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Abstract Given are tight upper and lower bounds for the minimum rank among
all matrices with a prescribed zero-nonzero pattern. The upper bound is based
upon solving for a matrix with a given null space and, with optimal choices,
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1 Introduction

If we know only the zero (nonzero) pattern of a real matrix, what ranks are
possible? Given only the pattern, there is a large set of matrices, and the maximum
rank (denoted by MR) possible has long been well understood [2]. It can be viewed,
for example, as the minimum number of lines that cover all the nonzeros, or the
greatest length of a transversal (equivalently the largest square submatrix that has a
nonzero term in its determinant). If the minimum rank (denoted by mr) among our
set of matrices is known, then all possible ranks are known, as every value of rank
between mr and MR can occur. This is easily seen by changing a minimum rank
matrix of the pattern to a maximum rank one, one entry at a time, and observing the
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ranks that occur. Since a rank 1 perturbation can change the rank by at most one,
all intermediate ranks must appear along the way (perhaps with repeats and perhaps
with decreases, as well as increases). Thus, understanding mr (upon which we focus
here) is equivalent to understanding all possible ranks. Unfortunately, mr is quite a
subtle problem, in general, as many have informally noted. We exhibit here natural
lower and upper bounds on mr. The lower bound is quite simple (though we make
important observation about it), while the upper bounds are more subtle. Often the
lower and an upper bound coincide, rendering mr clear. However, we note a 7-by-7
example (the smallest known), in which they differ. In this case mr coincides with an
upper bound. Other examples, indicating important limitations on our bounds are
also given.

2 Background and Notation

By a pattern we mean an m-by-n array P of 0′s and ∗′s in which the ∗′s are
interpreted as nonzero real numbers whose values are, otherwise, free. Thus, we
associate with P the set of all m-by-n real matrices A = (aij) in which aij = 0 if and
only if the i, j entry of P is a 0. Benignly, we use P both for the formal pattern and
to denote the collection of such matrices. Thus we might write A ∈ P to indicate
that A has the indicated zero (nonzero) pattern. Much of what we say will also be
valid over other fields, but historically, the qualitative interest in matricial properties
associated with a pattern has centered upon the real field.

By mr(P ) (resp; MR(P )) we mean min
A∈P

rank(A) (resp; max
A∈P

rank(A)) the “min-

imum rank” (resp; “maximum rank”) of P . As noted, all ranks between mr(P ) and
MR(P ) occur in P , and MR(P ) is easily understood. Thus we concentrate upon
mr(P ).

By a k-triangle we mean a k-by-k pattern (or matrix) that is permutation equiv-
alent to an upper triangular pattern with nonzero diagonal. In a k-triangle, we call
the nonzeros that are on this diagonal the “key-nonzeros”, and the zeros that end
up below the diagonal, after permutation, the “key-zeros”. The “maximum triangle
size” is the maximum k-triangle that occurs as a subpattern of a given pattern. We
will view “subpatterns” in the same formal way as is standard for submatrices. For
example,  ∗ 0 ∗

∗ 0 ∗
0 ∗ ∗


contains as a subpattern a 2-triangle in rows and columns 1 and 3, (and also in rows 1
and 3 and columns 2 and 3); the 3,1 entry is a “key-zero” and the 1,1 and 3,3 entries
are “key-nonzeros”.
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We close this section by noting, for reference, several simple properties of mr, of
a pattern argument, that resemble those of rank. It should be noted that some basic
properties of rank seem to have no natural generalization to mr (which is one reason
to note the ones that do). For example, if A is an m-by-n matrix of rank k, then
there exist k (particular) linearly independent rows of A and a (particular) k-by-k
submatrix of full rank (a k-by-k submatrix that determines the rank). For patterns,
the analogous statements are not valid. For example, if mr(P ) = k, there need be no
particular k-rowed submatrix for which mr is k. (This will be clear from examples to
be given later.) Also, there is no analog of subadditivity for mr, with regard to two
patterns of the same size.

We first note that mr for a subpattern provides a lower bound for mr of a pattern,
just as with rank.

Proposition 2.1. If Q is a subpattern of an m-by-n pattern P , then

mr(Q) ≤ mr(P ).

Proof. For any matrix A ∈ P , we have rankB ≤rankA if B is a submatrix of
A in the positions of Q. So, mr(Q) ≤ rankB ≤ rankA. Now, choosing A so as to
achieve mr(P ) completes the proof. 2

Also, as with rank, removal of 0 or duplicate lines from a pattern does not change
mr.

