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A compact empirical mode decomposition (CEMD) is presented to reduce mode mixing,
end effect, and detrend uncertainty in analysis of time series (with N data points). This
new approach consists of two parts: (a) highest-frequency sampling (HFS) to generate
pseudo extrema for effective identification of upper and lower envelopes, and (b) a set
of 2N algebraic equations for determining the maximum (minimum) envelope at each
decomposition step. Among the 2N algebraic equations, 2(N − 2) equations are derived
on the base of the compact difference concepts using the Hermitan polynomials with the
values and first derivatives at the (N − 2) non-end points. At each end point, zero third
derivative and determination of the first derivative from several (odd number) nearest
original and pseudo extrema provide two extra algebraic equations for the value and
first derivative at that end point. With this well-posed mathematical system, one can
reduce the mode mixing, end effect, and detrend uncertainty drastically, and separate
scales naturally without any a priori subjective criterion selection.

Keywords: Compact empirical mode decompositions (CEMD); empirical mode decom-
position (EMD); highest-frequency sampling (HFS); pseudo extrema; compact differ-
ence; highest-frequency sampling (HFS); Hermitian polynomials; intrinsic mode function
(IMF); end effect; detrend uncertainty; mode mixing.

1. Introduction

Most of the time series we encounter are nonlinear and nonstationary. Because of
the limitations of available methodologies for analyzing data, the crucial phase of
data analysis has in the past been relegated to “data processing”, where data are
routinely put through certain well-established algorithms to extract some standard
parameters. These traditional methods usually assume linearity and stationarity of
the time series. Since the seminal paper by Huang et al. (1998), adaptive empirical
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model decomposition (EMD) has been developed to analyzing nonlinear and non-
stationary data. The EMD decomposes a nonlinear and nonstationary signal into
several intrinsic mode functions (IMFs) and a trend. Instantaneous frequency can
be obtained by the Hilbert–Huang transform (HHT), and then the time–frequency–
energy distribution characteristics. An IMF is a function that must satisfy two con-
ditions according to the algorithm originally developed: (a) the difference between
the number of local extrema and the number of zero-crossings must be zero or one;
(b) the running mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero. For such a signal, the interior extrema
are easily identified. However, these extrema are not enough to determine two well-
behaved fitting spline envelopes near the two ends for the sifting, especially in the
cases when the total number of splines are small, for the extrapolation of a spline
often leads to undesirable big error especially near the end points.

The easiest way is to treat the two end points as “frozen” points, i.e. the two
end points are on both maximum and minimum envelopes. Such a treatment makes
the trend varying from the first end point to the last end point. Other practice is
to extend data points beyond the end points so as to carry out the spline envelope
fitting over and even beyond the existing data range; such as the wave extension
method [Huang et al. (1998)], local straight-line extension method [Wu and Huang
(2009)], mirror or anti-mirror extension [Zhao and Huang (2001)], and self-similarity
[Wang et al. (2007)], to name a few, have been used. While methods for extending
data vary, the essence of all these methods is to predict data, a dauntingly difficult
procedure even for linear and stationary processes. The problem that must be faced
is how to make predictions for nonlinear and nonstationary stochastic processes.
The original signal only has the extrema in the data series, so the extending points
beyond the two end points are not real . Therefore the data extension methods will
not solve the problem no matter how much efforts have been spent. Besides, the
end error may propagate from the ends to the interior of the data span that would
cause severe deterioration of the IMFs obtained.

An ensemble EMD was proposed to solve the irregular distribution of local
maxima (minima) problem [Wu and Huang (2009)]. This approach consists of sifting
an ensemble of white noise-added signal (data) and treats the mean as the final true
result. The reason to add finite, not infinitesimal, amplitude white noise is to obtain
relatively uniform distribution of local maxima and minima such that the upper
and lower envelope can be identified.

