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Control systems for autonomous robots are concurrent, distributed, embedded, real-

time and data intensive software systems. A real-world robot control system is composed
of tens of software components. For each component providing robotic functionality, tens

of different implementations may be available.

The difficult challenge in robotic system engineering consists in selecting a coherent
set of components, which provide the functionality required by the application require-

ments, taking into account their mutual dependencies. This challenge is exacerbated

by the fact that robotics system integrators and application developers are usually not
specifically trained in software engineering.

In various application domains software product line (SPL) development has proven

to be the most effective approach to face this kind of challenges.
In a previous paper [11] we have presented a Model-based approach to the develop-

ment of SPL for robotic perception systems, which integrates two modeling technologies

developed by the authors: the HyperFlex toolkit [19] and the Robot Perception Specifi-
cation Language (RPSL) [21].

This paper extends our previous work by illustrating the entire development process

of a SPL for robot perception systems with a real case study.

Keywords: Robot perception; Software variability; Model-driven Engineering.

1. Introduction

Robots are versatile machines that are increasingly been used not only to perform

dirty, dangerous, and dull tasks in manufacturing industries, but also to achieve

societal objectives, such as enhancing safety in transportation, reducing the use of

pesticide in agriculture, and improving efficacy in fight against crime and civilians

protection. Compared to the manufacturing workcell, a public road, a corn field,

or a crime scene are open-end environments, which require autonomous robots to
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be equipped with advanced cognitive capabilities, such as perception, planning,

monitoring, coordination, and control in order to cope with unexpected situations

reliably and safely.

Even a simple robotic application, like moving a wheeled robot from place A to

place B in an indoor environment, requires several capabilities, such as (1) sensing

the environment in order to avoid unexpected obstacles (i.e. moving people), (2)

planning a path from A to B taking into account several constraints (e.g. energy

consumption), (3) controlling the actuators in order to execute the computed path

correctly (i.e. with a given accuracy), and (4) reasoning about alternative courses

of actions (e.g. waiting for a passage to get clear or plan a different path).

Robot control systems are typically designed as (logically) distributed

component-based systems (see [13] for a survey).

A real-world robot control system is composed of tens of software components.

For each component providing a robot functionality, tens of different implementa-

tions may be available. The initial release of the Robot Operating System (ROS)

[1] in year 2010 already contained hundreds of open source packages (collections of

nodes) stored in 15 repositories around the world.

Clearly, building complex control applications is a matter of system design and

integration more than of capabilities implementation. The difficult challenge consists

in selecting a coherent set of components that provide the required functionality

taking into account their mutual dependencies.

In various application domains software product line (SPL) development [41]

has proven to be the most effective approach to face this kind of challenges. A

SPL is a set of software-intensive systems that share a common set of features for

satisfying a particular market segments needs. Each new application is built from

the SPL repository of common software assets (e.g. architectural models, software

components).

Few other papers dealing with software product lines for robotics can be found

in the literature. They mostly refer to the mature and stable domain of industrial

robotics [23, 24, 42] or illustrates specific robotic case studies [25, 4].

In a previous paper [11] we have presented a Model-based approach to the

development of SPL for robotic perception systems, which integrates two modeling

technologies developed by the authors: the HyperFlex toolkit [19] and the Robot

Perception Specification Language (RPSL) [21].

The key characteristic of HyperFlex are the support to the symbolic represen-

tation and composition of the variability of a SPL at various levels of abstraction,

from the requirements of the SPL devised during the domain analysis phase, to

the functional specification of the various systems that can be generated from the

SPL during the product generation phase. The HyperFlex approach builds on our

experience in developing software architectures for robotic control systems in the

context of the EU FP7 BRICS project [9].

RPSL is a Domain-specific Language (DSL) that enable domain experts to model

the architectural variability of robot perception systems. RPSL supports the spec-
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ification of robot perception systems by providing common architectural concepts

and abstractions appearing in the robot perception domain.

This paper illustrates the entire development process of a SPL for robot percep-

tion systems using the modeling approach presented in our previous paper.

