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Abstract

We introduce a generic framework of dynamical complexity to understand and quantify fluctuations
of physiologic time series. In particular, we discuss the importance of applying adaptive data analysis
techniques, such as the empirical mode decomposition algorithm, to address the challenges of
nonlinearity and nonstationarity that are typically exhibited in biological fluctuations.
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1. Introduction

One of the great challenges of contemporary biomedical science is to understand more fully
the dynamics of living systems in health and disease. The importance of this challenge is
highlighted by headlines announcing unexpected, life-threatening side effects of once-
promising drugs, as well as the serendipitous discoveries deriving from “outside the box”
approaches to major public health problems, for example, in heart disease and cancer biology.
The basis of such unexpected findings, both negative and positive, is the extraordinary
complexity of physiologic systems, which exceeds that of the most challenging systems in the
physical world. These systems defy understanding based on traditional mechanistic models
and conventional biostatistical analyses.

The overall aim of this paper is to develop a deeper understanding of the dynamics underlying
healthy biological systems and what occurs when these systems lose their robustness due to
aging or disease. We will address these fundamental questions from data analysis perspective.
Specifically, why novel adaptive data analysis techniques essential to understand these
important issues are. However, because of the nonlinear complexity of these biological
systems, it is unrealistic to achieve this goal purely by a traditional engineering (reductionist)
approach in which one disassembles the system into its constituent pieces, studies each
component in detail, and finally puts them back together, recreating the original entity. Even
in rare cases where this type of reductionist program can be accomplished, the integrative
system’s behavior typically surprises expectations based solely on the information gathered
through analyzing each component in isolation. In everyday parlance, this well-known effect
is referred to as the whole being different than the sum of the parts. In the language of complex
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systems, it is known by the term “emergent properties.” In nonlinear systems, the composite
or group behavior (of molecules, cells, organs, individuals, and even societies) cannot be fully
understood by simply “adding up” the components. Instead, one needs rigorous, new
approaches to model, measure and analyze a system’s integrative behavior.

2. Complex System Approaches

Central to this enterprise are computational tools and models that usefully represent the
behavior of the intact system. These system-level measurements and models also need to
capture certain generic and robust properties of complex biological systems, such that they
have a wide range of applications across many disciplines. To this end, we have focused on
studying the output signals generated by complex biological systems. The dynamical
fluctuations of these signals in health and disease provide a unique window into the free-
running behavior of the integrative systems.

To identify system-level behaviors that are critical to our understanding of healthy dynamics
and of pathological disturbances, we pursued investigations under the framework of three
complementary hypotheses:

1. The complexity of a biological system reflects its ability to adapt and function in an
ever-changing environment.

2. Biological systems need to operate across multiple scales of space and time, and hence
their complexity is also multiscale and hierarchical.

3. A wide class of disease states, as well as aging, appear to degrade this biological
complexity and reduce the adaptive capacity of the system. Thus, loss of complexity
may be a generic, defining feature of pathologic dynamics, and the basis of new
diagnostic, prognostic, and therapeutic approaches.

To investigate the above hypotheses by studying the dynamical fluctuations of output signals
generated by complex biological systems. We developed some innovative approaches in recent
years. These system approaches and their associated computational tools promise to provide
insights into a wide range of biomedical problems. Examples include forecasting catastrophic
events such as epileptic seizures and sudden cardiac arrest, studying gene evolution, searching
and categorizing large biomedical and other types of databases, and screening for drug toxicity
and effcacy, to name but a few. These diverse applications are strong indications of the potential
of these new approaches to advance the science of complex systems.

3. The Origin of Physiologic Variability

Dynamical fluctuations in the output of complex biological systems with multiple interacting
components often exhibit remarkably complicated patterns. Such fluctuations have long been
ignored by conventional analyses. Indeed, the presence of these fluctuations is often assumed
to simply reflect the fact that biological systems are being constantly perturbed by external and
intrinsic noise. However, recent findings by our group and others clearly indicate that these
complex fluctuations exhibit interesting structures that were not previously anticipated.1—6
More importantly, these fluctuations may also contain useful information about the emerging
complexity of the systems.”~13 Here we develop a dynamical system perspective to understand
the origin of these fluctuations.