Questions arise: Can relatively uniform distribution of local maxima and minima
be established at each EMD step without adding any white noise? Can the end
effect be eliminated without using either extrapolation or interpolation (with extra
point beyond the end point)? Can the upper and lower envelopes be determined
in a systematic way? Can the trend be determined objectively? These problems
will be answered in this study through identification of highest-frequency pseudo
extrema and use of compact difference concepts [Chu and Fan (1998), (1999)].
With highest-frequency pseudo extrema, relatively uniform distributions of local
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(original and pseudo) maxima and minima are found. Determination of either upper
or lower envelope becomes to solve a set of 2N algebraic equations of the values
and first derivatives for each envelope at all N data points (including the two end
points) using the Hermitian polynomials. This method, called the compact EMD
(CEMD), shows evident improvement in data analysis. The rest of the paper is
organized as follows. Section 2 introduces the classical EMD. Section 3 depicts
procedure of CEMD. Section 4 demonstrates the reduction of the end-point effect
by CEMD. Section 5 shows the enhancement of detrend capability by CEMD.
Section 6 presents the conclusions.

2. EMD

Let x(t) represent the time series with fluctuations on various time scales (Fig. 1).
The EMD method is depicted as follows. First, the local minima and maxima of
the signal x(t) are identified. Second, the local maxima are connected together by a
cubic spline interpolation (other interpolations are also possible), forming an upper
envelope emax(t). The same is done for local minima, providing a lower envelope
emin(t). Third, the mean of the two envelopes are calculated

m1(t) = [emax(t) + emin(t)]/2. (1)

Fourth, the mean is subtracted from the signal, providing the local detail

h1(t) = x(t) − m1(t), (2)

Fig. 1. Procedure of traditional EMD.
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which is then considered to check if it satisfies the above two conditions to be an
IMF. If yes, it is considered as the first IMF and denoted

c1(t) = h1(t). (3)

It is subtracted from the original signal and the first residual,

r1(t) = x(t) − c1(t), (4)

is taken as the new series in step 1. If h1(t) is not an IMF, a procedure called
“sifting process” is applied as many times as necessary to obtain an IMF. In the
sifting process, h1(t) is considered as the new data, and the same procedure applies.
The IMFs are orthogonal, or almost orthogonal functions (mutually uncorrelated).
This method does not require stationarity and linearity of the data and is especially
suitable for nonstationary and nonlinear time series analysis.

By construction, the number of extrema decreases when going from one residual
to the next; the above algorithm ends when the residual has only one extrema, or
is constant, and in this case no more IMF can be extracted; the complete decompo-
sition is then achieved in a finite number of steps. The signal x(t) is finally written
as the sum of mode time series ci(t) and the residual rm(t):

x(t) =
m∑

i=1

ci(t) + rm(t). (5)

There is no any oscillation (i.e. nonexistence of both maximum and minimum
envelopes) in the residue rm(t), which should represent the trend. Obviously, suc-
cessfulness of the EMD depends on accurate determination of upper and lower
envelopes. Three long recognized difficulties (end-point effect, mode mixing, and
detrend uncertainty) are related to each other and caused by uncertain identifi-
cation of upper and lower envelopes due to (a) uncertain maximum and minimum
values at the end points and (b) irregular distribution of local maximum (minimum)
points.

3. CEMD

A new CEMD method is developed on the base of (a) compact difference concept
[e.g. Chu and Fan (1998), (1999)] using Hermitian polynomials and (b) identifica-
tion of uniformly distributed pseudo maximum and minimum points using highest-
frequency sampling. CEMD determines upper and lower envelopes objectively and
accurately at all N data points including the two end points.

3.1. Basic algebraic equations

Let {xi, i = 1, 2, . . . , N} be the original time series with corresponding time
instances {ti, i = 1, 2, . . . , N} and two end points (x1, xN ). Let (x(max)

j , j = 1,

2, . . . , J) and (x(min)
k , k = 1, 2, . . . , K) be the local maxima and minima with J = K
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or differing at most by one; and {ui, i = 1, 2, . . . , N} and {li, i = 1, 2, . . . , N} be
the corresponding upper and lower envelopes. Here, the upper envelope is taken
as an example for illustration. On the upper envelope, the values are given at the
local maxima (x(max)

j ), and unknown at the other time steps (Fig. 2). For simplicity
without loss of generality, a uniform time step ∆t = ti+1 − ti (i = 1, 2, . . . , N − 1)
is assumed.

