that semantic integration enables scientists to advertise,
query and access massive amounts of heterogeneous data on an unprecedented scale
[41, 49]. To facilitate semantic integration, we propose an ontology-based interoper-
ability approach whereby individual scientific communities collaboratively develop
multiple levels and classes of ontologies. Multiple levels of ontologies facilitate the
presentation of information to humans as well as machines leading to automated
query capabilities within the emerging Semantic Web vision [7]. Since a large pro-
portion of data on the Web nowadays is mostly understandable by humans or custom
developed applications, it makes the integration process inefficient, and error-prone.
Thus, it is difficult for other scientists to correctly understand the semantics of the
data, leading to poor use of the Web in answering complex science queries. For
instance, “how can a geoscientist get all the data that link volcanism to climate
change?” Hence adding semantics to enable machines to understand and automat-
ically process the data that they merely display at present is essential [49].

Semantics-aware techniques and concepts provide an abstraction layer above
existing IT technologies (e.g., databases, applications, etc.), which bridges the con-
nection of data, tools (content), and various processes across scientific domains and
IT silos. From a human perspective, added semantics enable relevant and intelli-
gent interactions than those available with the traditional point-to-point integration
approaches [33]. Other advantages of adopting the Semantic Web technologies would
include: facilitated knowledge management (processes of capturing, extracting, pro-
cessing and storing knowledge) [18], integration across heterogeneous domains (e.g.,
using ontologies) [12, 17], composition of complex systems [54, 68], ability to handle
non-textual items as images, multimedia, etc. [32, 64], efficient information filtering
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(sending selective data to right clients), machine understanding (ability to take
humans out of the “integration loop”), forming of virtual communities (e.g., geo-
scientists using specific ontologies) [61], serendipity (finding unexpected collabora-
tors), and vocabulary standardization. In light of the above discussion, we suggest
that there is an immediate need to define models, encodings, and techniques that
facilitate semantic and syntactic interoperability among geoscientists.

The TUGS (International Union of Geological Sciences) Commission for the
management and application of Geoscience Information (CGI) has taken a step
towards data interoperability and integration related to geological maps among
geoscientists. CGI has formed an “interoperability working group” to establish an
initial data model and XML based exchange language. The resulting language is
referred to as the GeoScience Mark-up Language (GeoSciML). Several similar ini-
tiatives (XML-based languages) for hydrology, images, and chemicals [50] empha-
size the importance of developing a common knowledge interface for information
understanding and exchange. We propose that similar techniques for all geoscience
disciplines (e.g., petrology, geophysics, mineralogy, etc.) be adopted to facilitate
intra- and inter-discipline semantic interoperability. For instance, languages such as
StructML (for geological structures), RockMinML (for rocks and minerals) would
need to be defined and used to create a common understanding across the broad
geoscience disciplines. However, in the face of well-developed sub-disciplines within
the geosciences, complex geoscience queries require that apart from intra-discipline
understanding, inter-discipline integration be also carried out. For example, consider
the geosciences query “What is the distribution of U/Pb zircon ages of A-Type plu-
tons in Virginia. Identify the correlation between these plutons and their geophysical
(e.g., gravity) properties’. This query requires inter-disciplinary integration between
three geoscience disciplines, namely, geochemical, geophysical, and geochronological
data sets (for identifying A-Type plutons, showing gravity contours, and specify-
ing zircon ages, respectively). Moreover, for visual analysis, the results need to be
shown in the form of a Virginia geologic map and a 3-D model. As mentioned ear-
lier, various geoscientists in a particular discipline may have collected data related
to the above query. Intra-discipline integration would be facilitated if the A-Type
filter tool (that differentiates among A, I, S, and M-type plutons) can operate on the
different geochemical datasets in a “standard” manner, without code modification
for different data formats, conventions, and meanings. In essence, such integra-
tion requires semantics-based search and information brokering, which is facilitated
through inter-ontology relationships (ontologies defined for each discipline) [37].

We identify three types of ontologic frameworks for discovery and integration:
Object (e.g. materials), process (e.g., chemical reactions), and service (e.g., simula-
tion models) ontologies [45, 73]. Objects represent our understanding of the state of
the system when the data were acquired, while processes capture the physical and
chemical forcings on objects that may lead to changes in state and condition over
time. Service provides systematic approaches using tools (simulation models and



304 Z. Malik et al.

analysis algorithms) to assess multiple hypotheses, including inference or prediction.
These three classes of ontologies within the semantic layer of the scientific cyberin-
frastructure are required to enable automated discovery, analysis, utilization, and
understanding of data through both induction and deduction, advancing computa-
tional thinking along the pathway from data to knowledge, and ultimately to insight.
Although this paper emphasizes object ontology and its relationship to markup lan-
guages in the geosciences for integrative purposes, we recognize the need to expand
this capability where scientists can examine the relationships between data and
external factors such as processes that may influence our understanding of “why”
certain events happen. We emphasize the need to go from analysis of data to con-
cepts and data inherent in thermodynamics, kinetics, heat flow, mass transfer, and
other similar areas of interest. The development of object ontologies is a pre-requisite
for semantic interoperability across process, object and service ontologies.

Object ontologies can be represented at three levels of abstraction: upper, mid,
and domain-level ontologies [66]. Upper-level ontologies [57] are domain independent
and provide universal concepts applicable to multiple domains. Mid and domain-
level ontologies represent concepts that are both domain specific and are linked to
higher level ontologies for semantic integration across multiple resources. Earlier,
we introduced an Earth and Planetary ONTology (denoted EPONT) as a domain-
level ontology for efficient, reliable, and accurate data sharing among geoscientists
[72, 74]. EPONT utilizes existing community-accepted high level ontologies such as
SUO?* (Semantic Upper Ontology: IEEE endorsed), SWEETP (Semantic Web for
Earth and Environmental Terminology) and NADM¢® (North American Geological
Data Model). In particular, the SWEET ontology contains formal definitions for
terms used in earth and space sciences and encodes a structure that recognizes the
spatial distribution of earth environments (earth realm) and the interfaces between
different realms. These earth realms have associated properties with appropriate
units and provide an extensible mid-level terminology. EPONT supports extension
of these concepts to domain-specifics to which data are registered.