The paper is structured as follows. Section 2 reports on the related works. Section

3 presents the foundamental concepts of SPL Engineering and the specific issues

related to the development of a SPL for robotic systems. Section 4 illustrates a case

study related to semantic perception for industrial tasks with autonomous robots.

Section ?? summarizes the functionality and the modeling languages supported by

the HyperFlex toolkit. Section 6 summarizes the RPSL approach and the integration

with HyperFlex. The relevant conclusions are presented in Section 8.

2. Related Works

Several MDE approaches and tools have been developed for Software Product Line

management in a variety of application domains, such as multimedia communication

[43] and enterprise information systems [34]. They all exploit the power of domain-

specific modeling languages [37] to embed domain-specific knowledge in software

tools. The following two subsections illustrates related works on MDE approaches

for software variability management and Robotics-specific MDE approaches respec-

tively.

2.1. MDE for software variability management

The common approach to model the variability of a software system, which consists

in defining four models: (a) the architectural model defines the software architecture

of the system in terms of implementation modules (classes, aspects, agents, compo-

nents) and their interconnections; (b) the variability model describes the functional

variability of the system using a symbolic representation (e.g. feature models [15]

or the OMG CVL language [3]); (c) the resolution model defines the mapping be-

tween the symbols of the variability model and the implementation modules of the

architectural model; (d) the configuration model consists in a specific set of variants

for the variation points defined in the variability model.

In GenArch [14] the variability model and the configuration model are repre-

sented using the same meta-model, while in OMG CVL [3] the variability model

and the resolution model are not explicitly separated. In our approach, the first

three models are completely orthogonal, i.e. they can vary independently, while the

configuration model is an instance of the variability model and can be hierarchically

composed as described in the previous sections.

The Compositional Variability [5] approach supports the hierarchical composi-

tion of architectural models and feature models. The associations between a high-

level feature model and a low level feature models are defined by means of the so

called Configuration Links, which are similar to the feature dependencies defined in
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HyperFlex. Differently from HyperFlex, this approach defines an abstract compo-

nent model and does not provide the capabilities for modeling domain-specific and

heterogeneous component-based systems.

The approach described in [20] defines three modeling categories, i.e. Common-

ality, Variability, and Configuration. The Commonality describes the architecture

of a system, in terms of components, sub-components, ports and connectors. These

architectural elements can be enriched with variation points, which represent the

Variability and define how the common parts can be configured. For example, a vari-

ant for a component variation point can specify that a new sub-component has to

be included in the component. Finally, the Configuration describes the selection of

variants for all the variation points. The architectural model and the configuration

conform to the MontiArc meta-model. Differently from HyperFlex, this approach

condenses all the information in a single model and does not support modeling

heterogeneous systems.

The Talents approach [35] aims at modeling and composing reusable functional

features for configuring the behavior of a software system. A graphical environment

simplifies feature composition. The Talents approach models functional features at

the level of instances of a class in an object-oriented programming language. In

contrast, HyperFlex models functional features at the level of software components

and component-based systems.

In order to maximize the reuse between product families in consumer electron-

ics, Philips’ researchers defined the product population approach. The architec-

tural variability among the products is modeled by means of the Koala component

model, which provides variability mechanisms such as parameterization (for config-

uring components) and switches (for changing connections) [39]. Differently from

HyperFlex, this approach does not model functional variability explicitely.

A model driven approach for the design of embedded component based systems is

presented in [22]. The approach is based on the Flex-eWare component model, which

defines an architectural model in terms of components, composites, interfaces, and

connections as in HyperFlex., and additional concepts for modeling computational

nodes (e.g. micro-controllers) and quality of service properties. The Flex-eWare

component model allows the generation of source code for three different target

platforms (eC3M, Fractal and OASIS). Differently from HyperFlex, Flex-eWare

models software variability only at architectural level.

Feature models usually do not scale up when the number of variation points

and variants becomes substantial, because a single and huge feature model is too

complex to maintain and to be understood by humans. In [6] software variability is

represented in several feature models, which focus on different aspects. The feature

models can be then composed by means of two operators (insert and merge) that

produce a larger feature model and preserve some properties (e.g. valid configura-

tions).