Let (ui, u
′
i) be the value and first derivative of the upper envelope at the

time ti. For an interval [ti−1, ti+1], (i = 2, 3, . . . , N − 1), a quartic Hermitian
polynomial,

p4(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4, ξ = t − ti, (6)

is used to determine (ui, u
′
i) simultaneously (Fig. 3) with

p4(−∆t) = ui−1, p4(0) = ui, p4(∆t) = ui+1,

p′4(−∆t) = u′
i−1, p′4(∆t) = u′

i+1.
(7)

Substitution of (6) into (7) leads to the expressions for the coefficients of the Her-
mitian polynomials (6),

a0 = ui,

a1 =
3
2

(
ui+1 − ui−1

2∆t

)
− 1

4
(u′

i+1 + u′
i−1),

a2 =
ui−1 − 2ui + ui+1

∆t2
− 1

2

(
u′

i+1 − u′
i−1

2∆t

)
,

Fig. 2. Upper envelope with maxima and unknown points (to be determined).
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Fig. 3. Along the upper envelope, the coefficients of the quartic Hermitian polynomial at the
point i, is calculated from ui−1, ui, ui+1, u′

i−1, and u′
i+1.

a3 =
1

4∆t2

(
u′

i−1 −
ui+1 − ui−1

∆t
+ u′

i+1

)
,

a4 =
1

2∆t2

(
u′

i+1 − u′
i−1

2∆t
− ui−1 − 2ui + ui+1

∆t2

)
.

(8)

First derivative of (6) at time ti (i.e. ξ = 0) gives

p′4(0) = a1 = u′
i. (9)

Substitution of a1 from (8) into (9) leads to

u′
i−1 + 4u′

i + u′
i+1 = 6

ui+1 − ui−1

2∆t
. (10)

Since ui is located at the upper envelope, it may be or may not be a local maximum.
If ui is a local maximum, it has a given value,

ui = x
(max)
ji

. (11a)

If ui is not a local maximum, an additional relation is needed for ui. This relation
can be obtained by reducing the order of the Hermitian polynomial from quartic to
cubic (i.e. the fourth derivative equals zero), or letting a4 = 0 in (6), which leads to

ui−1 − 2ui + ui+1

∆t
=

u′
i+1 − u′

i−1

2
. (11b)

Here, Eq. (8) is used. The values and first derivatives (ui, u
′
i) for all the interior

points (i = 2, 3, . . . , N − 1) are obtained by solving 2× (N − 2) algebraic equations
expressions (10), and (11a) or (11b) with the given values of local maxima x

(max)
j .

Two more algebraic equations are needed for each end point (i = 1, or N). The
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first equation is obtained from the assumption that the third derivative vanishes at
the two end points,

u′′′
1 = 0, u′′′

N = 0. (12)

Setting the quartic Hermitian polynomial (6) at t2 (i.e. i = 2), the third derivative
at t1 is given by

d3p4(−∆t)
dt3

= 6a3 + 24a4 × (−∆t) = 0. (13)

Substitution of (8) with i = 2 into (13) leads to

9u1 − 16u2 + 7u3

∆t
= 3u′

3 − 5u′
1. (14)

Similarly, at tN we have

7uN−2 − 16uN−1 + 9uN

∆t
= 5u′

N − 3u′
N−2. (15)

The second equation for each end point is obtained from the assumption that the
first derivatives (G1, GN ) can be calculated at the two end points,

u′
1 = G1, u′

N = GN . (16)