In this paper, we describe our approach of using domain ontologies as contained
in “mark-up languages initiative” (similar to GeoSciML, HydroXC, etc.) towards
more expressive capabilities through the use of deeper ontologies. Specifically, we
describe the DIA engine: a semantically-enabled system for the Discovery, Inte-
gration, and Analysis of geoscience data. DIA uses EPONT for registering and
discovering geoscience data. DIA is a service-based system for answering complex
inter-domain geoscience queries. It uses various geoscience tools encoded as Web ser-
vices (both in-house and off-site) to overcome syntactic and semantic heterogeneity
problems.

2http: //suo.ieee.org/

Phttp: /sweet.jpl.nasa.gov/ontology /units.owl
Chttp: //pubs.usgs.gov/of/2004/1334
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The rest of this paper is organized as follows. In Sec. 2, we provide an overview
of markup languages and ontologies. We show how these technologies can be used
in complement to facilitate interoperability and integration in the geosciences. In
Sec. 3, we describe the DIA system. We describe its architecture and show how
it is used in practice. Section 4 presents an overview of related work, and Sec. 5
concludes the paper.

2. Advancing Geoscience Research through Markup Languages
and Ontologies

The extent, complexity, and sometimes primitive form of existing data sets and
applications, as well as the need for the optimization of the collection of new data
dictate that only a well-coordinated and sustained effort through the emerging sci-
ence of geoinformatics will allow the community to attain its scientific goals. Such
an effort requires that integration be performed at both the intra-discipline and
inter-discipline levels. We propose to map markup languages to appropriate levels
of ontologies, where ontologies can be instrumental in inter-discipline integration
through semantic description of the data. Since it is unreasonable to assume a sin-
gle ontology (or markup language) to cover all sub-fields of geoscience, integration
between different disciplines can be supported by defining inter-ontology relation-
ships and mappings, and computing the integrated concept hierarchy [10].

Ontologies allow the use of formal and descriptive logic statements which per-
mits more expressive query capabilities for data integration through reasoning. An
ontology reasoner (e.g., Pellet?) is a service that takes statements encoded in an
ontology as input and infers new statements from them. In their support for reason-
ers, Horrocks et al. state that “understanding is closely related to reasoning” [35].
Other uses of reasoners include (but not limited to): revealing relationships (super-
class/subclass) among classes, determining the most specific types of individuals,
detecting inconsistent class definitions, etc. [17]. Projects like the Suggested Upper
Merged Ontology (SUMO) [52] and the Descriptive Ontology for Linguistic and
Cognitive Engineering (DOLCE) [46] provide a framework for developing mid-level
and domain ontologies, thus promoting data interoperability, automated inference,
and natural language processing. Following similar lines, as an initial step towards
realizing the goal of taking geoinformatics forward to the Semantic Web, we have
defined EPONT to aid the markup languages initiative.

Figure 1 shows the high-level representation of the planetary ontology. For exam-
ple, the package “planetary material” can be used to represent the nature (physical,
chemical) of substances and their properties. This figure also shows the utilization of
imported and inherited properties from additional packages, e.g., Physical Proper-
ties, Planetary Location, and Planetary Structure, to more fully define the concept
of Planetary Materials. Existing ontologies available from SWEET ontology library

dhttp: //pellet.owldl.com/
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Fig. 1. Earth and Planetary Ontology (EPONT) packages.

such as Numerics, Time, and Units are also used as they provide common concepts
which are useful for the development of data level ontologies.

2.1. Intra-discipline integration using markup languages

Markup languages facilitate interoperability by making the data processable in both
human and machine-readable formats [16, 32, 54, 55, 61, 67, 68]. XML is the most
widely used markup language, designed to facilitate the sharing of data across dif-
ferent information systems, particularly those connected via the Internet [11]. Geo-
scientists will need to share a common data transfer model in various disciplines, so
that intra-discipline data exchange becomes easier. Note that the idea of developing
markup languages for the geoscience disciplines is not completely new and several
efforts in this regard are well under way. For example, scientists have developed
markup languages for hydrology (e.g. HydroXC), images (e.g. IIML), chemicals
[50], and geological interpretations [70]. The advantages of developing XML-based
markup languages include: the ability to represent the most general computer sci-
ence data structures as records, lists and trees, a simple document structure, strong
syntax and parsing requirements which make the associated algorithms simple and
efficient, the hierarchical structure of the documents which is suitable for most types
of documents [62] . In the following, we elaborate on the importance of markup lan-
guages with the help of GeoSciML: a markup language primarily developed for
sharing geological interpretations.

With interoperability as its foremost objective, the GeoSciML initiative aims to
develop a conceptual model of geological maps that borrows from existing data
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models and ontologies [70]. GeoSciML uses the domain modeling methodology
described in ISO 19109 in particular, and is based around the notion that an
application schema defines the “feature-types” for a domain. The General Feature
Model (GFM) is GeoSciML’s underlying meta-model, which is expressed in UML.
GeoSciML uses the UML to XML conversion rules from Geography Markup Lan-
guage (GML) for the canonical XML serialization, but other serializations are also
possible. Future development for other MLs could employ the same methodology
as GeoSciML, i.e., use the GFM and UML, and then generate a GML-based seri-
alization to develop the MLs. This would make the integration of these easier in
an inter-disciplinary system using a standard mapping method. However, as men-
tioned earlier, ontologies should be used to define individual data items so that the
associated meaning can be understood in and across different domains / disciplines.
Thus, one can think of MLs as standardized interfaces, linked to more expressive
ontologies using first-order/descriptive logic [5, 6] as reasoning tools to dig deep for
individual data items for semantic discovery and integration. UML may act as the
unifying language for linking MLs and ontologies. The UML class diagrams provide
a common visual presentation of ML structures (e.g., schema) and ontology con-
cepts, thus enabling the linkage of semantics and implementation in a unified tool
environment [17].