The staged configuration approach described in [16] consists in a stepwise spe-

cialization of feature models, where separate models define the configuration choices
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available in each stage.

The HyperFlex approach differs from the above approaches as it allows modeling

the software variability of each functional system with a separate feature model,

which represents the provided functionalities. When several architectural models

are composed into a more complex architectural model, a new feature model is

defined, which represents its higher level composite functionalities. A selection of

features at a higher-level triggers a selection of features in the features models at

the level below.

2.2. Robotics-specific MDE approaches

In recent years, several model-driven approaches and tools for the development

of robotic systems have been proposed, such as OpenRTM [8], Proteus [17], and

SmartSoft [28]. An extensive survey about MDE approaches in robotics is given in

the work of Nordmann et al. [29].

In particular, the SmartSoft model-driven approach supports robotics variability

management by modeling functional and non-functional properties of robot control

system. The approach addresses two orthogonal levels of variability by means of

two domain specific languages: (a) the variability related to the operations required

for completing a certain task and (b) the variability associated to the quality of

service.

These two variability levels are more related to the execution of a specific appli-

cation (in the paper the example is a robot delivering coffee), while the HyperFlex

approach supports modeling the variability of functional systems and the variabil-

ity of the family of applications resulting from the composition of these functional

systems.

The Proteus approach [17] introduces a modeling language called RobotML

which is based on UML profiles and targeted to ease the design, simulation and de-

ployment of robotic applications. To this end, RobotML is structured around four

main packages, namely (a) the architecture package providing concepts to model

software and hardware components, (b) the behavior package providing state ma-

chine concepts to model the behavior of software components, (c) the communica-

tion package providing concepts relevant for data and control flow among compo-

nents, and (d) the deployment package providing concepts to define an assignment

of a robotic system to a target platform, for example, a middleware or simulator.

Although RobotML provides an impressive tooling for example for the sake of

code generation concepts for modeling the functional architecture as proposed by

HyperFlex are missing.

In [31] the authors propose the SHAGE (Self-Healing, Adaptive, and Growing

softwarE) framework to generate automatically the software architecture of a service

robot based on a task plan. The approach aims at optimizing the use of robot

resources and at reducing the effort of the system integrator.

It is worth noting that the vast amount of MDE approaches in robotics mainly
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focus on providing abstractions and notations to enable developers to specify and

implement architectural structures such as components, modules and their com-

position (e.g. [40], [29]). In this connection, domain-specific MDE approaches to

represent the architectural structures are proposed by several authors. In [30] the

authors propose a language workbench to engineer complex movement control ar-

chitectures based on motion primitives and their coordination. In [33] the authors

propose the SafeRobots Eclipse-based toolchain integrating textual and graphical

DSLs for specifying and developing robotic systems. SafeRobots is mainly concerned

with modeling the component architecture not only from a structural, but also from

a non-functional point of view by attaching and declaring non-functional properties

to components and sub-systems. All in common of those approaches is that they

focus mainly on architectural concerns and not on the features which are resolved

by the architectures.

Modeling the architectures resolving features by domain-specific approaches

raises the question how to systematically explore the resulting design space. That

is, checking whether the resolved architectures are compatible from a structural,

behavioral, functional and non-functional point of view. In [36] Saxena and Kar-

sai already showed that design space exploration can benefit from MDE-based ap-

proaches. Their framework enables domain experts to define specification languages

and the exploration of design spaces defined in these languages. In this connection

the research presented in this article aims to reuse and compose already exist-

ing tools, languages and technologies rather than implementing a framework from

scratch.

3. Software Product Line Development for Robotics

Typically, a SPL is a strategic investment for organizations, which wants to achieve

customer value through large commercial diversity of their proucts with a minimum

of technical diversity at minimal cost. This business strategy is called software mass

customization in [27] and can be adopted according to the following three models.

