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Threshold Rules for Online Sample Selection
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Abstract

We consider the following sample selection problem. We observe in an online fashion a sequence of
samples, each endowed by a quality. Our goal is to either select or reject each sample, so as to maximize
the aggregate quality of the subsample selected so far. There is a natural trade-off here between the rate
of selection and the aggregate quality of the subsample. We show that for a number of such problems
extremely simple and oblivious “threshold rules” for selection achieve optimal tradeoffs between rate of
selection and aggregate quality in a probabilistic sense. In some cases we show that the same threshold
rule is optimal for a large class of quality distributions and is thus oblivious in a strong sense.
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1 Introduction

Imagine a heterogeneous sequence of samples from an array ofsensors, having different utilities reflecting
their accuracy, quality, or applicability to the task at hand. We wish to discard all but the most relevant or
useful samples. Further suppose that selection is performed online — every time we receive a new sample
we must make an irrevocable decision to keep it or discard it.What rules can we use for sample selection?
There is a tradeoff here: while we want to retain only the mostuseful samples, we may not want to be overly
selective and discard a large fraction. So we could either fixa rate of selection (the number of examples we
want to retain as a function of the number we see) and ask for the best quality subsample, or fix a desirable
level of quality as a function of the size of the subsample andask to achieve this with the fewest samples
rejected.

An example of online sample selection is the following “hiring” process that has been studied previously.
Imagine that a company wishing to grow interviews candidates to observe their qualifications, work ethic,
compatibility with the existing workforce, etc. How shouldthe company make hiring decisions so as to
obtain the higest quality workforce possible? As for the sensor problem, there is no single correct answer
here. Rather a good hiring strategy depends on the rate at which the company plans to grow—again there
is a trade-off between being overly selective and growing fast. Broder et al. [7] studied this hiring problem
in a simple setting where each candidate’s quality is a one-dimensional random variable and the company
wants to maximize the average or median quality of its workforce.

In general performing such selection tasks may require complicated rules that depend on the samples
seen so far. Our main contribution is to show that in a number of settings an extremely simple class of rules
that we call “threshold rules” is close to optimal on average(within constant factors).

Specifically, suppose that each sample is endowed with a “quality”, which is a random variable drawn
from a known distribution. We are interested in maximizing the aggregate quality of a set of samples, which
is a numerical function of the individual qualities. Suppose that we want to select a subset ofn samples
out of a total ofT seen. LetQ∗

T,n denote the maximum aggregate quality that can be achieves bypicking
the bestn out of theT samples. Our goal is to design an online selection rule that approximatesQ∗

T,n in
expectation over theT samples. We use two measures of approximation — the ratio of the expected quality
achieved by the offline optimum to that achieved by the onlineselection rule,E[Q∗

T,n]/E[QT,n], and the
expectation of the ratio of the qualities of the two rules,E[Q∗

T,n/QT,n]. Here the expectations are taken
over the distribution from which the sample is drawn. The approximation ratios are always at least1 and
our goal is to show that they are bounded from above by a constant independent ofn. In this case we say
that the corresponding selection rule is optimal.

To put this in context, consider the setting studied by Broder et al. [7]. Each sample is associated with a
quality in the range[0, 1], and the goal is to maximize the average quality of the subsample we pick. Broder
et al. show (implicitly) that if the quality is distributed uniformly in [0, 1] a naturalselect above the mean
rule is optimal to within constant factors with respect to the optimal offline algorithm that has the same
selection rate as the rule. The same observation holds also for theselect above the medianrule. Both of
these rules are adaptive in the sense that the next selectiondecision depends on the samples seen so far. In
more general settings, adaptive rules of this kind can require unbounded space to store information about
samples seen previously. For example, consider the following 2-dimensional skyline problem: each sample
is a point in a unit square; the quality of a single point(x, y) is the area of its “shadow”[0, x]× [0, y], and the
quality of a set of points is the area of the collective shadows of all the points; the goal is to pick a subsample
with the largest shadow. In this case, a natural selection rule is to select a sample if it falls out of the shadow
of the previously seen points. However implementing this rule requires remembering on averageO(log n)
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samples out ofn samples seen [4]. We therefore study non-adaptive selection rules.
We focus in particular on so-called “threshold rules” for selection. A threshold rule specifies a criterion

or “threshold” that a candidate must satisfy to get selected. Most crucially, the threshold is determineda
priori given a desired selection rate; it depends only on the numberof samples picked so far and is otherwise
independent of the samples seen or picked. Threshold rules are extremely simple oblivious rules and can, in
particular, be “hard-wired” into the selection process. This suggests the following natural questions. When
are threshold rules optimal for online selection problems?Does the answer depend on the desired rate of
selection? We answer these questions in three different settings in this paper.