3.2. Determination of G1, GN

An odd number (L) of extrema points (x(ext)
l , l = 1, 2, . . . , L) close to each end point

are used to determine G1 and GN with a weighted least squares (WLS) regression.
Taking G1 as an example, the WLS regression is represented by

x̂
(ext)
l = C + G1tl. (17)

In the WLS regression, cases with greater weights contribute more to the fit of the
regression line. The result is that the estimated coefficients are usually very close to
what they would be in ordinary least square regression, but under WLS regression
their standard errors are smaller. Figure 4 shows the example with 5 extrema points
for determining G1. The weight is 0.5 at the first and last extrema points and 1.0
otherwise. Thus, G1 is a function of (x(ext)

l , l = 1, 2, . . . , L),

G1 = F1(x
(ext)
1 , x

(ext)
2 , . . . , x

(ext)
L ). (18)

Similarly, GN is a function of (x(ext)
l , l = M, M − 1, . . . , M − L + 1),

GN = FN (x(ext)
M , x

(ext)
M−1, . . . , x

(ext)
M−K+1). (19)

Solutions of the set of 2N algebraic equations (10), (11a), (11b), (14), (15), and
(16) with (G1, GN ) are calculated by (18) and (19) give 2N values of (ui, u

′
i) for all

the points (i = 1, 2, . . . , N).
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Fig. 4. Determination of G1 using the WLS regression.

3.3. Pseudo extrema identification

The data with uneven distribution of local maximum (minimum) points is illus-
trated in Fig. 5. The data has its fundamental part as a low-frequency sinusoidal
wave with unit amplitude. At the two middle crests and first three trouphes of the
low-frequency wave, high-frequency intermittent oscillations with amplitude of 0.1
are riding on the fundamental [Fig. 5(a)]. Local maximum and minimum points
are distributed unevenly. The high and low frequency components are shown in
Figs. 5(b) and 5(c). This signal has no trend [Fig. 5(d)]. To solve such a prob-
lem, Wu and Huang (2009) proposed an ensemble empirical mode decomposition
(EEMD) with sifting an ensemble of white noise-added signal (data) and treating
the mean as the final true result. This method creates extra local maxima and
minima in such a way that a uniform reference frame in the time–frequency space
is provided.

Different from EEMD, unevenly distributed local maximum and minimum
points can be solved by identification of pseudo maximum and minimum points
at each step of the EMD analysis. Let δ be the minimum value of the two
smallest half time period of two neighboring maximum points (δ1) and minimum
points (δ2),

δ = min(δ1, δ2), (20)

which represents highest frequency fluctuation. For a neighboring local maximum–
minimum pair away from the end points with ∆ the time period in between (Fig. 6),
the integer p is calculated by

p =
1
2

[
∆
δ
− 1

]
, (21)

1250017-8
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(a)

(b)

(c)

(d)

Fig. 5. Time series containing a high frequency component and a low frequency component
without trend: (a) signal, (b) high frequency component, (c) low frequency component, and (d)
zero trend.
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Fig. 6. Pseudo maxima and minima generated by highest-frequency sampling for the upper
envelope: (a) local maximum away from the end point, and (b) local maximum next to the end
point. It is noted that similar procedure is adopted if the local minimum on the left side of the
pair.

where the bracket [ ] shows the integer part of the real number inside the bracket.
Pseudo maximum–minimum pairs (p-pairs) are identified with the time period,

δ =
∆

2p + 1
, (22)

between the two neighboring pseudo maximum and minimum. For the local maxi-
mum or minimum next to the end points (local maximum point as an example in
Fig. 6), the integer (q) is calculated by

q =
[
∆
δ

]
− 1.

Pseudo maximum and minimum points are identified between local maximum (or
minimum) and the end point with the time period,

δ =
∆

q + 1
, (23)

between the two neighboring pseudo maximum and minimum.
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(a)

(b)

(c)

(d)

Fig. 7. Identification of pseudo maximum and minimum points by highest frequency sampling:
(a) original signal [same as in Fig. 6(a)], (b) distribution of pseudo maxima (red circles) and
minima (blue circles), (c) upper (red) and lower (blue) envelopes, and (d) sifting.