The proactive approach consists in designing a complete SPL to support the

full scope of products. This is possible, when the organization knows precisely the

requirements of its products and can define their common software infrastructure

and overall architecture. In Robotics, the proactive approach can be reasonably

applied to very specific domain, such as robotic planetary exploration, where big

organizations like NASA or the European Space Agency (ESA) develop all the

software for their robot control systems in-house, because of the uniqueness of their

equipments.

The extractive approach consists in reengineering a pre-existing set of systems

that have a significan amount of similarities in order to eliminate duplicated code

and enhance interoperability of common functionalities. In Robotics, the extractive

approach has been applied in very mature domains, such as Flexible Manufacturing

Systems (FMS), where a strong committment of robotics and industry stakeholder
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can be ensured [42].

The reactive approach consisits in revising the design of the software infrastruc-

ture and overall architecture of the SPL in order to accomodate the unpredictable

requirements of new products. In Robotics, the reactive approach is approapri-

ate to the development of relatively simple systems, such as robotic lawn mowers,

robotic floor cleaners, which are characterized by a limited sets of functionalities.

New requirements may emerge, for example, from the need to integrate the robotic

equipment with other devices in a smart environment.

Our investigation focuses on a fourth class of robotics systems, i.e. autonomous

robots that require advanced capabilities, such as mobile manipulation, to performe

complex tasks (e.g. logistics) in everyday environments (e.g. a hospital) Today, only

proof of concepts of these kind of systems exist, which are typically developed for

sake of research in the context of international challenges, such as robocup@home

[2] and robocup@work [26]. These robots show a high degree of autonomy in tasks

such as cleaning up a room by collecting objects and placing them in the right bins,

reacting to an emergency situation that may occur in a normal house hold (i.e.

fire in the kitchen), transporting and assembling mechanical parts in an industrial

setting.

Adopting the SPL approach in this context is challenging due to the current

practice in software development for autonomous robots: it is mostly based on

community efforts, which are not coordinated by key stakeholders, such as robot

manufacturers or software foundations. This situation is due to the fact that most

complex autonomous robotic systems are still in the research phase [32] and have

not yet found commercial exploitation. As a consequence, a huge corpus of software

systems, which implement the entire spectrum of robot functionalities, algorithms,

and control paradigms, is potentially available as open source libraries [10]. Unfortu-

nately, their reuse even in slightly different application scenarios requires significant

effort, because the assumptions about the computational and robotic hardware, the

software infrastructure, and the robot operational environments are hidden and

hard coded in the software implementation.

In this paper, we propose a highly decentralized approach to the development

of robotic SPL, which does not assume that the developed assets (e.g. resuable

components, stable architectures) and the product derivation are under control of

a single developing organization as it is typical for SPLs. The approach envisages

three main stakeholders:

• The community of researchers, who keep implementing new algorithms for

common robot functionalities as open source libraries, increasing the vari-

ability of robotic control systems.

• Specialized software houses, who design SPL for specific robotic sub-

domains (e.g. robot navigation) and SPLs for robot application domains

(e.g. logistics).

• System integrators, who develop robot applications with incresingly chal-
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Fig. 1: A youBot mobile manipulation robot performing a precision placement task.

lenging requirements by customizing functional subsystems and applica-

tions to be deployed on specific robotic systems.

The proposed approach to the development of SPLs for autonomous robots takes

into account the specific issues of software development for autonomous robots and

is a mix of the three approaches discussed above. It is proactive as it is applied to

the development of SPLs for functional sub-domains (i.e. motion planning, robust

navigation, 3D perception), for which experts in specific functionalities can define

stable software architectures. It is extractive as it promotes the development of

core assets for the SPL (i.e. reusable components) through the refactoring and

harmonization of existing open source libraries. It is reactive as it supports the

development of higher-level SPLs for specific application domains (e.g. hospital

logistics) as composition of SPLs for functional sub-domains.

4. Case Study

In this section we motivate our approach with the help of a case study. The case

study has been developed in the context of two recent scientific robot competitions,

namely RoboCup@Work [26] and RoCKIn [7].