Figure 2 shows the role of markup languages and ontologies in integrating het-
erogeneous data. Since both the markup language and the ontology will have similar
terms (but at different levels of granularity), data translators or mapping artifacts
need to be written so that the intended data items can be found. In essence, this
means that data made accessible over the Web through MLs needs to be semanti-
cally annotated, using formal ontologies if we are to take geosciences to the Semantic
Web. Other scientific applications focusing on data integration as well as peer-to-
peer data management systems have already benefited from such techniques [31].
Semantic annotation and mapping is a time consuming process which needs to
consider a variety of aspects that are useful in understanding the semantics of a
schema including data values, element names, data/relationship constraints, struc-
tural information, domain knowledge, and cardinality relationships. Therefore, auto-
matic methods are required for schema matching. A number of such approaches
have been proposed in the literature, ranging from schema matching using different
types of evidences to identify mappings [59, 69] to focusing on models represented
in a specific modeling language [19, 22, 34, 36, 40, 44]. Similarly, [3, 39] present
approaches for such mappings that essentially connect paths in the ML to chains
of properties in an ontology.

Figure 3 shows a subset of the UML model for GeoSciML (the class dia-
gram for “earth materials” is shown). Similarly, Fig. 4 shows the corresponding
EPONT ontology developed as a result of a “concentrated discipline-based commu-
nity effort” with a detailed level of abstraction. GeoSciML provides similar abstrac-
tion details but at a different level, not shown in Fig. 3. This facilitates the mapping
process between markup languages and ontologies. For example, grossChemistry of
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a Compound Material shown in Fig. 3 would be ontologically linked to the concept
of Chemical Compound in Fig. 4. Similarly, lithology (Fig. 3) would be mapped to
the concept of Rock (Fig. 4), mineral name (Fig. 3) would be mapped to a natural
mineral (Fig. 4), etc.

2.2. Inter-discipline integration through ontologies

As the Web evolves from a set of isolated application systems to a network of
interacting disparate systems, the need to represent the semantics of the exchanged
information such that it could be automatically understood is becoming a neces-
sity. This is where ontologies can play an integral role. Ontologies aid in providing
machine processable semantics of the information communicated between heteroge-
neous systems [45]. In ontologies, the semantic description of data, i.e., the logical
relationships between data elements and other formal statements are made explicit
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cd earthMaterial I

<Object Type>
CGl_Vocabulary :: ControlledConcept

AnyDefinition

+  preferredName: CharacterString

+ alternativeClassifier 0. + classifier "~ 1
0.+

<Feature Type>
GeologicSpecimen

Specimen

+ purpose: DescriptionPurpose

+ material

<Feature Type>
EarthMaterial
+ Color: CGI_TermValue [0..%]
+ physicalProperty: CGI_PhysicalDescription [0..*]

i

<Feature Type>

CompoundMaterial
+ consolidationDegree: CGl_Term
+ fabric: CGI_TermValue [0..%]
+ grossChemistry: CGI_TermValue [0..1]
+ grossGenesisTerm: CGl_TermValue [0..*]
+
+
+

<Feature Type>
Mineral

lithology: ControlledConcept [1..*]
metamorphicGrade: CGIl_Term [0..1]
particleGeometry: CGI_PhysicalDescription [0..*]

+ mineralName: ControlledConcept [1..]

Fig. 3. Earth material package as defined in GeoSciML.

through ontology languages such as OWL (Ontology Web Language). This not
only makes it easier for other human users of models to understand the specifically
intended meaning, but also means that other tools can use the definitions transpar-
ently [17]. Thus, an ontology can be defined as a knowledge representation, different
in part from an ML schema which mainly defines a message format [20].

To enable the sharing and integration of data on a global scale, along with other
researchers we have introduced the idea of ontology-based data registration and
discovery in geosciences [51, 75]. Our goal in defining ontologies is to provide an
organizational structure for classifying data that can be discovered automatically
by computers [48]. These high-level ontologies and object level ontologies, allow
geologists to discover databases as well as datasets within databases using geoscience
related concepts instead of simple keyword-based search. This is made possible as
ontologies allow the registration of databases at different levels of granularity. For
example, a relationship between occurrence of ignimbrites and hazardous volcanic
eruptions can be inferred by an automated reasoning system even though this fact is
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Fig. 4. Snapshot of EPONT: Planetary Material shows concepts at item detail level.

not contained in the database, if the ontologic framework effectively captures such
a relationship. As shown in Fig. 5, a logical conclusion can be achieved about the
relationship between ignimbrite and hazardous volcanic eruptions. The conceptual
relationships are based on:

(1) Ignimbrite is a pyroclastic rock is a volcanic rock is a rock.
(2) Hazardous eruption is an Explosive eruption is an eruption.
(3) Explosive eruption has Material pyroclastic rocks.

Therefore, ignimbrites are a product of hazardous volcanic eruptions.

As mentioned earlier, the use of these ontologies, especially at the most detailed
level, facilitates semantic integration of heterogeneous geologic datasets. Integra-
tion of databases can be done through (1) schema merging, when the user is
knowledgeable about the organization (semantics of the schema), (2) view based
techniques which include the creation of a virtual schema to allow the user to
address structural heterogeneity, and (3) ontology based integration accomplished
by registering databases to ontology. We favor ontology based integration as it
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Fig. 5. A graphical representation of an ontology leading to automated capability of making a
logical deduction through defined taxonomies and inference rules.

systematically resolves both syntactic and semantic heterogeneity, thus allowing
integration of multiple distributed databases. Unlike integration based on merging
multiple schemas, ontologic registration relates the data to concepts, rather than
the structure within a database [41]. This facilitates queries over different levels of
ontology classes and their instances, e.g., more specific/general classes can be found,
or individual tuples matching a given query can be found [28].