The first setting we study is a single-dimensional-quality setting similar to Broder et al.’s model. In this
setting, we study threshold rules of the form“Pick the next sample whose quality exceedsf(i)” wherei is
the number of samples picked so far. We show that for a large class of functionsf these rules give constant
factor approximations. Interestingly, our threshold rules are optimal in an almost distribution-independent
way. In particular, every rulef in the aforementioned class is simultaneously constant-factor optimal with
respect to any “power law” distribution, and the approximation factor is independent of the parameters of
the distribution. In contrast, Broder et al.’s results holdonly for the uniform distribution1.

In the second setting, samples are nodes in a rooted infinite-depth tree. Each node is said to cover all the
nodes on the unique path from the root to itself. The quality of a collection of nodes is the total number of
distinct nodes that they collectively cover. This is different from the first setting in that the quality defines
only a partial order over the samples. Once again, we study threshold rules of the form“Pick the next sample
whose quality exceedsf(i)” and show that they are constant factor optimal.

Our third setting is a generalization of the skyline problemdescribed previously. Specifically, consider
a domainX with a probability measureµ and a partial ordering≺ over it. For an elementx ∈ X, the
“shadow” or “downward closure” ofx is the set of all the points that it dominates in this partial ordering,
D(x) = {y : y ≺ x}; likewise the shadow of a subsetS ⊆ X is D(S) = ∪x∈SD(x). Once again, as in
the second setting, we can define the coverage of a single sample to be the measure of all the points in its
shadow. However, unlike the tree setting, here it is usuallyeasy to obtain a constant factor approximation to
coverage—the maximum coverage achievable is1 (i.e. the measure of the entire universe), whereas in many
cases (e.g. for the uniform distribution over the unit square) a single random sample can in expectation
obtain constant coverage. We therefore measure the qualityof a subsampleS ⊂ X by its “gap”, Gap(S) =
1 − µ(D(S)). In this setting, rules that place a threshold on the qualityof the next sample to be selected
are not constant-factor optimal. Instead, we study threshold rules of the form“Pick the next samplex for
whichµ(U(x)) is at mostf(i)” , whereU(x) = {y : x ≺ y} is the set of all elements that dominatex, or
the “upward closure” ofx, and show that these rules obtain constant factor approximations.

1.1 Related work

As mentioned earlier, our work is inspired by and extends thework of Broder et al. [7]. Broder et al. consider
a special case of the one-dimensional selection problem described above. They assume that the quality of
a sample is distributed uniformly over the interval(0, 1); this assumption is not without loss of generality.
They analyze two adaptive selection rules—select above the mean, andselect above the median—and show
that both are constant-factor optimal , although they lead to different growth rates. These rules are adaptive
in the sense that the next selection decision depends on the quality of the samples accepted so far. Note that
theselect above the medianrule requires the algorithm to remember all of the samples accepted so far, and

1While Broder et al.’s result can be extended to any arbitrarydistribution via a standard tranformation from one space toanother,
the resulting selection rule becomes distribution dependent, e.g., “select above the mean” is no longer “select above the mean” w.r.t.
the other distribution upon applying the transformation.
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is therefore a computationally intensive rule. Even the relatively simplerselect above the meanrule requires
remembering the current mean and number so far accepted. In contrast we show (Section 3) that there
exists a class of simple non-adaptive selection strategiesthat also achieves optimality and includes rules
with selection rates equal to those of the ones studied by Broder et al. These strategies make decisions based
only on the number hired so far. Furthermore we extend these results to more general coverage problems.

Our third setting is closely related to the skyline problem that has been studied extensively in online
settings by the database community (see, for example, [2] and references therein). Kung, et al. [12] gave an
offline divide-and-conquer algorithm that finds the skylineof a given set of vectors ind-dimensional space.
Their algorithm usesO(n log2 n) comparisons of vector components whend = 2, 3 andO(n(log2 n)

d−2)
whend ≥ 4. The implementation of aSkylinequery for database systems was recently introduced by [6].
The closest in spirit to our work is [15]. They considered a stream of uncertain objects to model uncertainty
in measurement. Each object has an associated set of possible instances and they are interested in the objects
whose probability of being dominated by another object is atmost someq supplied by the database user.

Online sample selection is closely related to secretary problems, however there are some key differences.
In secretary problems (see, e.g., [8, 9, 13]) there is typically a fixed bound on the desired number of hires. In
our setting the selection process is ongoing and we must pickmore and more samples as time passes. This
makes the tradeoff between the rate of hiring and the rate of improvement of quality interesting.

Finally, while our goal is to analyze a class of online algorithms in comparison to the optimal offline
algorithms, our approach is different from the competitiveanalysis of online algorithms [5]. In competitive
analysis the goal is to perform nearly as well as the optimal offline algorithm forany arbitrarysequence of
input. In contrast, we bound theexpectedcompetitive ratio of the rules we study. Furthermore, a crucial
aspect of the strategies that we study is that not only are they online, but they are also non-adaptive or
oblivious. That is, the current acceptance threshold does not depend on the samples seen by the algorithm
so far. In this sense, our model is closer in spirit to work on oblivious algorithms (see, e.g., [11, 3, 10]).
Oblivious algorithms are highly desirable in practical settings because the rules can be hard-wired into the
selection process, making them very easy to implement. The caveat is, of course, that for many optimization
problems oblivious algorithms do not provide good approximations. Surprisingly, we show that in many
scenarios related to sample selection, obliviousness has only a small cost.