Proposition 2.2. If P is an m-by-n pattern and P̂ is the (m−1)-by-n (m-by-(n−1))
pattern resulting from removal of an all zero row (column) or a row (column) that is
identical to another row (column), then mr(P ) = mr(P̂ ).

Proof. The inequality mr(P ) ≥ mr(P̂ ) follows from proposition 2.1. Now, if
Â ∈ P̂ achieves mr(P̂ ), then return of the zero line, or the duplicate line with actual
numerical values duplicated, to Â to give A ∈ P , shows that mr(P ) ≤ mr(P̂ ) and
completes the proof. 2

In obtaining upper bounds for mr, the following can be helpful.

Proposition 2.3. Suppose that, partitioned by rows (columns)

P =

[
... P1 ...
... P2 ...

]
, or P =


...

...
P1 P2
...

...

 ,

then mr(P ) ≤ mr(P1) + mr(P2).
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Proof. Apply the corresponding inequality for rank to mr-achieving matrices
A1 ∈ P1 and A2 ∈ P2 and note that[

... A1 ...

... A2 ...

]
∈ P.

2

With the partitioning in proposition 2.3, it follows from proposition 2.1 and
proposition 2.3 that

max{mr(P1), mr(P2)} ≤ mr(P ) ≤ mr(P1) + mr(P2),

and, in particular, that
mr(P ) ≤ mr(P1) + k,

in which k is the number of rows (columns) of P2.
Equality can occur in proposition 2.3, for example, in case there is a line with

just one nonzero.

Proposition 2.4. Suppose that,

P =


∗ ......
0
... P1

0

 .

Then mr(P ) = 1 + mr(P1).

Thus, if there is a line of P with only one nonzero, then mr(P ) = 1 + mr(P̃ ),
in which P̃ is the subpattern complementary to the lone nonzero. Of course, equality
also occurs for “direct sums”.

Proposition 2.5. If P is an m-by-n pattern, while P1 is m1-by-n1 and P2 is m2-by-
n2, with m = m1 + m2 and n = n1 + n2,

P =

 P1 0

0 P2

 ,

then mr(P ) = mr(P1) + mr(P2).

It is also important that P1 and P2 are non-overlapping and that any row of P
among those of P1 is (combinatorially) orthogonal to any for P2.
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It is not generally a simple matter to replace the problem of mr(P ) by that of
minimum rank of a lower dimensional pattern through any kind of elimination process
(with the exception of proposition 2.4): However, replacement by several minimum
rank problems is, in principle, possible. As this is not often fruitful, we only give an
indicative example.

Suppose that

P =


∗ ∗ 0 ∗ ∗
∗ ∗ ∗ 0 ∗
0
... P1

0

 .

For any given A ∈ P , we might use the (nonzero) 1, 1 entry to eliminate the 2, 1 entry.
However, the zero/nonzero status of 2, 2 and 2, 5 entries are then ambiguous, though
if nonzero, they are arbitrary. Thus,

mr(P ) = 1 + min{mr(P2), mr(P ′2), mr(P5), mr(P ′5)},

in which

P2 =

[
∗ ∗ ∗ 0

P1

]
, P ′2 =

[
0 ∗ ∗ 0

P1

]
,

P5 =

[
∗ ∗ ∗ ∗

P1

]
, P ′5 =

[
0 ∗ ∗ ∗

P1

]
.

In more complicated situations, care must be taken to avoid new patterns with
correlated entries if the row used to eliminate has nonzeros where rows, in which
elimination occurs, have zeros.

3 Upper Bounds for Minimum Rank

In order that an m-by-n matrix A have rank ≤ n−k, the orthogonal complement
of the rows of A must be at least k-dimensional, and, thus must have a basis of at
least k-vectors. Here, for a given pattern P , we consider the inverse-problem of our
problem. We first prescribe a collection of linearly independent vectors and then
attempt to design a matrix of the pattern whose null space includes these vectors. If
successful, this immediately gives an upper bound for mr(P ). Gradual refinement of
this idea leads to increasingly subtle bounds.