In those competitions mobile manipulation robots are expected to perform a

wide range of manipulation, assemby and logistic tasks in factory-like environments.

In our case study, a youBot mobile manipulation robot (see Fig. 1) is deployed in an
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Fig. 2: Perception capabilities (left) and Manipulation and navigation capabilities

(right) of the RoboCup@Work scenario.

environment which is composed of service areas. Here, each service area represents

a region of the factory having a specific purpose for a particular task. For example,

areas to pick objects, to insert objects into object-specific cavities (see Fig. 1), to

place objects into containers, to operate machines and so forth. Those service areas

differ also in terms of height, width and so forth.

Additionally, some environments includes static obstacles whereas others are

free of obstacles or even include dynamic obstacles such as other robots and hu-

man workers. In the context of this paper we focus on three possible manipulation

tasks, namely a simple table-top pick, placement and precision placement of a set

of predefined objects in object-specific cavities.

Developing and configuring the robot software for such an application is a chal-

lenging exercise. All the task and environment requirements need to be considered

in the selection and configuration of crucial robot capabilities such as manipulation,

navigation and perception. For example, simple placement of an object on a service

area requires only a standard plane and free space detection algorithm whereas for

detecting the object-specific cavities more elaborated and possibly object-specific

algorithms are required.

5. Domain Analysis with Feature Models

Feature Models symbolically represent the variant features [38] of a control system;

symbols may indicate individual robot functionality (e.g. marker-based localiza-

tion) or concepts that are relevant in the application domain, such as the type of

items that the robot has to transport (e.g. liquid, fragile, etc.), which affect the

configuration of the control system.
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Fig. 3: Requirements of the RoboCup@Work scenario

An interesting challenge that needs to be faced when using feature models to

represent the variability of a software product line is the definition of an appropriate

vocabulary for naming variation points and variants. The clear separation of the

symbolic representation of the system variability from its architectural model allows

the definition of multiple Features Models for the same software system that are

meaningful for system integrators with different needs and expertise.

Our aim is to simplify the system configuration phase by supporting the defini-

tion of feature models at multiple levels of abstraction using specialized vocabularies

for each expert involved in system configuration.

Typically, the expert in robotic functionalities is interested in a representation of

the control system variability that highlights the different algorithms implemented

in the robot control system. For example, in [12] we have analyzed the variability

in software library that implement motion planning algorithms. In this context,

the relevant features are the type of bounding-box used by the collision-detection

algorithm, the sampling strategy, and the type of kinematic model (e.g. single chain,

multiple end-effectors).

Figure 2 shows two screenshots of the HyperFlex Toolkit that represents the

Feature Models of the system capabilities for the RoboCup@Work scenarios. The

left-hand side figure represents the perception capabilities and the right-hand side

figure represents the manipulation and navigation capabilities.

Each Feature Model is structured as a tree, where each node represents a system

feature. A feature could correspond to a variation point (e.g. the Local Planner

functionality) or a concrete variant (e.g. the DWA algorithm for local planning).

A black circle on a child node (e.g. Global Planner) indicates that the Feature is

mandatory, while a white circle indicates that the Feature is optional.
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White triangles indicate that the child features are mutually exclusive, while

black triangles indicate the cardinality of the OR containement association. For ex-

ample, the perception system can be configured with algorithms that can recognize

only one specific type of object (e.g. Screw, Nut) or a generic object. Similarly, it

can be configured to recognize only one or both types of Containers.

The application domain expert is interested in a representation of the system

variability that specifies the application requirements supported by the robot control

system more than its specific functionality.

Figure 3 depicts the Feature Model of the application requirements for the

RoboCup@Work scenarios. It is structured around three main dimensions of vari-

ability, namely the type of task that the robot should perform, the characteristics

of operational environment, and the available equipment.

For example, the perception system could be a Depth Sensor (e.g. a Kinect) or

a Stereo Camera (e.g. a BumbleBee sensor).

According to the operational environment, the robot should be configured with

different algorithms: a slow and complete motion planner is adequate for moving

among static obstacles in narrow passages; instead, a fast and approximate motion

planner is needed for dynamic environments.