2 Models and results

Let X be a domain with probability measureµ over it. A threshold ruleX is specified by a sequence of
subsets ofX indexed byN: X = X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ · · · . A sample is selected if it belongs to
Xi wherei is the number of samples previously selected.

Let T be an infinite sequence of samples drawn i.i.d. according toµ. Let T X (n) denote the prefix ofT
such that the last sample on this prefix is thenth sample chosen by the threshold ruleX ; let TX

n denote the
length of this prefix. We drop the superscript and the subscript when they are clear from the context. The
“selection overhead” of a threshold rule as a function ofn is the expected waiting time to selectn samples,
orE[TX

n ], where the expectation is overT .
Let Q be a function denoting “quality”. ThusQ(x) denotes the quality of a samplex andQ(S) the

aggregate quality of a setS ⊂ X of samples.Q(x) is a random variable and we assume that it is drawn
from a known distribution. LetQ∗

T ,n denote the quality of an optimal subset ofn out of a setT of samples
with respect to measureQ. We useQ∗

n as shorthand forQ∗
T X (n),n

whereX is clear from the context. Let

QX
T X (n),n

(Qn for short) denote the quality of a sample of sizen selected by threshold ruleX with respect
to measureQ.
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We look at both maximization and minimization problems. Formaximization problems we say that a
threshold ruleX achieves acompetitive ratio ofα in expectationwith respect toQ if for all n,

ET ∼µ

[

Q∗
n

Qn

]

≤ α

Likewise,X α-approximates expected qualitywith respect toQ if for all n,

ET ∼µ[Q
∗
n]

ET ∼µ[Qn]
≤ α

For minimization problems, the ratios are defined similarly:

Exp. comp. ratio= max
n

ET ∼µ

[

Qn

Q∗
n

]

;Approx. to exp. quality= max
n

ET ∼µ[Qn]

ET ∼µ[Q∗
n]

We now describe the specific settings we study and the resultswe obtain.

Model 1: Unit interval (Section 3). Our first setting is the one-dimensional setting studied by Broder et
al. [7]. Specifically, each sample is associated with a quality drawn from a distribution over the unit line. Our
measure of success is the mean quality of the subsample we select. Note that in the context of approximately
optimal selection rules this is a weak notion of success. Forexample whenµ is the uniform distribution over
[0, 1], even in the absence of any selection rule we can achieve a mean quality of1/2, while the maximum
achievable is1. So instead of approximately maximizing the mean quality, we approximately minimize the
mean quality gap—Gap(S) = 1− (

∑

x∈S x)/|S|—of the subsample.
We focus onpower-lawdistributions on the unit line, i.e. distributions with c.d.f. µ(1−x) = 1−xk for

some constantk, and study threshold rules of the formXi = {x : x ≥ 1−ci} whereci = Ω(1/poly(i)). We
show that these threshold rules are constant factor optimalsimultaneously forany power-law distribution.
Remarkably, this gives an optimal selection algorithm thatis oblivious of even the underlying distribution.
Formally we obtain the following result.

Theorem 1 For the unit line equipped with a power-law distribution, any threshold ruleXi = {x : x ≥
1 − ci}, whereci = 1/iα with 0 ≤ α < 1 for all i, achieves anO(1) approximation to the expected gap,
where the constant in theO(1) depends only onα and not on the parameters of the distribution.

Dominance and shadow. For the next two settings, we need some additional definitions. Let≺ be a partial
order over the universeX. As defined earlier, the shadow of an elementx ∈ X is the set of all the points
that it dominates,D(x) = {y : y ≺ x}; likewise the shadow of a sampleS ⊆ X is D(S) = ∪x∈SD(x).
Let U(x) = {y : x ≺ y} be the set of points that shadowx; U(S) for a setS is defined similarly. Note that
U(x) is a subset ofX \ D(x) andµ(U(x)) is the probability that a random sample coversx.

Model 2: Random tree setting (Section 4). While the previous setting was in a continuous domain, next
we consider a discrete setting, where the goal is to maximizethe cardinality of the shadow set. Specifically,
our universeX is the set of all nodes in an rooted infinite-depth binary tree. The following random process
generates samples. Let0 < p < 1. We start at the root and move left or right at every step with equal
probability. At every step, with probabilityp we terminate the process and output the current node. A node
x in the tree dominates another nodey if and only if y lies on the unique path from the root tox. For a set
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S of nodes, we define coverage as Cover(S) = |D(S)|. Note, that unlike in the previous setting, there is no
notion of a gap in this setting.

Once again the threshold rules we consider here are based on sequences of integers{ci}. For any such
sequence, we defineXi = {x : |D(x)| ≥ ci}. We show that constant-factor optimality can be achieved with
exponential or smaller selection overheads.