3.1. State space representation

In dynamical systems research, it is common to describe a system by a set of variables. If
defined properly, these so-called state variables can uniquely determine the state of the system
and the time course of its revolution (see Fig. 1).
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Assuming that how a system changes in time is purely deterministic, then the goal of the state
space approach is to find equations of motion for the underlying dynamics in order to
understand, predict, and control the system.

However, for biological systems, this approach is not feasible due to two intrinsic difficulties.
First, the state space is of very high dimensionality, and not all variables can be measured. For
example, to fully describe the state of human physiology, one might need to monitor hundreds
of variables (including heart rate, blood pressure, body position, muscle tone, oxygen and
multiple hormones level in the blood, etc). Although macroscopic variables can be used as
state variables to reduce the dimensionality of the state space, it is unclear what the proper
macroscopic variables are in this case. Furthermore, biological systems are not purely
deterministic, many stochastic factors constantly influence them. Although these two
considerations significantly limit the application of tools developed in dynamical system
analysis to biological systems, the state space representation is still a useful picture
conceptually.

3.2. System complexity as a measure of adaptability

As we discussed previously, a meaningful quantification of the complexity of a biological
system should be related to the system’s capacity to adapt and function in an ever changing
environment. The system that can adapt to the most external challenges (stresses) will have
the best advantage for survival. Therefore, we propose that biological systems have been
evolving to increase their dynamical capacity (complexity). As a result, biological systems we
observed today are highly complex since they are the products of a very long evolutionary
process. We also hypothesized that aging and disease will degrade a systems complexity, since
they represent a less adapted system.

Using the state space concept, an external perturbation (challenge or stress) to a biological
system requires the system to move from one location to a different area of the state space in
order to adapt to the perturbation. A healthy system should be able to easily move from one
area to another, while a diseased system has a very limited ability to adapt, and thus cannot
move to other regions of the state space.

Complexity is a measure of a system’s capacity to adapt, therefore, it should be related to the
total available volume of the state space. Theoretically, we can measure the size of the available
state space by either observing the system’s trajectory for a very long time (asymptotically,
the underlying dynamical system will visit all available state space), or by perturbing the system
with all possible stresses and calculate the volume of the state space being covered. However,
both implementations are not realistically feasible. Therefore, we proposed an alternative way
to derive the desirable information as will be discussed in the following sections.

3.3. Analogy of Brownian motion

In 1905, Einstein published several important papers that took physics into a completely new
world. In addition to his famous papers on special relativity and photoelectric effect, his paper
on Brownian motion also had a great impact. In that paper, he concluded that the same random
forces which cause the erratic Brownian motion of a particle suspended in fluid would also
cause drag (viscosity) if the particles were pulled through the fluid. In other words, by
measuring the spontaneous fluctuation of the particle at rest, one can know how much
dissipative frictional force one must do work against, if one tries to perturb the system in a
particular direction.

This derivation between spontaneous fluctuations without external perturbation and the
system’s response to perturbation is of fundamental importance. It is later generalized as the
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fluctuation dissipation theorem.14 It motivated the investigation of fluctuating phenomena in
statistical physics of the 20th century.

We hypothesized that the same principle can be applied to the state space representation. If our
assumption is true, then we can simply measure the spontaneous fluctuations of a system in
the state space when it is under free-running condition, and use that information to predict the
ability that a system can adapt when encounters a challenge. Similar to Einstein’s finding for
Brownian particle, the greater the spontaneous fluctuation, the easier for it to move (lower
viscosity) in that space when external perturbation is applied.

This assumption dramatically simplifies our task of defining a system’s complexity. Next, we
will discuss how to construct a surrogate state space when there is only limited information on
state variables.

3.4. Surrogate state space

In the past several years, we have successfully developed an innovative algorithm to probe the
state space indirectly. The goal was to overcome the barrier that in real-world condition, one
can only monitor a very limited set of physiologic signals (as state variables). Effectively, we
are observing a low-dimensional projection of a trajectory embedded in the much higher
dimension of state space. Therefore, it is critical to extract as much information as possible
from any single physiologic variable to gain some insight into the high dimensional state space.