5.1. Feature Model Composition

Clearly, the system integrators should focus on the specification of the application

requirements and should not be concerned with the functionality that implement

them. For this purpose, HyperFlex supports the composition of Feature Diagrams

representing variability at different level of abstractions.

At each level the feature names abstract the relevant concepts of the specific

domain: low-level names represent functional and technical terms while high level

names are closer to the application requirements. This approach ensures that the

terminology is well known by the system integrators that operates on a specific

level.

During the variability resolution process, the application domain expert oper-

ates only on the highest-level Feature Model and the selected features trigger the

automatic selection of features in the lower levels Feature Models.

HyperFlex provides a tool that allows to link the Feature Model of the applica-

tion requirements and the Feature Model of the system capabilities. For example,

the system designer can specify that the feature Precision Placement in the Re-

quirements Feature Model is linked to the feature Dynamic Constraints in the Ca-

pabilities Feature Model. Similarly, the feature Static obstacles is linked to feature

DWA local planner.

The proposed appraoch consists in defining a new transformation model (called

Feature Refinement Model) that specifies links between the features of a parent

Feature Model and the features of its child Feature Models. Figure 4 shows an

example, where FM A is a parent Feature Model and FM B and FM C are child
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Fig. 4: A generalized visualization of the different feature model composition ap-

proaches available in HyperFlex. In the context of the case study Feature Model

FM A represents the requirements Feature Model (see Fig. 3) and FM B and FM C

expresses the perception Feature Model (see Fig. 2) respectively the manipulation

Feature Model (see Fig. 2).

Feature Models.

When a feature of the parent FM is selected, all the linked features should be

included in the instance of the child FM.

Basically, three different feature model composition situations can be distin-

guished.

Firstly, a feature of the parent FM (e.g. feature a5 in Fig. 4) can be linked to

several features of different child FMs (e.g. features b4 and c3). In the context of

the case study the feature Simple Placement in Fig. 3 is linked both to the feature

Container Recognition in Fig. 2 and a manipulation feature Position Controlled

expressing a standard approach to place objects.
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Secondly, several features of the parent FM (e.g. features a2 and a5 in Fig. 4) can

be linked to the same feature of a child FM (e.g. feature b4). Again, in the context

of the case study the feature Container Recognition is linked to two features in the

requirements feature model, namely the feature Container in case the environment

is equipped with containers and for the task Simple Placement. Further, we link the

feature Precision Placement with the feature Cavity Recognition which ensures that

for this particular task the required perception capability is automatically selected.

Thirdly, some features of the parent feature model are not linked to any features

of the child feature models (see feature a6 in Fig. 4) and vice versa (see features b2

and b3 in Fig. 4).

The former case corresponds to the situation where the parent FM is used to

configure directly some properties of a functional subsystem. For example, the se-

lection of feature Depth Camera could be associated to a set of parameters that

configure the perception system. The latter case requires manual selection of some

features of the child FM (e.g. feature Cavity Recognition).

Feature Models can include constraints that limit the set of possible combina-

tions of selected features. For examples, features c3 and c4 in Figure 4 are mutually

exclusive. It is not necessary to replicate the constraint in the parent Feature Model

(i.e. FM A), because the HyperFlex tool is able to report constraint violations in

child FM to the user with the indication of the selected features in the parent FM

that caused them.

The Feature Refinement Model defines a tree structure between a parent Feature

Model and a set of child Feature Models. Starting from a manual selection of features

in the parent FM, the HyperFlex tool generates instances of the child Feature

Models automatically. This structure can be extended to trees with an arbitrary

number of levels by connecting Feature Refinement Models hierarchically. Here,

the hierarchy imposes an order according to which the Feature Refinement Models

are processed in order to create an instance of each intermediate and leaf Feature

Model.

6. Architecture Design with RPSL

Architectural Models represent the structure of control systems in terms of com-

ponent interfaces, component implementations, and component connectors. The

HyperFlex approach promotes the design and composition of domain-specific soft-

ware architectures for common robotic functionality (e.g. robot navigation), which

capture the variability in robotic technologies (e.g. various algorithms for trajectory

generation).