Theorem 2 For the binary tree model described above, any threshold rule based on a sequence{ci} with
ci = O(poly(i)) achieves anO(1) competitive ratio in expectation with respect to coverage,as well as an
O(1) approximation to the expected coverage.

Model 3: Skyline problem (Section 5). Finally, we consider another continuous domain that is a gener-
alization of the skylike problem mentioned previously. We are interested in selecting a set of samples with a
large shadow. Specifically, we define the “gap” ofS to be Gap(S) = 1−µ(D(S)). Our goal is to minimize
the gap.

We show that a natural class of threshold rules obtains near-optimal gaps in this setting. Recall thatU(x)
for an elementx ∈ X denotes the set of elements that dominatex. We consider threshold rules of the form
Xi = {x ∈ X : µ(U(x)) ≤ ci} for some sequence of numbers{ci}. We require the following continuity
assumption on the measureµ.

Definition 1 (Measure continuity) For all x ∈ X andc ∈ [0, µ(U(x))], there exists an elementy ∈ U(x)
such thatµ(U(y)) = c. Furthermore, there exist elementsx, x ∈ X with U(x) = X andU(x) = ∅.

Measure continuity ensures that the setsXi are all non-empty and proper subsets of each other.

Theorem 3 For the skyline setting with an arbitrary measure satisfying measure continuity, any threshold
rule based on a sequence{ci} with ci = i−(1/2−Ω(1)) achieves a1 + o(1) competitive ratio in expectation
with respect to the gap.

We note that the class of functionsci specified in the above theorem includes all functions for which
1/ci grows subpolynomially. In particular, this includes threshold rules with selection overheads that are
slightly superlinear.

For the special case of the skyline setting over a two-dimensional unit square[0, 1]2 bestowed with
a product distribution and the usual precedence ordering—(x1 , y1) ≺ (x2, y2) if and only if x1 ≤ x2
andy1 ≤ y2—we are able to obtain a stronger result that guarantees constant-factor optimality for any
polynomial selection overhead:

Theorem 4 For the skyline setting on the unit square with any product distribution, any threshold rule based
on a sequence{ci} with ci = Ω(1/poly(i)) achieves a1+o(1) competitive ratio in expectation with respect
to the gap.

3 Sample selection in one dimension

We will now prove Theorem 1. For a (random) variablex ∈ [0, 1], let x denote its complement1 − x.
For a cumulative distributionµ with domain[0, 1], we useµ to denote the cumulative distribution for the
complementary random variable:µ(x) = 1− µ(1− x).

Let Y denote a draw from the power-law distributionµ, andYn denote the (random) quality of thenth
sample selected byX . Note that sinceµ is a power-law distribution,Y i is statistically identical tociY .
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Then, the mean quality gap of the firstn selected samples is given by Gapn = 1
n

∑n
i=1 Y i =

1
n

∑n
i=1 ciY ,

and, by linearity of expectation we have

E[Gapn] =
E[Y ]

n

n−1
∑

i=0

ci . (1)

On the other hand, the following lemma gives the optimal meanquality achievable when we pick a
subsample of sizen from a sample of sizeE[Tn]. See Appendix A for the proof.

Lemma 5 The expected mean gap of the largestn out ofE[Tn] samples drawn from a distribution with
µ(x) = xk is

1

1 + 1/k

(

n

E[Tn] + 1

)1/k

. (2)

First, we bound (1) in terms of (2) by noting that the expectedselection overhead ofX is given by

E[Tn] =
n
∑

i=1

1/µ(ci) =
n
∑

i=1

1/cki .

Lemma 6 For selection thresholdsci = 1/iα with 0 ≤ α < 1, we have

E[Gapn] ≤
1

1− α

(

n

E[Tn]

)1/k

.

Proof: The proof follows from the Euler-Maclaurin formula and the fact thatE[X ] ≤ 1.

E[Gapn] · (E[Tn])
1/k =

(

E[X ]

n

n
∑

i=1

i−α

)(

n
∑

i=1

iαk

)1/k

≈
E[X ]

n
·
n1−α

1− α
·

(

nak+1

αk + 1

)1/k

≤
n1/k

1− α
.

Lemmas 5 and 6 together show that the expected mean gap of these thresholds rules is only a small
constant factor bigger than the optimal offline selection rule that picks the bestn out of E[Tn] samples.
Finally we show that these threshold rules are in fact constant factor optimal in the following stricter sense:
if an adversary were allowed to choose anyn out ofTn+1−1, its expected mean gap is only a constant factor
smaller than that of the online algorithm. We denote this optimal offline gap by Gap∗n+1. We are interested
in Tn+1 − 1 is because the adversary should be able to use the samples we rejected while we were waiting
for the(n+ 1)th selection.