3. Semantic Registration and Discovery

We have built a semantics-enabled service-oriented computational infrastructure
that enables scientists to Discover, Integrate, and Analyze earth science data
through all levels (upper, mid, and domain) and classes (object, process, and ser-
vice) of ontologies. The resulting “engine” is called DIA (Discovery, Integration,
and Analysis engine). The architecture of DIA has been designed to access and
utilize classes of ontologies mentioned earlier to enable discovery, and numerical
solutions to queries. The current implementation of DIA supports mid and domain
level object ontologies, with the other ontology classes under development. It is
designed to provide earth scientists the capability to better understand the rela-
tionships between the observed geologic records and the complex processes that
have shaped them over the years. As its name suggests, DIA comprises three main
phases: discovery, integration, and analysis.

Data discovery enables the users to retrieve the distributed data sets, i.e., located
at multiple sites that are pertinent to the research task at hand. Although the engine
currently uses object ontologies for discovery of data, it can be extended to access
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is shown as a stand-alone component for clarity only.

data registered through markup languages. As mentioned earlier, object ontologies
and markup languages define essentially the same concepts through similar classifi-
cation structures, with the difference being the extra reasoning capabilities available
in ontologies.

In DIA, users query various data sets along some common attributes to extract
previously unknown information called “data products”. The data products that
are generated can either be used in their delivered form or used as input to the data
analysis phase. Data analysis may be used to verify certain hypothesis or it may
refine the data product with further data discovery and integration. Such a cyber-
infrastructure for the geosciences is a requirement for both improved efficiency and
trust for online conduct of science.

To illustrate the different DIA phases, consider the following example query:
“Find the chemical composition of a liquid derived by 30% partial melting (PM)
based on the average abundances of Rare Earth Elements (REE) of A-Type plutons
in Virginia, and identify the correlation between these plutons and their geophysical
(e.g., gravity) properties.”

A number of steps are involved in answering the above mentioned query. These
are: discovering data, identifying the A-Type bodies in VA, computing the averages,
using the REE definitions contained in the element ontology and exporting the data
to a PM tool for computation, deploying gravity modeling tools after accessing
gravity data [75], and displaying the results. Note that the above stated query
uses both object and process ontologies (e.g., A-Type bodies data resides with an
object ontology while the partial melting concept and associated numerical models
are contained in a process ontology). We will trace these steps through the DIA
engine, which entails five phases: (i) resource registration, (ii) query specification,
(iii) resource discovery, (iv) filtering and integration, and (v) analysis.
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3.1. Resource registration

DIA’s registration system (denoted SEDRE) allows geoscientists to register their
data (which is normally in Microsoft Excel files) to one or more ontologies, for the
purpose of sharing. As mentioned earlier, since we have not used MLs in constructing
DIA, only data-ontology mappings are carried out in the registration phase. The
goal is to allow researchers to associate one or more ontologies to their files so that a
unique and definite meaning is associated with each column. Ontological registration
allows relating a column to columns with similar (or close) semantics in other files.
As markup languages also provide similar capabilities, incorporating MLs in DIA
would allow access to data through ML format, and “advanced” querying over the
data through ontologies. The semantic annotation of ML’s, and ML to ontology
mapping are active research topics and are beyond the scope of this paper. The
interested reader is referred to [8, 63]. SEDRE facilitates discovery through resource
registration at three levels:

(i) Keywords-based registration: Discovery of data resources (e.g., gravity, geologic
maps, etc.) requires registration through the use of high level index terms. For
instance, the popular AGI Index terms (or an extension thereof) can be used.
These terms and their extensions can then be cross indexed to other indexes
such as GCMD and AGU.

(ii) Ontological class-based registration: Discovering item level databases requires
registration at data level ontologies. In this case, a data set may be registered
to a data level ontology, e.g. bulk rock geochemistry, gravity database, etc.

(iii) Item detail level registration: Item detail level or fine-grain registration consists
of associating a column in a database to specific concept or attribute of an
ontology, thus allowing the resource to be queried using concepts instead of
actual values. This mode of registration is most suitable for datasets built
on top of relational databases. However, item detail level registration can be
extended to cover Excel spreadsheets and maps in ESRI Shapefile format by
internally mapping such datasets to PostgreSQL tables. For example, a column
in a geochemical database may be specified as representing SiO2 measurement.
This level of registration is a requirement for semantic integration, i.e., the
automatic processing (by tools) of shared data.

Figure 7 shows the schematic representation of data registration through SEDRE
and discovery/integration through DIA. The three heterogeneous data sets dis-
cussed above are registered using the defined semantic data ontologies. The different
terms in the individual data sets are mapped to the terms defined in the ontology.
For instance, SO5 columns in the data sets are mapped to respective terms in the
ontology. SEDRE allows the data owners to maintain control over their data (if
they wish to), and in this case only store the data — ontology terms mappings. The
mappings are tagged using longitude/latitude coordinates to enable efficient access
to relevant data. We recognize that data registration through ontologies is a time
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Fig. 7. Schematic representation of registration of data through SEDRE and discovery /integration
through DIA. Using the defined ontologies, users can register/discover the data. SEDRE’s interface
allows easy tagging of data items to ontology terms. For instance, SO2 columns in the data sets
are mapped to respective terms in the ontology. The mappings are also tagged using longitude,
latitude, elevation, etc. coordinates to enable efficient access.

consuming process, and that data owners may not be able/willing to register their
data sets in “one go”. Therefore, SEDRE is developed as a downloadable service,
where data owners can download SEDRE (along with all the required ontology
terms) on their private machines, and connect to SEDRE’s online repository only
to upload the data-ontology mappings. This allows data owners to register their
data at their own convenience, while keeping ownership of data. DIA uses different
“Registry Servers” (RSs) which could be distributed worldwide, to provide directory
functionalities (registration of data and tools, indexing, search, etc.) The providers
of resources advertise their resources on registry servers, which may then be (man-
ually or automatically) discovered and used.