In order that (linearly independent) vectors y1, y2, ..., yk be in the null space of
A, a certain homogeneous linear system, whose coefficients arise from entries of the
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y′s, must be satisfied by the nonzero entries of A. Fixing the y′s we regard the entries
of A as variables. If we wish that A ∈ P , there is a variable for each nonzero of P ,
and we are interested in the existence of a “totally nonzero” (every variable nonzero)
solution. Of course, a good choice of the y′s is important, but what is the form of
this coefficient matrix?

Let xP be the vector of variables associated with the nonzeros of pattern P ,
numbered left-to-right within rows, beginning with the first row. Call the coefficient
matrix of the homogeneous linear system that expresses that y1, y2, ..., yk are in the
null space of A ∈ P , Bk = Bk(y1, y2, ..., yk). For example, if

P =

 ∗ ∗ 0
∗ ∗ ∗
∗ 0 ∗

 =

 x11 x12 0
x21 x22 x23

x31 0 x33



and y1 =

 y11

y12

y13

, y2 =

 y21

y22

y23

, for k = 2, we have

B2 =



y11 y12 0 0 0 0 0
0 0 y11 y12 y13 0 0
0 0 0 0 0 y11 y13

y21 y22 0 0 0 0 0
0 0 y21 y22 y23 0 0
0 0 0 0 0 y21 y23


.

Our convention is that the initial n rows of Bk correspond to y1, etc, Thus Bk

has kn rows if P is m-by-n and as many columns as the number of nonzeros in P .
If BkxP = 0 has a totally nonzero solution, then there is a matrix in P whose null
space includes y1, y2, ..., yk; if y1, y2, ..., yk are linearly independent, then the rank of
this matrix is at most n− k, and mr(P ) ≤ n− k.

Matrices with totally nonzero null vectors have been studied (for a different
purpose) in [1]. One of the equivalent conditions found there is that B is such a
matrix if and only if the deletion of no single column of B decreases its rank. Here
we call such a matrix column rank stable. Of course row rank stable, then, also has a
natural meaning and characterizes the existence of a left, totally nonzero null vector.
The two concepts are not equivalent.

We summarize the above discussion in the following theorem. The first four state-
ments are obviously equivalent, given the discussion and notation, and the equivalence
of (4) and (5) follows from lemma 7(d) of [1]. See [1] for other equivalent statements.

Theorem 3.1. For an m-by-n pattern P , the following statements are equivalent:
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(1) mr(P ) ≤ n− k;

(2) there is an A ∈ P such that rankA ≤ n− k;

(3) there exist A ∈ P and k linearly independent vectors y1, y2, ..., yk such that yi

lies in the null space of A, i = 1, ..., k;

(4) there exist linearly independent vectors y1, y2, ..., yk such that Bk(y1, y2, ..., yk)xp =
0 has a totally nonzero solution; and

(5) there exist y1, y2, ..., yk, linearly independent, such that Bk(y1, y2, ..., yk) is col-
umn rank stable.

It should be noted that item (5) can give the precise minimum rank if a correct
collection of y′s is chosen; the theorem may be viewed as a duality between minimum
rank and maximum nullity. As we shall see this provides a powerful tool in the analysis
of mr. It is very important that the form of Bk is independent of the particular y′s
and that, if there are sufficiently many y′s, the column rank stable property forces
the collection of subvectors in certain positions to be linearly dependent. We may
use Theorem 3.1 to obtain, first a very simple upper bound for mr(P ). Let r1, ..., rm

be the numbers of nonzeros in the rows of the m-by-n pattern P , listed in increasing
order: r1 ≤ r2 ≤ ... ≤ rm (not according to row number). Similarly c1 ≤ c2 ≤ ... ≤ cn

are the numbers of nonzeros in the columns. Of course, P is permutation equivalent
to a pattern in which the subscripts on the r′s and c′s also refer to the row (column)
number. If P has a lot of nonzeros, it is (roughly) easier to find a low rank matrix in
P , and it is this intuition that we wish to quantify.

To this end, we say that a collection of k vectors y1, y2, ..., yk ∈ Rn is super-linearly
independent (SLI) if every collection of k vectors, formed by taking subvectors of them
in any k specific positions, is linearly independent. Of course, k ≤ n and it follows
that subvectors formed from more than k positions are linearly independent. Since
totally positive matrices of any size (e.g. n-by-k) are known to exist (and in any event
super-linear independence is generic), we have the following fact,

Lemma 3.2. For each k ≤ n, there exist k SLI vectors in Rn.