The identified pseudo extrema have the following features: (a) the frequency
of the pseudo maximum (or minimum) points is nearly the same and not higher
than the highest frequency of original signal; (b) the total (i.e. original and pseudo)
maximum and minimum points must be alternatively distributed [Fig. 7(a)]; (3)
the pseudo maximum and minimum still keep the original values; and (4) the total

1250017-11
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(original and pseudo) extrema will be distributed uniformly [Fig. 7(b)]. With the
uniform distributed total extrema, the upper and lower envelopes can be objectively
identified [Fig. 7(c)]. After sifting, the high-frequency component is easily obtained
[Fig. 7(d)].

3.4. Elimination of mode mixing

The CEMD is conducted on the data shown in Fig. 5(a). Two IMFs and a residue
(zero line) are obtained (Fig. 8). Comparison between Figs. 8 and 5 shows the
capability of the CEMD to analyze the original time series, f(t) = f1(t) + f2(t),
shown in Fig. 5. During the comparison, the correlation coefficient (CC) and the
relative root mean square error (RRMSE),

RRMSE =

√∑N
i=1 [T (e)

i − T
(o)
i ]2√∑N

i=1 [T (o)
i − T̄ (o)]2

, (24)

are used with T
(o)
i and T

(e)
i being the time series of components (trend and compo-

nents/IMFs) of original and analyzed data, N the number of data points, and T̄ (o)

the mean of {T (o)
i }.

Fig. 8. CEMD analysis on the time series {xi} given in Fig. 5(a) with IMF-1 resembling the high-
frequency component f1(t) in Fig. 5(b), IMF-2 resembling the low-frequency component f2(t), and
no trend and IMF-2 resembling. It clearly shows the capability of eliminating mode mixing, end
effect, and detrend uncertainty.
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The original two components (f1 and f2) in Fig. 5 are fully recovered by the
CEMD. The IFM-1 [i.e. c1(t)] resembles f1(t) with CC of 0.92 and RRMSE of 0.44.
The IFM-2 [i.e. c2(t)] resembles f2(t) in Fig. 5 with CC of 1.0 and RRMSE of 0.03.
Moreover, the CEMD provides the one-to-one correspondence of the components
between original analyzed data: c1(t) to f1(t), c2(t) to f2(t), zero trend to zero trend.

4. Trend Determination

4.1. Signal with a trend

A time series consisting of a quadratic trend and four harmonics,

x(ti) = f0(ti) +
3∑

k=1

fk(ti), f0(ti) = A0t
2
i ,

fk(ti) = Ak sin(ωkti + ϕk), k = 1, 2, 3

xi = x(ti), ti = (i − 1)∆t, t1 = 0,

tN = 0.9 s, ∆t = 0.0018 s, N = 501,

(25)

is used to demonstrate the end effect in EMD. The parameters in (25) are given in
Table 1. Figure 9 shows the time series of {xi} with the two end points with the
values of

x1 = 0.1096, xN = 0.4495. (26)

Table 1. Values of parameters used in Eq. (25).

k 0 3 2 1

Ak 0.5 1.0 0.5 0.20
ωk 6π (3 Hz) 40π (20 Hz) 100π (50Hz)
ϕk 0.01 0 0.005

Fig. 9. Time series {xi} represented by Eq. (25).

1250017-13
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Figure 10 shows the trend and harmonics of the data shown in Fig. 9: f0i = f0(ti),
f1i = f1(ti), f2i = f2(ti), and f3i = f3(ti). Obviously, only f0(ti) represents the
trend of the signal {xi}. The trend of {xi} varies from f01 to f0N ,

f01 = 0, f0N = 0.405. (27)

The CEMD is conducted on the time series {xi} (shown in Fig. 9) to obtain three
IMFs and a trend (Fig. 11). Obviously, IMFs well correspond to the harmonics, ci(t)
versus fi(t), with high CCs (0.9992 between c1 and f1, 0.9836 between c2 and f2,
0.9992 between c3 and f3, 0.9890 between two trends) and low RRMSEs (0.1834
between c1 and f1, 0.082 between c2 and f2, 0.0441 between c3 and f3, 0.172 between
two trends).