3.2. Query specification

Currently, the DIA engine supports the user query to be expressed in a menu-based
format. This lets the user to select only specific items, which in turn queries only
a subset of the data. The user does not need extensive knowledge of the querying
techniques, models or keywords (which may be required in a text-based format).
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The task at hand can be completed with the help of a few “mouse-clicks,” as the
user clicks through the different menus to “build” an exact query.

The “User Interface” (UI) component of DIA is an ArcGIS Server / .NET map
viewer Web application. Thus, currently only two-dimensional geometries are sup-
ported. However, Ul is an extendable component and higher-dimension geometries
could also be supported. DIA uses two Web servers. The first Web server is respon-
sible for routing users’ queries to DIA’s query processor and the second ensures
communication between DIA’s query processor and its own map server. In a mini-
mal deployment, a single Web server may be used for both purposes (we use a single
instance of Windows IIS Web server as DIA’s Web server). Map-based queries can
be refined by specifying a bounding box that identifies a pair of latitude-longitude
points which delimits the query’s spatial scope. After the query’s spatial scope
is specified, the user uses DIA’s drop-down menu to indicate the filters (A-Type
igneous rock filter in our running example) and/or tools to be applied to the data
samples discovered in the query’s spatial scope. Figure 8 shows what menus are
involved in getting to the A-Type filtering (four top-level menus are navigated to
get to the A-Type menu). Similarly, the “Tool Selection” layer in Fig. 9 shows how
menus are navigated to invoke the required tools.

In DIA, the “Query Processor” (QP) module is responsible for producing the
results for users’ queries and delivering them to the Web server. The QP consists
of two sub-components: (i) the query interpreter and (ii) the geology and mapping
filters and tools. The former is a .NET module that interprets queries and identifies
the appropriate filters and/or tools to be invoked to answer each query. The latter
is a large set of .NET modules that perform DIA’s core functionalities including
filters (e.g., A-Type igneous rock filter), tools (e.g., kriging) and map management
routines (e.g., coloring of geological bodies and sample points.

3.3. Resource discovery

In resource discovery, the DIA engine identifies and retrieves the resources (data
and tools) required to answer the user’s query. When the QP receives the query
from the Web server, it determines the type of data required to answer the query.
In our running example of A-Type plutons, the QP determines that data associated
with the keyword “GeoChemistry” is the query’s target. The QP then interacts with
one or several registry servers to retrieve the needed data. An example of a reg-
istry server is available at the GEON server (www.geongrid.org). To interact with

Link Click History: Petrology & GeoChemistry --> Igneous --» GeoChemical -->Magma Class--> A-Type

Discriminant Diagram Options Please Choose ...
Ga-Al -Zr
Y - Nb
FeO* / MgO - Zr+Nb+Ce+Y
10000 * Ga / Al - Zr+Nb+Ca+Y
Zr - Si02

Fig. 8. Query specification through menus. Menus are dynamically generated as per the defined
ontologies, and available tools/services.
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Fig. 9. A layered bottom-up depiction of DIA phases from data to data products — The figure
shows the functioning of DIA in five layers, starting from the basic constructs of the system that
include the ontologies, markup languages, and the raw data from various disciplines in different
databases. The data is registered according to the defined ontologies and markup languages. The
second layer shows that the registered data (local or remote) can be semantically discovered and
used by Web services that represent various tools required by geoscientists. The third layer shows
that these tools (wrapped as Web services) can be discovered by navigating through different
menus, which are generated according to the defined ontologies and available tools. The layer also
shows that using a bounding box, a user may define his/her “area of interest”. Based on the user
query (identifying A-Type plutons and their ages in our case), DIA outputs the result on the map,
as shown in the fourth layer. This layer also shows that gravity data for the area of interest is then
integrated with the previous result, leading to the data product shown in layer five (on which user
analysis can be performed).
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the GEON server, DIA invokes a GEON Web service called GEONResources that
provides functions for searching and getting the metadata information for resources
registered through GEON portal. When invoking GEONResources, DIA’s QP indi-
cates that it is searching data sets registered with the keyword “GeoChemistry” and
that contains data samples in the query’s spatial bounding box. For each returned
database, the DIA system executes a two-step process. First, it builds a virtual
query expressed in SOQL (a language developed by GEON researchers at SDSC)
that requests all the data (i.e., columns) that are necessary to apply the filter
specified by the user. The DIA system then invokes a GEON Web service called
SoqlToSql that translates this SOQL query into an SQL query. In the second step,
DIA submits the SQL query to the GEON server that interacts with the actual
database server, gets a record set containing the relevant data samples, and returns
the data to the DIA engine.

3.4. Filtering and integration

Data filtering is a process in which DIA engine transforms raw data into a data
product. After DIA retrieves the data sets relevant to the user’s query, it determines
whether the filter(s) to apply or tool(s) to use is locally available. If so, the filter /tool
is applied to the data sets and the query result is displayed to the user. If not, DIA
searches for the needed filter/tool in registry servers. DIA is able to invoke any
external tool that is wrapped as a Web service (similar to invoking the GEON Web
service above, for resource discovery). In the case of the given A-Type query, the
A-Type filter is already available in DIA and also made available as a Web service
for external users.

Integration in DIA is a process in which the results of several sub-queries are
produced and then presented through the map-based user interface. There are two
main classes of integration: Intra-class integration is a process whose input is two or
more homogeneous data sets, i.e., registered to the same ontology (or defined using a
markup language if one is used). This process uses the common ontology to interpret
all data sets and generate an integrated data product. Inter-class integration is a
process whose input is two or more heterogeneous data sets (i.e., registered to
different ontologies.) This process uses the appropriate ontology to interpret each
data set. It uses an integration class to generate a data product out of two or more
data sets.