Suppose now that for a given pattern P , r1 = k +1 ≥ 2, and that y1, y2, ..., yk are
SLI. Then, Bk(y1, y2, ..., yk) is full row rank (rankBk = kn) and is column rank stable.
This is easily seen because the contiguous columns of B associated with a given row of
P are all 0′s, except for a k-by-ri submatrix that is full row rank; all other entries of
Bk in the rows of this block are 0. Since ri ≥ r1 > k and because of the SLI property,
any single-column-deleted submatrix also has rank k. Thus the rows of Bk and of any
single-column-deleted submatrix are linearly independent. Since Bk is column rank
stable and y1, y2, ..., yk are linearly independent, using theorem 3.1 parts 1 and 5, we
may conclude
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Corollary 3.3. If P is an m-by-n pattern, then

mr(P ) ≤
{

n + 1− r1

m + 1− c1

in which r1 (resp, c1) is the smallest number of nonzeros in a row (resp, column) of
P .

Of course, the bound depending upon c1 is proven, for example, by replacing P
by its transpose and applying the bound based upon r1. It is possible that one gives
a smaller lower bound than the other, as in, for example, the pattern: ∗ ∗ 0

0 ∗ ∗
0 ∗ ∗


With some simple observations, corollary 3.3 may be noticeably refined with some

simple observations. The point of corollary 3.3 is that if all the rows of a pattern have
many nonzeros, then at the minimum, there is noticeable column rank deficiency. By
partitioning P by groups of rows, additional insight might be gained. Let ... P1 ...

... ... ...

... Pp ...


in which Pi is mi-by-n, i = 1, ..., p and

∑
mi = m. Of course, it is clear, using 2.3

that

Lemma 3.4. We have

mr(P ) ≤
p∑

i=1

mr(Pi).

The potential advantage of lemma 3.4 is that, not only may either bound in
corollary 3.3 be used on each strip P1, ..., Pp, but within each strip duplicate or zero
columns may be deleted ( as may duplicate or zero rows/columns in the entire pat-
tern). For example, if

P =


∗ 0 0 0
0 ∗ ∗ 0
0 0 ∗ ∗
0 ∗ 0 ∗

 ,

then corollary 3.3 gives only the bound mr(P ) ≤ 4, but with lemma 3.4, mr(P ) ≤ 3
is seen by letting P1 be the first row and P2 be the rows 2, 3, 4.
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Sample general applications follow.
Given r1 ≤ ... ≤ rm and c1 ≤ ... ≤ cn for the m-by-n pattern P , let

dr
i = ri − i and dc

j = cj − j, i = 1, ...m, j = 1, ..., n.

Then let
dr = max

1≤i≤m
dr

i and dc = max
1≤j≤n

dc
j .

Consider, for example, the rows. Suppose that they are numbered so that ri is
the number of nonzeros in row i and that dr = dr

i for a particular i. Then let P1 be
the first i− 1 rows and P2 the remaining rows

P =

[
... P1 ...
... P2 ...

]
.

Of course mr(P1) ≤ i− 1, and, by corollary 3.3, mr(P2) ≤ n− ri + 1, so that by
lemma 3.4, mr(P ) ≤ i − 1 + n − ri + 1 = n − (ri − i) = n − dr

i = n − dr. As, again,
the same argument applies to the transpose of P , we have

Theorem 3.5. For an m-by-n pattern P ,

mr(P ) ≤
{

n− dr

m− dc.

This, of course, is a formal improvement upon corollary 3.3. Suppose now that
P again is partitioned by block rows ... P1 ...

... ... ...

... Pp ...


and let P̃i be Pi with all zero lines and duplicate rows/columns removed. If P̃i is
m̃i-by-ñi, we have

Corollary 3.6. Let P be a pattern partitioned as above. Then

mr(P ) ≤
p∑

i=1

min{ñi − dr(P̃i), m̃i − dc(P̃i)}.
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Example. Let

P =



∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
0 ∗ 0 ∗ ∗ 0
0 ∗ ∗ 0 ∗ ∗
0 0 ∗ ∗ 0 ∗


.

The best that may be said from corollary 3.3 and theorem 3.5 is that mr(P ) ≤ 4.
However, partitioning with P1 the first three and P2 the last three rows gives mr(P ) ≤
mr(P1) + mr(P2) ≤ 1 + 2 = 3, which may be seen to be the minimum rank using
ideas of the next section.