Lemma 7 For ci satisfyingci = 1/iα with 0 ≤ α < 1 for all i, we have

E[Gap∗n+1] ≥
1

16

(

n

E[Tn]

)1/k

.
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Proof: By Markov’s inequality we have

E[Gap∗n] ≥
1

2
E[Gap∗n : Tn+1 ≤ 2E[Tn+1]]

≥
1

2

1

(1 + 1/k)
·

(

n

2E[Tn+1]

)1/k

≈

(

1

2

)1+1/k ( 1

1 + 1/k

)(

n

E[Tn]

)1/k (

1 +
1

n

)−α

≥
1

16

(

n

E[Tn]

)1/k

.

Together with Lemma 6, this proves Theorem 1 with the constant in theO(1) equal to16/(1 − α).

4 Sample selection in binary trees

We prove Theorem 2 in two parts: (1) the “fast-growing thresholds” case, that is,ci = O(poly(i)) and
ci ≥ log i for all i, and, (2) the “slow-growing thresholds” case, that is,ci ≤ ci/2 +O(1) for all i.

We begin with some notation and observations. Recall that for a nodex in the treeD(x) denotes both
the unique path from the root tox as well as the set of nodes covered byx (the shadow ofx). LetDk(x) be
thekth node onD(x), D≤k be the firstk nodes ofD(x), andD≥k = D(x) \ D<k.

We say that a set ofn paths associated with nodesx1, . . . , xn is independentat levelk if |∪n
i=1Dk(xi)| =

n. That is, no two paths share the same vertex at levelk, and are disjoint after levelk. We have the following
fact

Fact 8 If a set ofn paths{D(xi)}, of length≥ k′ each, is independent at levelk < k′, then

|D({x1, . . . , xn})| =

∣

∣

∣

∣

∣

n
⋃

i=1

D(xi)

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

n
⋃

i=1

D≥k(xi)

∣

∣

∣

∣

∣

≥ n(k′ − k) .

Our analysis depends on whetherci is a slow-growing or fast-growing function. We first consider the
case ofci = O(poly n) but with ci ≥ log2 i for all i.

Theorem 9 For the binary tree model described above, any threshold rule based on a sequence{ci}, with
ci = O(poly(i)) andci ≥ log i for all i, achieves anO(1) competitive ratio in expectation with respect to
coverage, as well as anO(1) approximation to the expected coverage.

Proof: Let f(i) = ci− log i. We will first obtain an upper bound on Cover∗
n. LetSn be then selected nodes,

On the optimal set ofn paths, andRn the paths that are rejected and are not covered bySn.

Cover∗n = |(D(On) ∩ D(Rn)) ∪ (D(On) ∩ D(Sn))|

≤ |D(On) ∩ D(Rn)|+ |D(Sn)|

≤ (2n + nf(n)) + Covern ,
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Here the last inequality follows by noting thatD(On)∩D(Rn) forms a binary tree with at most2n vertices
in the firstlog n levels, and at mostnf(n) other vertices since it is the union ofn paths of length at most
log n+ f(n).

Next we obtain a lower bound on Covern. Consider the lastn/2 selected nodessn/2+1, . . . , sn and
their pathsD(sn/2+1), . . . ,D(sn). By definition, |D(sn/2+i)| ≥ cn/2 = log n/2 + f(n/2). Let N =

| ∪
n/2
i=1 Dlogn/2(sn/2+i)| be the number of pathsD(sn/2+i) that are independent at levellog n/2. Since

Dlogn/2(sn/2+i) chooses from each of then/2 nodes at levellog n/2 equiprobably,N has the same distri-
bution as the number of occupied bins whenn/2 balls are thrown inton/2 bins uniformly at random. The
expected number of unoccupied bins isn/2e. By Markov’s inequality, with probability at least1/2, the
number of empty bins is at most2 n

2e . So, we have thatPr[N ≥ n
2 (1− 2/e)] ≥ 1/2. Thus, we have

E

[

Cover∗n
Covern

]

≤ E

[

Cover∗n
Covern

: N ≥
n

2
(1− 2/e)

]

+ Pr[N ≤
n

2
(1− 2/e)]

≤ E

[

n(2 + f(n)) + Covern
Covern

: N ≥
n

2
(1− 2/e)

]

+
1

2

and by Fact 8,

≤
3

2
+

2(2 + f(n))

(1− 2/e)f(n/2)
= O(1) ,

where the constant depends onf(n). Likewise we can obtain a bound on the approximation factor by noting
that

E [Covern] ≥ E
[

Covern : N ≥
n

2
(1− 2/e)

]

· Pr[N ≥
n

2
(1− 2/e)]

≥
1

2

n

2
(1− 2/e)f(n/2)

and therefore,

E [Cover∗n]
E [Covern]

≤ 1 +
2n+ nf(n)

1
2
n
2 (1− 2/e)f(n/2)

= O(1)

where once again the constant depends onf(n).

Next we consider the case whenci is a slow-growing function. In particular we assume thatci ≤ ci/2+O(1)
for all i.

Theorem 10 For the binary tree model described above, any threshold rule based on a sequence{ci}, with
ci ≤ ci/2 + O(1) for all i, achieves anO(1) competitive ratio in expectation with respect to coverage,as
well as anO(1) approximation to the expected coverage.