In our running example, to produce the result of gravity kriging data, DIA
follows the same workflow as shown above for determining A-Type bodies. DIA looks
up registry servers for gravity data in the selected area of interest and then retrieves
the raw gravity data from its provider(s) (e.g., http: /paces.geo.utep.edu). DIA then
determines whether a gravity kriging tool is locally available. Since such a tool is
already included in DIA’s implementation, it is invoked and no external registry
servers are searched. When the output of the kriging tool is generated, DIA overlays
it on the previously generated results (i.e., A-Type plutons) making it possible for
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the user to have a natural and easily interpretable view of the integration’s result.
Figure 9 shows the integration between geospatial, geotemporal, and gravity griding
data products that are obtained after data filtering through a “bounding box” (used
to limit the area of interest).

3.5. Analysis

Geoscientists can use the data products generated as a result of the above men-
tioned phases in hypothesis evaluation, i.e., to analyze the results. In Fig. 9, using
a space-time analysis and studying the generated data product after the kriging,
a geoscientist can verify the hypothesis on A-Type bodies. Our running example
query (A-Type rocks) has major implications on tectonic models such as (1) a failed
rift associated with a triple junction [60], (2) gravitational collapse of crystal regions
over thickened by Grenville orogenesis [71], (3) flanks of an active within plate rift
zone similar to the Red Sea region [76], and (4) as a continental plume track [26].
Thus, facilitating rapid data /tool access clearly is a requirement as geoscientists
engage in more complex queries.

3.6. DIA’s service-oriented approach

The DIA engine (Fig. 10) is a Web-based, service-oriented system developed using
a variety of technologies including: ESRI’s ArcGIS Server 9.1, Microsoft’s .NET
framework, Web services, Java, and JNBridge 3 (facilitates communication between
NET and Java). Users submit queries through the DIA’s Web-accessible graphical
interface. The engine translates these queries into a sequence of tasks that include:
accessing map servers, discovering and accessing data sources, invoking Web ser-
vices, filtering features, joining layers, and the graphic rendering of query results for
visualization. Currently, data discovery and access is limited to object ontologies
in DIA. However, DIA’s extendable design allows process and service ontologies
(future development) to be incorporated. Similarly, markup languages can also be
used in tandem with object ontologies to facilitate data discovery and exchange.
Figure 10 shows how both markup languages and ontologies can be used in tandem
to register and serve data. The DIA engine also enables users to save their query
history as well as export data products for future references. Since the DIA engine
is developed along a service-oriented approach, key code modules are wrapped as
Web services. This approach has two advantages. First, it makes the system readily
extensible. As the geoscience community introduces new services, these could be
integrated in the DIA engine as new functionalities. Second, services developed for
the DIA may be used as building blocks to produce other systems.

To illustrate DIA’s functionality, consider the following query that was intro-
duced in Sec. 1:

Q1: “What is the distribution of U/Pb zircon ages of A-Type plutons in Virginia.
Identify the correlation between these plutons and their geophysical (e.g., gravity)
properties”.
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Fig. 10. DIA engine architecture.

In the following, we annotate the different “Steps” that DIA goes through in
answering the query, for better explanation.

Step 1: DIA’s browser-based interface presents two querying options: geologic-map-
based and region-based querying. Region-based queries provide answers to high level
queries about specific regions. On the other hand, geologic-map based queries focus
on more “thorough” rock records and are more data-intensive. In this example, we
use the geologic-map based querying.

Answering Q1 requires four steps: selecting the A-Type filter to differentiate
between plutons (Step 2), selecting the spatial scope (only look in VA) where the
A-Type filter is to be applied (Step 3), invoking the kriging/contouring tool to
identify geophysical properties (Step 4), and selecting the spatial scope (VA) where
the kriging/contouring tool is to be applied (Step 5).

Step 2: As mentioned earlier, the different geoscience tools are available in the
form of drop-down menus. These menus are located in the bottom of the screen,
just below the geologic map. The user has to navigate the menus until he locates the
desired tool to apply (in this case, the A-Type filter tool). The menus are based on
the terms contained in EPONT. For example, A-Type rocks are a “Magma Class”
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which is a “Geochemical Analysis” of the “Igneous rock” type, and finding plu-
tons of a certain type is associated with the rock’s “Petrology and Geochemistry”.
Therefore, the user navigates the menus by first, clicking on the radio button for
“Petrology & Geochemistry”. DIA then displays a menu containing three options
for the three types of rocks: Igneous, Metamorphic, and Sedimentary. In this query,
the user selects the “Igneous” option. In the next sub-menu, a number of options
for performing different analyses are provided. In this case, the user selects the
option that corresponds to “Geochemical analysis”. Similarly, in the next menu,
“Magma Class” option is selected. This displays a four-option menu for the A, I,
S, and M-type of rocks. The user selects the option “A-Type”. Since DIA supports
several A-Type filters, it will display a drop-down menu of the available filter tools.
For example, if you select the option Ga-Al-Zr, DIA will use the A-Type filter tool
based on the approach using elements Ga, Al, and Zr proposed in Whalen et al.,
1987.

Step 3: Now that the A-Type filter is specified, the user needs to select the specific
area of interest, i.e., the state of Virginia in Q1. To accurately specify Q1’s spatial
scope, the user can zoom in the geologic map. Then, the user can draw a bounding
box around VA where the A-Type plutons are to be found. DIA will then compute
all the A-Type plutons in the selected region and display them along with the
samples used in the computation as shown in Fig. 11.

Step 4: To generate the gravity map of the selected area, the user needs to return
back to DIA’s main menu. This is facilitated by maintaining a “Link Click History”.
At the top menu, instead of “Petrology and Geochemistry”, the user can now select
“Geophysics” (another Geoscience discipline). DIA will then display sub-options.
The user can click on the option “Gravity”. This will display a drop-down sub-
menu related to tools available for Gravity analyses. To generate the gravity map,
the user can select the option of “Kriging/Contouring”.