4 A lower bound for minimum rank

An important subtlety of the study of minimum rank is that mr (of a pattern)
obeys some of the same properties as rank and not others. For example, if a matrix has
rank k, there are k particular rows that are necessarily independent. If mr(P ) = k,
not only is there is no reason there should exist a k-rowed submatix G of P such that
mr(G) = k, but it can occur that there not be one (see section 5). However, if P does
have a subpattern Q for which mr(Q) = k, then mr(P ) ≥ k. Because every A ∈ P
has only one nonzero term in its determinant when P is a k-triangle, we have

Lemma 4.1. If P is a k-triangle, mr(P ) = k.

Interestingly, the converse is also valid.

Theorem 4.2. Let P be an m-by-n pattern, m ≤ n. Then mr(P ) = m if and only
if P contains an m-triangle.

Proof: we need only verify the forward implication. Assume mr(P ) = m. As-
suming without loss of generality, that P has no 0 columns, it follows that c1(P ) = 1.
If c1(P ) were ≥ 2, then by corollary 3.3, mr(P ) would be less than m. Now suppose,
via permutation equivalence, that the 1,1 entry of P is a ∗ and that it is the only ∗ in
the first column. Then, mr(P ) = 1 + mr(P1) in which P1 is the result of deletion of
the first row and column from P . Thus, P1 is (m−1)-by-(n−1) and mr(P1) = m−1.
By induction (initial cases are easily checked), P1 contains an (m − 1)-triangle. Re-
turn of the first column of P , and the appropriate entries in the first row, extends
this (m− 1)-triangle to an m-triangle lying in P . 2

Since mr(Q) ≤ mr(P ) whenever Q is a subpattern of P , we have
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Theorem 4.3. If P is an m-by-n pattern that contains a k-triangle, k ≤ m, n, then

k ≤ mr(P ).

For patterns with small m, n (e.g ≤ 5), the converse may be verified exhaustively.
As we will see in the next two sections, the converse is not valid in general, even for
square patterns and even for k = n− 1. The examples are, likely, minimal.

5 A Constraining Example

For many patterns, the lower bound of section 4 and an upper bound from section
3 coincide, so that minimum rank is determined. In fact, the minimum rank is often
the maximum triangle size. However, this is not always so, and our first purpose
in this section is to exhibit an example (7-by-7, likely the smallest). Ron Holzmann
suggested trying this pattern, and we thank him for the suggestion.

1m 6m 5m
7m2m 3m
4m

""
""

�
�
�

�
�
�

��

T
T
T

A
A
A

bb
bb

The projective plane of order 2 involves the incidence relationship between 7
points and 7 “lines”. As every point lies on 3 lines and every line is determined by
just three points, the incidence matrix is a 0− 1, 7-by-7 matrix with row and column
sums 3. Our pattern is the complement of this incidence matrix, ie, the 0′s of the
incidence matrix become ∗′s (nonzeros) and the 1′s become zeros. Specifically, our
pattern P may be presented (up to permutation of rows and columns) as

P =



∗ ∗ ∗ 0 ∗ 0 0
0 ∗ 0 ∗ ∗ ∗ 0
0 0 ∗ 0 ∗ ∗ ∗
∗ 0 ∗ ∗ 0 ∗ 0
0 ∗ ∗ ∗ 0 0 ∗
∗ 0 0 ∗ ∗ 0 ∗
∗ ∗ 0 0 0 ∗ ∗


,

with 4 nonzeros in every row and column.
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An inspection of P shows that it includes (many) 3-triangles, but no 4-triangles.
thus, 3 ≤ mr(P ). On the other hand, since r1 = c1 = 4 (4 nonzeros in every line),
mr(P ) ≤ 7 − 4 + 1 = 4. No partitioning of P yields a better estimate; in fact, any
partition of the rows (columns) into two groups yields a higher sum of minimum ranks
estimate. This is not surprising as all collections of 3 rows contain a 3-triangle. In
any event, we have

3 ≤ mr(P ) ≤ 4.

Which is it: 3 or 4? Our purpose is to show mr(P ) = 4, by ruling out the possibility
of 3. Suppose that A ∈ P and rank A = 3. Because the first 3 rows of P contain (two,
non-overlapping) 3-triangles, the first 3 rows of A must be linearly independent, so
that each of rows 4 through 7 is a linear combination of rows 1 through 3. We write
this down carefully, keeping in mind the zeros and nonzeros, to see what it means.