Proof: We follow the outline of the previous proof. Consider the last n/2 selected nodessn/2+1, . . . , sn. If
cn/2 ≥ log(n/2), we consider the number of independent paths at levellog(n/2) and the proof goes through

exactly as before. So suppose thatcn/2 < log(n/2). LetN = | ∪
n/2
i=1 Dcn/2

(sn/2+i)|. Then there are at most

8



2cn/2 < n/2 nodes at levelcn/2, so we can use the same balls-and-bins argument as in the previous proof to
obtainPr[N ≥ 2cn/2(1− 2/e)] ≥ 1/2.

Since there are at most2cn+1 nodes in the firstcn levels of a binary tree, and Covern ≥ N , we have that

E

[

Cover∗n
Covern

]

≤ E

[

2cn+1 + Covern
Covern

: N ≥ 2cn/2(1− 2/e)

]

+
1

2

≤
3

2
+

2cn+1

2cn/2(1− 2/e)
= O(1)

We can also use the same argument as in the previous proof to prove the claimed bound on the approximation
factor:

E [Cover∗n]
E [Covern]

≤ 1 +
2cn+1

1
2 · 2cn/2 · (1− 2/e)

= O(1) .

5 Sample selection in the skyline model

In this section we focus on the following “skyline” model. Wefirst consider the case where the universe
X is the unit square[0, 1]2 and(x1, y1) ≺ (x2, y2) for (x1, y1), (x2, y2) ∈ X if and only if x1 ≤ x2 and
y1 ≤ y2. In Section 5.2 we discuss general spaces.

5.1 Uniform and product distributions over 2 dimensions

As mentioned earlier, we consider threshold rules of the form Xi = {(x, y) ∈ X : µ(U(x, y)) ≤ ci} for
some sequence of numbers{ci}, whereU(x, y) is the set of points that dominate(x, y).

For simplicity, we first prove the following version of Theorem 4 for the uniform distribution overX,
and then describe how it extends to general product distributions.

Theorem 11 For the skyline setting on the unit square with the uniform distribution, any threshold rule
based on a sequence{ci} with ci = Ω(1/poly(i)) achieves a1 + o(1) competitive ratio in expectation with
respect to the gap.

Let Sn denote the set of samples selected by the (implicit) threshold rule out of the setTn of samples
seen. LetRn = Tn \ Sn denote the samples rejected by the threshold rule, andOn denote an optimal subset
of Tn of sizen. Recall that our goal is to maximize the shadow of the selected subsample, and so all points
in On must be undominated by other points. LetEn denote the event thatOn contains a point inRn, that is,
there is a point inRn \ D(Sn). It is immediate that Gapn 6= Gap∗n if and only if the eventEn happens. We
will show that the eventEn occurs with very low probability and use this fact to prove Theorem 11.

We first show how the approximation factor and expected competitive ratio with respect to the gap of a
threshold rule relates to the probability of the eventEn.

Lemma 12 For the skyline model with an arbitrary distribution, the gap of a threshold rule based on the
sequence{ci} satisfies the following, whereEn is the event that Gapn 6= Gap∗n, we have

Eµ

[

Gapn
Gap∗n

]

≤ 1 +
1

cn
Pr[En] .

9



Proof: We apply Bayes’ rule to get

Eµ

[

Gapn
Gap∗n

]

≤ 1 + Eµ

[

Gapn
Gap∗n

: En

]

Pr[En] .

If the eventEn happens then by definitionOn contains a point inRn, sayx. Then, Gap∗n = Gap(On) ≥
µ(U(x)) > cn, where the last inequality follows from noting thatx 6∈ Xn. On the other hand, Gapn is
always less than1. Therefore the claim follows.

To complete the proof of Theorem 11 we give an upper bound on the probability of the eventEn. Our
goal is to show that with high probability, every sample inRn is dominated by some sample inSn. We start
with a simple observation about the number of rejected samples.

Fact 13 E[|Rn|] ≤ E[Tn] =
∑n

i=1 1/µ(Xi) ≤ n/cn.

Fact 14 Letµ be the uniform measure over[0, 1]2. Then for alln, µ(Xn) = cn(1 + ln 1/cn) .

We first note that many of the samples inSn are in fact inXn.

Lemma 15 Let α be a constant satisfyingcici/2
≥ α for large enoughi. Then with probability1 − o(cn),

αn/4 of the samples inSn belong toXn.

Proof: Consider samples belonging toSn ∩Xn/2; these are at leastn/2 in number. We claim that a constant
fraction of these are inXn with high probability. In particular,

Pr
x∼µ

[x ∈ Xn : x ∈ Xn/2+i] =
µ(Xn)

µ(Xn/2+i)
≥

µ(Xn)

µ(Xn/2)
≥ α ,

Here we used the fact that1+ln 1/cn
1+ln 1/cn/2

≥ 1. Therefore, the expected number of samples inSn∩Xn is at least

αn/2. Since this is a binomial random variable, by Chernoff bounds,

Pr

[

|Sn ∩ Xn| <
1

2
α(n/2)

]

< exp

{

−α(n/2)

(

1

2

)2

/2

}

= o(cn) ,

sinceci = Ω(1/poly(i)).