The Robot Perception Specification Language (RPSL) [21] is a Domain-specific

Language (DSL), implemented as an internal, textual DSL in Ruby, which provides

suitable abstractions enabling domain experts to express the architectural variabil-

ity of robot perception systems.

The RPSL enables a domain expert to model multi-stage perception systems by
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Fig. 5: Perception graph for the RoboCup@Work scenario

composing sensing and processing components in a perception graph which yields a

directed, acyclic graph (DAG) where sensor and processing components are nodes.

For example, Figure 5 visualizes the architectural variability of the perception sys-

tem for the RoboCup@Work scenario. Here, sensing components on the left-hand

side represent sensors which are typically available on mobile robots such as cam-

eras, depth cameras and laser scanners. Those sensors produce a large amount of

data which is processed by many and diverse processing components. Those pro-

cessing components encapsulate perception-related functions (e.g. filters, feature

descriptors, and so forth). The sensing components solely produce data whereas

processing components produce and consume data in a flow-oriented manner. Af-

ter performing several processing steps some output is provided as shown on the

right-hand side of Fig. 5. Having RPSL at their disposal developers are enabled not

only to specify domain models of sensing and processing components, but also to

compose concrete processing graphs as the one highlighted in red (see Fig. 5). Those

perception graphs represents a concrete architecture resolving a functional feature.

For example, the graph shown in Fig. 5 represents the container recognition feature

shown in Fig. 3.

In our previous work [18] the abstract syntax (metamodel) and structural con-

straints of RPSL have been formalized using the Alloy formal modeling language.

The Ruby-based RPSL implementation conforms to this formalization and ensures

that all the specified constraints are satisfied which in turn yields well-formed RPSL

domain models. To this end, checks are implemented to (a) ensure that the percep-

tion graph is a DAG, (b) connected ports have the same type, (c) input ports are

connected, and so forth.
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rpsl.sensor_component do
name "depth_camera"
add_port :out , "out_port", "point_cloud"

end

rpsl.processing_component do
name "ransac_plane_detection"
add_port :in , "in_port", "point_cloud"
add_port :out , "out_port", "plane"

end

rpsl.processing_component do
name "contour_detection"
add_port :in , "in_port", "plane"
add_port :out , "out_port", "contours"

end

rpsl.processing_component do
name "template_matching"
add_port :in , "in_port", "contours"
add_port :out , "out_port", "poses"

end

rpsl.perception_graph do
name "precision_placement"
connect "depth_camera", "out_port",

"ransac_plane_detection", "in_port"
connect "ransac_plane_detection", "out_port"

"contour_detection", "in_port"
connect "contour_detection", "out_port"

"template_matching", "in_port"
end

rpsl.perception_graph do
name "simple_placement"
connect "depth_camera", "out_port",

"ransac_plane_detection", "in_port"
connect "ransac_plane_detection", "out_port"

"euclidian_clustering", "in_port"
connect "euclidian_clustering", "out_port"

"bounding_box_detection", "in_port"
connect "bounding_box_detection", "out_port"

"container_recognition", "in_port"
end

Fig. 6: An excerpt of the models encoding the perception graphs required for the sim-

ple and precision placement task. One sensor component is modeled (depth camera)

and three processing components are modeled, namely ransac plane detection,

contour detection and a template matching. Those components are connected in

the precision placement perception graph yielding a structurally complete spec-

ification of the perception capability required for the precision placement task.

Both the depth camera and ransac plane detection components are also used

in the perception graph simple placement. For the sake of readability configura-

tion parameters of the components (e.g. sensor properties), data type definitions

(e.g. contours, plane, and so forth) and the missing components for the simple

placement graph are omitted.
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rpsl.feature_resolution do
name "resolution"
resolve "CavityRecognition"

with "contour_detection"
with "template_matching"

end

Fig. 7: An example of a resolution model which resolves the feature Cavity

Recognition with contour matching and template matching components (see

Fig. 6.)