Since rank is unchanged by diagonal equivalence,we may suppose that the first 3
rows of A appear as  1 a12 a13 0 1 0 0

0 1 0 1 a25 1 0
0 0 1 0 a35 a36 1

 ,

in which a12, a13, a25, a35 and a36 are nonzeros, as we may normalize some entry in
each column (a bit more normalization is possible, but not convenient).

Since row k of A, k = 4, ..., 7, is a unique linear combination of the first 3 rows,
we let xk, yk and zk, respectively, be the coefficients of rows 1, 2 and 3 in the linear
combination that gives row k, k = 4, ..., 7. An inspection of these linear combinations
and the zero/nonzero pattern of P yields that z4, x5, and y7 are all 0, while the
remaining coefficients must be nonzeros. For example z4 is the last entry of row 4
(because the last entries of rows 1 and 2 are 0), which is 0. On the other hand y5 is
the second entry of row 5 (because x5 is 0), which is a nonzero, so that y5 must be
nonzero.

Now, to explain the remaining zeros in row 4 through 7, there are homogeneous
linear relations involving the x, y and z with a given subscript. These are

a12x4 + y4 = 0 x4 + a25y4 = 0
a25y5 + a35z5 = 0 y5 + a36z5 = 0
a13x7 + z7 = 0 x7 + a35z5 = 0

and a12x6 + y6 = 0 a13x6 + z6 = 0 y6 + a36z6 = 0.
Written as linear systems, these become[

a12 1
1 a25

] [
x4

y4

]
=

[
0
0

]
,

[
a25 a35

1 a36

] [
y5

z5

]
=

[
0
0

]
,
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 a12 1 0
a13 0 1
0 1 a36


 x6

y6

z6

 =

 0
0
0

 ,

[
a13 1
1 a35

] [
x7

z7

]
=

[
0
0

]
.

If any of the coefficient matrices were nonsingular, the indicated x′s, y′s and z′s
could not be totally nonzero. So, we conclude that the determinant of each matrix
must be 0. This means:

a12a25 = 1
a25a36 = a35

−a13a36 = a12

a13a35 = 1

.

Substituting the equations for a12 and a35 into the other two equations, gives

a13a36a25 = −1, and a13a25a36 = 1.

Since 1 6= −1, this contradiction shows that mr(P ) = 3 is not the case. Thus,
mr(P ) = 4. We note that this contradiction occurs for any field other than GF2;
indeed, for GF2 there is no contradiction and the minimum rank would be 3. The
(unique) 0, 1 matrix of the pattern has rank 3.

It is interesting to view this example in light of theorem 4.2. If rank 3 were
possible, B4(y1, y2, y3, y4) would be 28-by- 28. If the y′s were SLI, then B4 would be
full rank and could not be column rank stable. So the y′s could not be SLI. In fact,
because of the block structure of B4 (permutable to a direct sum of 7 4-by-4’s, each
of which corresponds to subvectors, of 4 components, of the y′s), each collection of
4-component subvectors of y1, y2, y3, y4 that corresponds to the nonzeros in a row of P
would have to be linearly dependent. When this occurs, it can not both happen that
the y′s are linearly independent and B4 is column rank stable ( because of theorem
3.5 and because we have ruled out rank 3 for this pattern). We do not know if linear
dependence for these 7 collections without linear dependence of the 4 y′s is possible,
but it appears not over, say, the real field. Apparently it is possible over GF2.

6 Minimal Rank n− 1

It is an interesting question just to characterize those patterns for which mr =
n − 1. Of course, for such m-by-n, we may suppose that m ≥ n because of theorem
4.2. But, even for m = n (and k = n− 1), the converse of theorem 4.3 is not valid, as
we shall see here.
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It will be important to recognize when there is an (n − 1)-triangle present. If
there is a row with just one nonzero, this problem (and that of mr by proposition 2.4)
reduces to that in a smaller pattern. If m = n, there cannot be an (n− 1)-triangle if
there are at least 3 nonzeros in each row. Thus, we assume, here, that r1, the minimum
number of nonzeros in a row is exactly 2. To look for (n− 1)-triangles, we introduce
a notion of “row gradual” for a pattern P . This notion could be parameterized by
the size of the triangle (and be initiated with a row with more than 2 nonzeros), but
we focus upon n− 1 and do not pursue the fairly obvious generalization here.