The following lemma shows that given sufficient number of samples inSn belonging toXn, with high
probabilityRn is dominated by these samples. For the next lemma, letE ′

n denote the event that at least one
point inRn is not dominated bySn ∩ Xn and letz = |Sn ∩ Xn|.

We first state the following consequence of measure continuity.

Fact 16 Letµ satisfy measure continuity. Then for allk ∈ N, and for ally /∈ Xk, we haveµ(U(y) ∩Xk) ≥
ck.

Proof: By measure continuity, there exists az ∈ U(y) such thatµ(U(z)) = ck ≤ µ(U(y)). Thus, we have
thatz ∈ Xk, U(z) ⊆ U(y) ∩ Xk, and soµ(U(y) ∩ Xk) ≥ µ(U(z)) = ck.

10



Lemma 17 Conditioned onz, we have

Pr[E ′
n] ≤ exp

{

−
zcn

µ(Xn)

}

·E[|Rn|] .

Proof: For any sampley in Rn, the probability that it is dominated by a uniformly random sample inXn is

Pr
x∼µ

[y ∈ D(x) : x ∈ Xn] =
µ(U(y) ∩ Xn)

µ(Xn)
≥

cn
µ(Xn)

.

So, the probability thaty is not dominated by any point inSn ∩ Xn is
(

1− cn
µ(Xn)

)z
. Since this bound

holds regardless of the specific value ofy, applying Wald’s identity,

Pr[E ′
n] ≤ E[number of samples inRn not dominated bySn ∩ Xn]

=

(

1−
cn

µ(Xn)

)z

·E[|Rn|]

≤ exp

{

−
zcn

µ(Xn)

}

·E[|Rn|] .

Finally we are ready to prove Theorem 11.
Proof of Theorem 11:Using Lemma 12, we have that

Eµ[Gapn/Gap∗n] ≤ 1 +
1

cn
(Pr[En : z ≥ α(n/4)] + Pr[z < α(n/4)]) .

wherez = |Sn ∩ Xn|. By Lemma 15, the second term in the parentheses iso(cn). EventEn implies event
E ′
n. So applying Lemma 17 and Fact 13 we get

Pr[En : z ≥ α(n/4)] ≤ exp

{

−
zcn

µ(Xn)

}

·E[|Rn|]

≤ exp{−α(n/4)} ·
n

cn
= o(cn) ,

sinceci = Ω(1/poly(i)).

General product distributions. We now consider the skyline model withµ being an arbitrary product
distribution. In particular, for a point(a, b) ∈ X, let µ(a, b) = µx(a)µy(b) for one-dimensional measures
µx andµy. Our proof of Theorem 4 is nearly identical to our argument for the uniform case. We note first
that as before

Eµ

[

Gapn
Gap∗n

]

≤ 1 +
1

cn
Pr[En] .

To bound the probability ofEn, we give a reduction from the product measure setting to the uniform
measure setting. In particular, consider mappingX into X ′ = [0, 1] × [0, 1] by mapping a point(a, b) ∈ X
to (µx(a), µy(b)) ∈ X ′. Then it is easy to see thatXi in X gets mapped toXi in X ′ for the same sequence
{ci}. Then, the probability of the eventEn under the transformation remains the same as before, and is once
againo(cn).

11



5.2 General spaces

In this section, we show how our results from the skyline model generalize and prove Theorem 3.
Once again we note that Lemmas 12 and 17 carry over to this setting. So our main approach is to bound

the probability of the eventE ′
n. The main difference from the previous analysis is that the best bound on the

size ofXi we can obtain isci ≤ µ(Xi) ≤ 1. This means that we can no longer claim that a constant fraction
of the samples inSn belong toXn. Instead we will show that under a stronger condition on the sequence
{ci}, namelyci = Ω(1/iǫ), the number of samples inXn isΩ(ncn) with a high probability. This will suffice
to give us the bound we need. In particular, we have the following weaker version of Lemma 15.

Lemma 18 For ci = Ω(1/iǫ) with ǫ < 1, we have that

Pr[|Sn ∩ Xn| < ncn/2] = o(cn) .

Proof: For all i ≤ n, we have that

Pr
x∼µ

[x ∈ Xn : x ∈ Xi] ≥ µ(Xn) ≥ cn .

Thus, by Chernoff bounds,

Pr
[

|Sn ∩ Xn| <
ncn
2

]

≤ exp{−Ω(n1−ǫ)} = o(cn) .