For deterministic dynamical systems, there are rigorous approaches, such as the Poincaré map,
to study a high dimensional trajectory in a low dimensional subspace. Similarly, in chaos
theory, recurrence plots15 and phase-space portraits!® are frequently used techniques for this
purpose. However, physiologic systems do not meet the criterion (e.g., deterministic and
periodic) for applying these analyses. Off-the-shelf usage of those tools to biological time series
may lead to misleading conclusions.

Our approach was to take advantage of the fact that an integrative physiologic system will have
complex coupling between different components of the system. In biological systems, these
couplings often exhibit different spatial and temporal scales. Therefore, by investigating any
given signal at various time scales, we can probe the other dimensions of the abstract state
space.

By combining these concepts discussed in this section, we have implemented some useful
computational algorithms to quantify features related to complexity of biological systems from
fluctuating time series of physiologic variables. Our definition of a system’s complexity also
ensures that our index closely reflect the general health status of the system. In the next section,
we will briefly discuss the algorithms we have developed.

4. Quantifying a System’s Complexity

For practical purposes, it is useful to quantify the degree of complexity of a biological system
by examining its dynamical fluctuations. Such metrics have potentially important applications
both with respect to evaluating dynamical models of biological systems and to clinical
monitoring. Substantial attention, therefore, has been focused on defining a quantitative
measurement of complexity.3~13:17=21 However, no consensus has been reached on this issue.
We have used an alternative view, as discussed in previous sections, to look at these biological
variabilities to derive some useful measurements of how complex a system is.

Over the past several years, our group have developed quantitative algorithms to probe some
of the generic features of complex systems and applied these computational tools to the
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understanding of the underlying system dynamics. For example, we have introduced fractal
scaling,22:23 multiscale entropy (MSE)24:25 and time irreversibility?® analysis techniques and
applied them to the study of the cardiac dynamics of healthy subjects and patients with different
types of pathologies. The former technique quantifies the information content of a signal across
multiple time scales and the latter quantifies the degree of temporal irreversibility over multiple
time scales. Time irreversibility is a property related to the unidirectionality of the energy flow
across the boundaries of a living system, which utilizes free energy to evolve to more
hierarchically ordered structural configurations and less entropic states in comparison with the
surrounding environment.

Based initially on the analysis of the cardiac rhythm24:25 (under neuroautonomic control) and
gait dynamics,2’ we have shown that healthy systems, those with the highest capacity to adjust
to continuous (and often unpredictable) changes of internal and external variables, generate
the most physiologically complex and the most time irreversible signals. We have shown
further that both multiscale variability and time irreversibility properties degrade with aging
and disease. These results challenge traditional mechanisms of physiologic control based on
classical homeostasis (single steady state dynamics) and are of interest from a number of other
perspectives, including basic modeling of regulatory systems and practical bedside
applications.

5. Technical Challenges and Adaptive Signal Analysis

In this section, we will briefly discuss the importance of applying adaptive signal analysis
techniques, in conjunction with the complexity related methods described above, to obtain
more accurate quantitative measurements of complex biological systems.

5.1. Problem of nonstationarity

The quantitative tools we have developed, such as the multiscale entropy (MSE) analysis, for
the analysis of complex physiologic time series are based on generic concepts that are
fundamental to biological systems. As a result, these tools are readily applicable to many
different biomedical problems. However, since physiologic time series are typically
nonstationary, there are important technical issues that need to be addressed in order to obtain
reliable results.