4.2. Existence of noises

Comparison between trends from the original data [i.e. the quadratic trend f0(ti)],
the CEMD (Fig. 11) clearly shows perfect detrend using CEMD and false detrend

Fig. 10. Components of time series {xi}: a quadratic trend and four harmonics given by Eq. (25).

1250017-14
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Fig. 11. CEMD on the signal shown in Fig. 9: (a) original time series, (b) IMF-1, (c) IMF-2,
(d) IMF-3, and (e) trend. Comparison between Figs. 11 and 10 shows the capability to reduce the
mode mixing, end effect, and detrend uncertainty.

using the traditional EMD and EEMD. Since the observational data contain
errors, four time series sm(ti) (m = 1, 2, 3) are constructed each by a signal
[components of (25)] and random noise n(ti) produced by a pseudorandom number
generator with the amplitude of 0.1,

s1(ti) = f0(ti) + f1(ti) + f2(ti) + n(ti),

s2(ti) = f0(ti) + f1(ti) + f2(ti) + f3(ti) + n(ti), (28)

s3(ti) = f0(ti) + f1(ti) + f2(ti) + f3(ti) + f4(ti) + n(ti).

Here, the time step and the total number of data (N) is the same as shown in (25).
Figure 12 shows the three time series, sm(ti).

1250017-15
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Fig. 12. Time series of three noisy signals (s1, s2, s3).

Figure 13 also shows the capability of CEMD in detrend with high positive CCs,

CC1 = 0.984, CC2 = 0.989, CC3 = 0.996, (29)

and low RRMSEs,

RRMSE1 = 0.287, RRMSE2 = 0.359, RRMSE3 = 0.502. (30)

The ratio of CPU with EEMD-1k versus CEMD is 310 (77.5 s versus 0.25 s) for
analyzing s1(t), 270 (80 s versus 0.296 s) for analyzing s2(t), and 220 (79.1 s versus
0.359 s) for analyzing s3(t). The ratio of CPU with EEMD-5k versus CEMD is 1548
(387 s versus 0.25 s) for analyzing s1(t), 1365 (404 s versus 0.296 s) for analyzing
s2(t), and 1103 (396 s versus 0.359 s) for analyzing s3(t).
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Fig. 13. Detrend of three noisy signals (s1, s2, s3) by CEMD. Here, in each panel, the bold
dashed-dotted curve is the trend of signal, f0(t). The solid curve is the trend identified using
CEMD.

5. Conclusions

(1) Mode mixing, end effect, and related detrend uncertainty in the traditional EMD
and EEMD can be eliminated using the new method (i.e. CEMD), which has been
established on the base of (a) compact difference scheme concepts [Chu and Fan
(1998), (1999)] and (b) identification of uniformly distributed pseudo maximum and
minimum points using highest-frequency sampling. Determination of either upper
or lower envelope becomes a mathematical problem to solve a set of 2N algebraic
equations of the values and first derivatives for each envelope at all N data points
(including the two end points).
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(2) The CEMD uses hybrid Hermitain polynomials rather than the cubic spline.
A set of 2N algebraic equations (ui, u′

i) for the upper envelope (same for the lower
envelope) are obtained from more realistic conditions such as zero third derivative
and use of weighted regressed first derivative at the end points. No extending points
are needed.

(3) Capability of the CEMD for eliminating mode mixing, end effect, and
detrend uncertainty is demonstrated using a time series consisting of a quadratic
trend and four harmonics. The CEMD can recover the original signal really well
with low RRMSEs. Furthermore, the capability of the CEMD is not affected by the
existence of random noises.
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