Let P be an m-by-n pattern, m ≥ n, and let Ri denote the set of column indices
of the nonzero positions in row i.

The pattern is said to be row gradual if (a) there is at least one row (i1) with
exactly 2 nonzeros and (b) there is a sequence of rows i1, i2, ..., in−1 such that, for
S1 = Ri1 and Sj+1 = Sj ∪ Rij+1 , j = 1, ..., n − 2, we have |Sj | = j + 1. A notion of
“column gradual” is analogous.

We now have three related concepts: mr ≥ n − 1, the existence of an (n − 1)-
triangle and the notion of row (column) gradual. The question is: what are the
relationships among them and what role does the value of m relative to n play?
Several observations are clear.

Proposition 6.1. If the pattern P is row gradual, then P contains an (n−1)-triangle

We note that the key nonzeros of this triangle are indicated by the indices added
by each successive Sj , along with one of the indices in Ri1 . For this m ≥ n− 1 is all
that is necessary. Of course if P is row gradual, any row and/or column permutation
of P is as well. From proposition 6.1 and theorem 4.3, we then have

Corollary 6.2. If the pattern P is row gradual, then mr(P ) ≥ n− 1.

The above corollary may be viewed as a converse to theorem 3.5.
Conversely to proposition 6.1, we have

Proposition 6.3. If m ≥ n− 1, P is an m-by-n pattern and every row of P has at
least 2 nonzeros, then, if P contains an (n− 1)-triangle, then P is row gradual.

Proof. Since the triangle must be in a particular (n− 1) rows, we may reduce to
the case m = n − 1, but, then we may permute the rows and columns of P so that
the triangle is lower triangular and lying in the last n− 1 columns. The row gradual
property is now apparent. 2

We now know that row gradual is equivalent to the existence of an (n−1)-triangle
(assuming no reduction of the mr problem due to a line with only one nonzero). It
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follows that row gradual and column gradual are equivalent in the nondegenerate
case. But, how does this compare to the patterns of minimal rank n− 1? In an effort
to prove that patterns of minimum rank n − 1 always have an n − 1 triangle, we
encountered the following counterexample, when n = 9.

Let the 9-by-9 pattern

P =



x x 0 0 0 0 0 0 0
x x 0 0 0 0 x 0 0
0 x 0 0 0 0 x x 0
0 0 x x 0 0 0 0 0
0 0 x x 0 0 0 x 0
0 0 0 x 0 0 0 x x
0 0 0 0 x x 0 0 0
0 0 0 0 x x 0 0 x
0 0 0 0 0 x x 0 x


.

Inspection of P shows that it is not row (or column) gradual; thus P contains no
(n− 1)-triangle (i.e 8-triangle). However, mr(P ) = 8. We summarize the verification
that mr(P ) = 8.

Using the 1,1 entry (resp. the 4,3 and 7,5 entries) to eliminate the 1,2 and 2,1
entries (resp. the 4,4 and 5,3 entries, the 7,6 and 8,5 entries) leaves a family of
patterns in which the 2,2 entry (resp. 5,4 and 8,6 entries) is (each independently)
either 0 or free nonzero. The mr of each these patterns is 3 plus that of a certain
6-by-6 subpattern lying in rows 2, 3, 5, 6, 8, 9 and columns 2, 4, 6, 7, 8, 9:

y1 0 0 u1 0 0
x1 0 0 z1 v1 0
0 y2 0 0 u2 0
0 x2 0 0 z2 v2

0 0 y3 0 0 u3

0 0 x3 v3 0 z3


,

in which y1, y2, y3 are each independently 0 or freely nonzero and all other entries
freely and independently nonzero. Using xi to eliminate zi, i = 1, 2, 3, replaces ui by
u′i, i = 1, 2, 3, which are either 0 or freely nonzero, except that not both u′i and yi

may be 0. Now using xi to eliminate yi and then vi, i = 1, 2, 3 leaves

0 0 0 u′1 v′1 0
x1 0 0 0 0 0
0 0 0 0 u′2 v′2
0 x2 0 0 0 0
0 0 0 v′3 0 u′3
0 0 x3 0 0 0
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in which u′i and v′i cannot be simultaneously 0, but are otherwise free. The mr of this
family of pattern is then 3 plus that of u′1 v′1 0

0 u′2 v′2
v′3 0 u′3

 .

But for this, then, mr is easily seen to be 2, so that for P it is 8.
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