For example, the MSE analysis was derived from stationary processes. In practice, time series
need not to be strictly stationary according to the mathematical definition to yield meaningful
results. However, nonstationarities appearing on scales larger than those considered for MSE
analysis may substantially affect our measurements. Such nonstationarities need to be taken
care of prior to performing the MSE analysis. Our study of postural sway time series28 indicates
that by properly detrending the time series on scales greater than those being measured by the
MSE, the analysis provides robust and consistent results. The empirical mode decomposition
(EMD) technique?® is a very adequate candidate for pre-processing the data, since it provides
a systematic way to detrend the data without a priori assumptions of what type of trend the
data may possess.30

5.2. Nonlinear dynamical coupling among components of system

A fundamental question about complex biological systems is how does the observed complex
dynamics, as quantified by our complexity related measurements, emerge from integrated
system functions. Understanding possible mechanisms of healthy complexity is important both
on the basic scientific level and on the practical level, where clinical interventions can be
proposed to maintain or restore this dynamical complexity. By observing the degradation of
dynamical complexity in disease and aging, one realizes that life-threatening pathologic
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conditions are typically accompanied by either complete de-coupling between sub-components
of the whole system, or a strong “mode-locking” among them. In contrast, a healthy biological
system usually displays intermittent coupling between its sub-systems. Each component of the
system may engage and then dis-engage with other components of the system. This type of on-
and-off “cross-talk” between different parts of a complex system (reminiscent of how different
instruments are integrated together in a symphony orchestra) seems to be a prominent
characteristic of healthy biological function. As a result, quantifying the coupling among
different sub-system components is critical to our understanding of the complex system as a
whole. From a data analysis point of view, one should be able to characterize the coupling
between the two components of a system by simultaneously collecting the signals that represent
those components. However, technically, quantifying the coupling is not an easy task. The
main difficulties are due to the fact that both signals are often nonstationary, and the coupling
between them is usually nonlinear and intermittent. To quantify the intermittency, the analysis
method has to separate any local variation and collate the different scales of the intermittent
processes separately and cleanly in both temporal and scale variables. Here the recently
developed Ensemble EMD?3! has the potential to offer great help.

Therefore, it is essential to apply adaptive data analysis techniques to address the nonlinear
and nonstationary challenges as demonstrated by recent works of our group and others.32-34
For example, we have applied the EMD algorithm to study the role of coupling between blood
pressure and cerebral flood flow in cerebral autoregulation. Cerebral autoregulation is a
mechanism that involves dilatation and constriction of arterioles to maintain relatively stable
cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments
of cerebral autoregulation use Fourier-based techniques, such as transfer function analysis, that
fail to yield robust and consistent results in typical clinical settings. The EMD method
substantially improves our ability to accurately quantify the dynamical interactions between
blood pressure and cerebral blood flow.32734 Furthermore, since the EMD can provide phase
and frequency information on instantaneous basis, analysis of its dynamical feature (i.e., how
do these interaction change over time) becomes feasible. Future work along this direction may
have clinical importance and also provide mechanistic understanding toward the theory of
dynamical complexity we proposed.

6. Discussion

We have developed a generic framework for extracting “hidden information” in time series
generated by complex biological systems. Specifically, we discussed the underlying
assumptions that make it possible to probe the behavior on the system level via examining the
dynamical fluctuations of a single variable. We also proposed meaningful measurements of
complexity for biological systems that are based on the framework we developed. We have
used those complexity measures to study the outputs of cardiac heartbeat regulatory system,
25 gait dynamics,2’ and postural control.28 Briefly, we found that, under free-running
conditions, the dynamics of healthy systems are the most complex, as measured by the
multiscale entropy and time irreversibility methods, and that complexity breaks down with
aging and disease. We also studied the effects of a noise-based therapeutic intervention
designed to improve postural balance28 on the overall complexity of the postural sway
dynamics. We found that there is an increase in multiscale complexity during the application
of this intervention. This finding supports the notion of using dynamical biomarkers for
assessing noise-based and other types of therapeutic interventions. However, one needs to be
aware of potential technical issues when applying these new measures to physiologic time
series. In this paper, we discussed how to utilize the EMD technique to overcome the problems
when data are not “well-behaved.” Thus the EMD approach constitutes an essential step of
complex physiologic signal analysis.
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State (phase) space

State

Fig. 1.

A schematic illustration of 3-D state space. In this example, a system is fully described by 3
state variables. At any given moment, the system is represented as a point (state) in this space.
The trajectory of the system traces out the time evolution of changes of the system’s state.
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