Fig. 11. A-Type Plutons in a region in Virginia.
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Fig. 12. DIA’s answer to Q1: A-Type plutons and their geophysical properties.

Step 5: In the last step, the user needs to specify the area of interest as previously
done for the A-Type plutons, i.e., using the bounding box button to indicate the
scope for the Kriging tool. The final data product that DIA generates in response
to Q1 is shown in Fig. 12. The user can click on the discovered A-Type plutons to
get their U/Pb ziron ages.

3.7. Factors affecting DIA’s performance

Since DIA is designed as a distributed system, there are a number of potential
bottlenecks that may affect its performance. In this section, we provide a brief
overview of the performance issues for DIA in its present form.

Starting with the semantic registration of data, DIA allows data owners two
options: (i) register their data along with the ontologic mappings, or (ii) reg-
ister only the data-to-ontology mappings. Since the Registry Server will remain
unresponsive for the duration of the upload, the amount of registration data
will directly influence DIA’s performance (currently a single Registry Server is
employed). Therefore, in the first case, small to medium datasets provide mini-
mal impact, while large datasets (in orders of Giga, Tera, etc. bytes) inhibit the
system’s performance greatly. These performance issues may be handled in an
ideal system through replication, separation of server concerns (register vs. serve),
etc. In the second case, DIA’s performance is tied directly to the data owner’s
(e.g., GEON and UTEP in previous sections) ability in responding to DIA’s data
requirement.

Users interact with DIA through a map, and nested (hierarchical) menus that
are populated as per the defined ontology. Since the Map server has to communicate
with the query processor through another Web server, the delivery of maps is the
major bottleneck affecting system performance. Menu generation is not greatly
time consuming for conditions where only the local ontology is concerned, i.e.,
traversing the ontology and providing navigation options through menus. In cases
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where menus have to be populated according to the available tools, performance
may vary. For instance, in our running example, A-Type classification tools are
required. DIA searches for both “in-house” and external options made accessible
through Web services. Currently, Web services-based resources are tightly coupled
so performance is predictable. However, if a Web services registry (like UDDI) is
consulted, it will likely affect DIA’s performance. In our running example of A-Type
plutons, the GEON server is consulted for data. This is done by first invoking a
Web service called GEONResources to search and retrieve the metadata information
for resources registered through GEON portal. Then, a SOQL query is built, and
another Web service called SoqlToSql that translates this SOQL query into a SQL
query is invoked. In the final step, DIA submits the SQL query to the GEON
server that interacts with the actual database server, and returns the data. DIA’s
performance thus depends directly on GEON, which is itself dependent on the
actual database server (which may lie outside GEON). In addition, the SoqlToSql
Web service is known to DIA, but if a new Web service is to be located to perform
the required transformation, that adds to DIA’s response time.

Since DIA’s output is map-based, its performance for integration results can
be gauged by verifying the retrieved samples. In our running example, to produce
the result of gravity kriging data, DIA exhibits same performance issues as men-
tioned above for determining A-Type bodies. Gravity data is first searched, a gravity
kriging tool is then identified, and the output of the kriging tool is generated by
overlaying it on the previously generated results (i.e., A-Type plutons) on the map.
Like any distributed system, the complexity of the query will thus directly influences
DIA’s performance.

4. Related Work

In this section, we provide a brief overview of major research efforts that are closely
related to the approach proposed in this paper. [9] investigates the development
of categories shared in the field logging of a region by a team of geologists. It
uses visualization, neural networks and spatial statistical tools employed to analyze
the complex space of attributes observed and the categories developed. The study
suggests the use of contextual factors to deal with category discrepancy that exist
between individuals and when adopting ontological approaches to information repre-
sentation. The Global Change Master Directory’s (GCMD) earth science ontology is
limited to keyword lists for classification [53]. NASA’s Semantic Web for Earth and
Environmental Terminology (SWEET) ontologies are essentially class hierarchies
with some limited expression of properties. We have used these class hierarchies
in defining EPONT. The FGDC (Federal Geographic Data Committee) Content
Standard for Digital Geospatial Metadata [24] was developed in 1994 to describe
all possible geospatial data. However, since the standard is very complex (with 334
different elements, 119 of which exist only to contain other elements), its adoption
and use has been limited.
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In earthquake science, [15] proposes a semantics-based system to improve inter-
operability among heterogeneous earthquake data. The Earth System Grid (ESG)
project [58] aims to provide discovery of large datasets based on grid technologies
and the use of metadata schemas and prototype ontology. [47] introduces two use
cases within the e-Wok Hub project: documentary search and subsurface modeling.
It describes a knowledge-driven methodology based on semantic annotation that
can be used in both cases. It shows that the definition of domain ontologies and
the development of a semantic annotation methodology enable to identify and han-
dle raw data, geological objects and geological interpretations according to their
semantic contents. [65] describes an approach to ontology design called Workflow-
Driven Ontologies (WDO). WDOs capture basic knowledge about a domain. Use
cases typically drive the specification of domain-based ontologies. A case study from
earth science is used to illustrate WDO. Abstract workflow specifications drive the
elicitation and specification of classes and their relationships. For example, earth
scientists start the knowledge acquisition process by identifying a product and iden-
tifying methods that can generate the product. Then, they identify data that are
required as input for the identified methods. Earth scientists can refine WDOs by
refining a WDO-derived workflow. Related efforts are underway to enable semantic
and interoperable geospatial and geographic systems [21, 27].