7. Resolution Models for Product Derivation

The applicability of feature models in the domain of robot perception [18] strength-

ened our vision to employ HyperFlex not only as a method, but also as a tool to

model, configure and compose a robotic system based on several sub-functionalities

which in turn are modeled by domain-specific approaches such as RPSL.

In the context of the case study (see Sec. 4) a different selection of task, envi-

ronment and platform requirements significantly effects the perception architecture

itself. Let us consider, for example, two applications with varying requirements.

The first application includes an omnidirectional robot equipped with a RGB-D

sensor (e.g. feature Depth Camera selected) which is expected to place objects in

containers located at service areas (e.g. feature Simple Placement selected). Further,

the robot is deployed in an environment with static obstacles (e.g. feature Static

selected). The second application differs in the task requirements where the robot

is expected to precisely place objects (e.g. feature Precision Placement selected) in

object-specific cavities (e.g. peg-in-hole task).

Clearly, both applications require different perception capabilities in order to

robustly perform the tasks. For example, in order to place objects in containers

the container on a service area needs to be detected (e.g. Features Service-Area

Detection and Container Recognition selected) whereas for the peg-in-hole task

cavities need to be detected (e.g. Feature Cavity Recognition selected).

In the next step, each feature belonging to the perception capability (see Fig. ??)

is resolved in terms of one or more perceptual components or even perception graphs

modeled with RPSL (see Fig. 6).

The corresponding resolution model governs a model-to-model transformation

where the source model is an instantiated feature model containing the selected

feature and the target model is an architectural specification of the configured

perception graphs realizing the set of selected features.

Resolution Models define model-to-model transformations, which allow to auto-

matically configuring the architecture and functionality of a control system based on

selected features. Eventually, the configured architectural model is used to deploy

the control system on a specific robotic platform.
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For example, the feature Cavity Recognition is resolved by two components (see

Fig. 7), namely Contour Detection in order to detect the object-specific cavities

and Template Matching component which matches the detected contours with a set

of a priori defined object-specific contours. The Template Matching component also

computes the pose of each cavity using the centroid of the 3D contour with the x-

axis along its principal axis. Nevertheless, for the precision placement task also other

features are selected and the model-to-model transformation takes those resolutions

into account and ensures that the resolved components are composable. To this end,

it is checked whether their output and input types are compatible. For example,

the mandatory feature Service Area Detection is resolved by the RANSAC Plane

Detection component (see Fig. 6) which provides a plane which in turn is required

by the contour detection component required for the Cavity Recognition feature.

The Container Recognition feature on the other hand is resolved by a percep-

tion graph composed of three components, namely Euclidian Clustering to cluster

objects lying on the detected plane, Bounding Box Detection to compute a bound-

ing box for each cluster which in turn are classified in containers in the Container

Recognition component by using dimension and color criteria. It is important to

note that both architectures are instantiated with the Depth Camera and RANSAC

Plane Detection component as they are resolved by the feature Depth Camera (see

Fig. 3) and the mandatory perception capability Service Area Detection.

8. Conclusions and future works

In this paper, we presented the integration of HyperFlex, a model-driven toolchain

for composing Feature models according to different composition strategies, with

RPSL, a DSL to express architectural variability of robot perception systems. We

demonstrated the feasibility of the approach by means of a realistic case study. The

integrated tooling has been conceived for symplifying not only the configuration

and deployment of complex control systems of autonomous robots on a functional,

but also on an architectural level.

Lastly, we would like to emphasize that this work motivates us to consider

further integration activities of robotic DSLs [29] as both HyperFlex and RPSL

where initially developed independently from each other, yet their integration was

feasible and showed to be beneficial for structuring the overall development process.

Such a development process is often decomposed in several phases ranging from

requirements analysis and functional design to implementation and deployment of

robot architectures. The work presented in this article already covers, enhanced

by MDE-based tools, several development phases and in our future work we will

work on supporting often neglected, yet important development phases such as

deployment and maintenance.
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