Finally, we use the previous approach to prove Theorem 3.
Proof of Theorem 3:By Lemma 12, we have

Eµ[Gapn/Gap∗n] ≤ 1 +
1

cn
(Pr[En : z ≥ α(n/4)] + Pr[z < α(n/4)]) ,

wherez = |Sn ∩ Xn|. Using Fact 13 and Lemma 17, we have that

Pr[En : z ≥ ncn/2] ≤ Pr[E ′
n : z ≥ ncn/2]

≤ exp

{

−
nc2n

2µ(Xn)

}

· E[|Rn|]

≤ exp{−n · n−2(1/2−Ω(1))} · n/cn

= o(cn) ,

where the last inequality follows byci = i−(1/2−Ω(1)). Together with Lemma 18, this proves Theorem 3.
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A Missing proofs

We present the technical proofs we skipped over in the main article.
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A.1 Sample selection in one dimension

In section 3, we had some technical derivations that we provein detail here.
Proof of Lemma 5:LetG(x) = xk be the distribution of the gap of any sample. The expectationof themth
order statistic fortn samples from this distribution is as follows. See Claim 1 below for a proof.

E [x(m)] =
Γ(tn + 1)Γ(m+ 1/k)

Γ(tn + 1 + 1/k)Γ(m)
.

So, we have that the expected mean gap of then smallest-gap subsamples out oftn samples is

E

[

∑n
i=1 x(i)

n

]

= (1/n)
n
∑

i=1

E [x(i)]

= (1/n)
Γ(tn + 1)

Γ(tn + 1 + 1/k)

n
∑

m=1

Γ(m+ 1/k)

Γ(m)

we postpone the proof of the following step to Claim 2 below,

= (1/n)
Γ(tn + 1)

Γ(tn + 1 + 1/k)

nΓ(n+ 1 + 1/k)

(1 + 1/k)Γ(n + 1)

∼
1

1 + 1/k

(

n

tn + 1

)1/k

,

where the last line follows by equation 6.1.46 of [1].

We now prove the two claims missing in the above proof.

Claim 1 The expectation of themth order statistic withF (x) = xk is

E [x(m)] =
Γ(tn + 1)Γ(m+ 1/k)

Γ(tn + 1 + 1/k)Γ(m)
.

Proof: From page 236 of [14], we have that themth order statistic of a sample of sizetn from a population
having continuous distribution functionF (x) and probability distribution functionf(x) has the probability
distribution function:

Γ(tn + 1)

Γ(m)Γ(tn −m+ 1)
[F (x(m))]

m−1[1− F (x(m)]
tn−mf(x(m))dx(m)

So, we have that the expectation of themth order statistic withF (x) = xk is

E [x(m)] =

∫ 1

0
x(m) ·

Γ(tn + 1)

Γ(m)Γ(tn −m+ 1)
· [F (x(m))]

m−1 · [1− F (x(m)]
tn−m · f(x(m))dx(m)

=
Γ(tn + 1)

Γ(m)Γ(tn −m+ 1)

∫ 1

0
x(m)[x

k
(m)]

m−1[1− xk(m)]
tn−mkxk−1

(m) dx(m)

=
Γ(tn + 1)

Γ(m)Γ(tn −m+ 1)

∫ 1

0
x
k(m−1)+1
(m) [1− xk(m)]

tn−mkxk−1
(m) dx(m)
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using the substitutiony = xk, we have

=
Γ(tn + 1)

Γ(m)Γ(tn −m+ 1)

∫ 1

0
ym−1+1/k[1− y]tn−mdy

=
Γ(tn + 1)

Γ(m)Γ(tn −m+ 1)
· B(m+ 1/k, tn −m+ 1)

whereB() is the Beta function

=
Γ(tn + 1)

Γ(m)Γ(tn −m+ 1)
·
Γ(m+ 1/k)Γ(tn −m+ 1)

Γ(tn + 1 + 1/k)

=
Γ(tn + 1)Γ(m+ 1/k)

Γ(tn + 1 + 1/k)Γ(m)

Claim 2
n
∑

m=1

Γ(m+ 1/k)

Γ(m)
=

nΓ(n+ 1 + 1/k)

(1/k + 1)Γ(n+ 1)
.

Proof: To simplify a sum involving gamma functions, we can use the idea that

Γ(s) =

∫ ∞

0
ts−1e−tdt

Now, we apply the Laplace transform. Usings = m+α, and then interchanging summation and integration,
we get

n
∑

m=1

Γ(m+ α)/Γ(m) =

∫ ∞

0
tαe−t

n−1
∑

m=0

tm

m!
dt

=

∫ ∞

0
tα

n−1
∑

m=0

e−t t
m

m!
dt

=

∫ ∞

0
tα Pr[Poisson(t) < n]dt

=

∫ ∞

0
tα Pr[G(n) ≥ t]dt,

whereG(n) is aGamma(n) random variable. The last identity follows by the Poisson process. Plugging in

Pr[G(n) ≥ t] =

∫ ∞

t
un−1e−udu

and then interchanging the order of integration gives an integral that evaluates to

nΓ(n+ 1 + 1/k)

(1/k + 1)Γ(n + 1)
.
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