The Geospatial Semantic Web Interoperability Experiment (GSWIE) [30]
brought together a number of threads in semantics, Web technology, and geospa-
tial processing. The principal areas of this experiment include the development of
geospatial, domain, and other ontologies covering the knowledge and operations
domains of the demonstration use case; the development of a reference Web archi-
tecture for exchanging information with formal semantics and processing informa-
tion queries; and the choice and refinement of one or more query languages and
predicates for expressing geospatial queries. [38] introduces five ontology types in
OWL that contribute to forming a geospatial semantic system and discuss their use
within GSWIE. The base geospatial ontology provides the core geospatial knowledge
vocabulary and knowledge structure; the feature data source ontology provides an
ontological view of WFS (Web Feature Service Implementation Specification) data;
the geospatial service ontology enables knowledgebase discovery and execution of
all registered geospatial services; the geospatial filter ontology enables the integra-
tion of geospatial relationships into the queries; and the domain ontology provides a
knowledge representation that is organized, customized, and aligned with a specific
domain and/or user.

SWING (Semantic Web Services INteroperability for Geospatial Decision Mak-
ing) investigates the applicability of semantic technologies in the area of geospatial
services [4]. It leverages semantic Web service standards such as Web Service Mod-
eling Ontology (WSMO) [78] and the Web Service Modeling Language (WSML)
[23] for the semantic annotation of geospatial services to increase the efficiency
and accuracy of discovering and integrating geospatial services. [42, 43] defines an
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ontology-based approach for the discovery of geographic information (GI) services.
It uses ontologies for describing geospatial operations and creating descriptions of
requirements and service capabilities. Then, it describes matches between these
descriptions based on function sub-typing. [78] proposes two semantic Web enabled
geospatial frameworks. The first framework integrates rules and ontologies for
expressing and reasoning over symbolic geographic knowledge. The second frame-
work is a hybrid extension of the basic framework with geospatial information
processors that are more suited to manipulating the geometrical (location) com-
ponent of the information. [25] proposes a framework that allows the mapping of
a spatial ontology and a geographic conceptual schema. The mapping of ontologies
to conceptual schemas is made using three different levels of abstraction: formal,
domain, and application levels. At the formal level, highly abstract concepts are
used to express the schema and the ontologies. At the domain level, the schema
is regarded as an instance of a generic data model. The application level focuses
on the particular case of geographic applications. [56] proposes a semantic meta-
data management system based on ontologies and use of Semantic Web languages
such as OWL [35]. The system defines an ontological data model for providing
the spatial, temporal, presentation, distribution, and identification properties of
data. Moreover, a data content class is defined that uses actual domain concepts

defined in the geoscience ontology. However unlike our approach, no such ontology is
discussed/defined.

5. Conclusion

We have presented an approach for the semantic integration of data and tools for
geosciences. We propose that markup languages be linked to mid-level ontologies
for a more comprehensive understanding of the meaning of data leading to integra-
tion, and other classes of ontologies (process and service) be developed to facilitate
knowledge creation. As an initial step towards taking geosciences to the envisioned
Web (a.k.a., semantic Web), we have developed the DIA engine. DIA uses ontolo-
gies and Web services to organize, annotate, and define datasets and geoscience
tools. DIA is designed mainly as a proof-of-concept, and its extensible design allows
the incorporation of our defined vision, i.e., using various classes of ontologies with
markup languages developed for different geoscience disciplines.

We expect that as the semantic Web matures, and more geoscientists adopt the
service-oriented paradigm, a number of geoscience tools will be made accessible as
Web services. This would require that similar to data management through ontolo-
gies and markup languages, Web services for tools be also registered to a “service
ontology”. Annotating Web services with semantics would ensure that appropriate
tools (in form of Web services) are selected in an efficient and automatic manner for
answering geoscience queries. Domain experts would provide formal specifications
of geoscience concepts, enabling automated Web service usage. Moreover, since the
semantic Web is geared towards interactions involving minimal human-intervention,
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service ontology would enable direct service-to-service communication, automated
reasoning, and ease of information transfer. Thus, service ontology will do for Web
services what data ontology has done for geoscience data. We believe this will prove
to be a major step in taking geoinformatics further.

Appendix A. Glossary of Selected Terms

AGI: American Geological Institute

AGU: American Geophysical Union

CGI: Commission for the management and application of Geoscience Information

DIA: Discovery, Integration, and Analysis Engine

DOLCE: Descriptive Ontology for Linguistic and Cognitive Engineering

EPONT: Earth and Planetary Ontology

ESRI: Economic and Social Research Institute is a software development and ser-
vices company providing Geographic Information System (GIS) software and
geodatabase management applications

GCMD: Global Change Master Data Directory

GIS: Geographic Information System

GEON: Geosciences Network project aims to develop cyberinfrastructure in sup-
port of an environment for integrative geoscience research.

GeoSciML: GeoScience Mark-up Language

Integration through layering: Overlay of data products as commonly utilized
in GIS methods

Integration through semantics: Semantic Integration is a set of technologies
drawn from Artificial Intelligence, Linguistics and Knowledge Management
designed to help make sense of complex information and allow improved inte-
gration between systems

ML: Markup language = A notation for identifying the components of a document
to enable each component to be appropriately formatted, displayed, or used.
A markup language, e.g., XML provides a way to combine a text and extra
information about it

NADM: North American Geological Data Model

Ontology = A set of knowledge terms, including the vocabulary, the semantic
interconnections, and explicit rules of inference and logic for some particular
topic (www.ontology.org), (Gruber, 1993)

OWL = Web Ontology Language is a family of knowledge representation languages
for authoring ontologies

PM: Partial Melting is a geological phenomenon

REE: Rare Earth Elements

Registration = Process of adding new descriptions to a repository

SEDRE: Semantically Enabled Data Registration Engine

Service registry = Is a network-accessible directory that contains information
about the available services
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SUMO: Suggested Upper Merged Ontology

SWEET: Semantic Web for Earth and Environmental Terminology

UML = Unified Modeling Language

UTEP: University of Texas at El Paso

XML: Extensible Markup Language

XTM =This specification provides a model and grammar for representing the

structure of information resources used to define topics, and the associations
(relationships) between topics.
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