Triangle-Free 2-Matchings Revisited

Maxim Babenko *, Alexey Gusakov **, Ilya Razenshteyn ***
Moscow State University

Abstract

A 2-matching in an undirected graph $G=(V G, E G)$ is a function $x: E G \rightarrow\{0,1,2\}$ such that for each node $v \in V G$ the sum of values $x(e)$ on all edges e incident to v does not exceed 2. The size of x is the $\operatorname{sum} \sum_{e} x(e)$. If $\{e \in E G \mid x(e) \neq 0\}$ contains no triangles then x is called triangle-free. Cornuéjols and Pulleyblank devised a combinatorial $O(m n)$-algorithm that finds a triangle free 2-matching of maximum size (hereinafter $n:=$ $|V G|, m:=|E G|)$ and also established a min-max theorem. We claim that this approach is, in fact, superfluous by demonstrating how their results may be obtained directly from the Edmonds-Gallai decomposition. Applying the algorithm of Micali and Vazirani we are able to find a maximum triangle-free 2-matching in $O(m \sqrt{n})$-time. Also we give a short self-contained algorithmic proof of the min-max theorem. Next, we consider the case of regular graphs. It is well-known that every regular graph admits a perfect 2 -matching. One can easily strengthen this result and prove that every d-regular graph (for $d \geq 3$) contains a perfect triangle-free 2 -matching. We give the following algorithms for finding a perfect triangle-free 2-matching in a d-regular graph: an $O(n)$ algorithm for $d=3$, an $O\left(m+n^{3 / 2}\right)$-algorithm for $d=2 k(k \geq 2)$, and an $O\left(n^{2}\right)$-algorithm for $d=2 k+1(k \geq 2)$.

1 Introduction

1.1 Basic Notation and Definitions

We shall use some standard graph-theoretic notation throughout the paper. For an undirected graph G we denote its sets of nodes and edges by $V G$ and $E G$, respectively. For a directed graph we speak of arcs rather than edges and denote the arc set of G by $A G$. A similar notation is used for paths, trees, and etc. Unless stated otherwise, we do not allow loops and parallel edges or arcs in graphs. An undirected graph is called d-regular (or just regular if the value of d is unimportant) if all degrees of its nodes are equal to d. A subgraph of G induced by a subset $U \subseteq V G$ is denoted by $G[U]$.

[^0]
1.2 Triangle-Free 2-Matchings

Definition 1. Given an undirected graph G, a 2-matching in G is a function $x: E G \rightarrow\{0,1,2\}$ such that for each node $v \in V G$ the sum of values $x(e)$ on all edges e incident to v does not exceed 2.

A natural optimization problem is to find, given a graph G, a maximum 2matching x in G, that is, a 2-matching of maximum size $\|x\|:=\sum_{e} x(e)$. When $\| x| |=|V G|$ we call x perfect.

If $\{e \mid x(e)=1\}$ partitions into a collection of node-disjoint circuits of odd length then x is called basic. Applying a straightforward reduction one can easily see that for each 2-matching there exists a basic 2-matching of the same or larger size (see [CP80, Theorem 1.1]). From now on we shall only consider basic 2-matchings x.

One may think of a basic 2-matching x as a collection of node disjoint double edges (each contributing 2 to $\|x\|)$ and odd length circuits (where each edge of the latter contributes 1 to $\|x\|)$. See Fig. 1.2(a) for an example.

Computing the maximum size $\nu_{2}(G)$ of a 2 -matching in G reduces to finding a maximum matching in an auxiliary bipartite graph obtained by splitting the nodes of G. Therefore, the problem is solvable in $O(m \sqrt{n})$-time with the help of Hopcroft-Karp's algorithm HK73 (hereinafter $n:=|V G|, m:=|E G|$). A simple min-max relation is known (see [Sch03, Th. 6.1.4] for an equivalent statement):

Theorem 1. $\nu_{2}(G):=\min _{U \subseteq V G}(|V G|+|U|-\operatorname{iso}(G-U))$.
Here $\nu_{2}(G)$ is the maximum size of a 2-matching in $G, G-U$ denotes the graph obtained from G by removing nodes U (i.e. $G[V G-U]$) and iso (H) stands for the number of isolated nodes in H. The reader may refer to [Sch03, Ch. 30] and [LP86, Ch. 6] for a survey.

Let $\operatorname{supp}(x)$ denote $\{e \in E G \mid x(e) \neq 0\}$. The following refinement of 2matchings was studied by Cornuéjols and Pulleyblank [P80] in connection with the Hamilton cycle problem:

Definition 2. Call a 2-matching x triangle-free if supp (x) contains no triangle.
They investigated the problem of finding a maximum size triangle-free 2matching, devised a combinatorial algorithm, and gave an $O\left(n^{3}\right)$ estimate for its running time. Their algorithm initially starts with $x:=0$ and then performs a sequence of augmentation steps each aiming to increase $\|x\|$. Totally, there are $O(n)$ steps and a more careful analysis easily shows that the step can be implemented to run in $O(m)$ time. Hence, in fact the running time of their algorithm is $O(m n)$.

The above algorithm also yields a min-max relation as a by-product. Denote the maximum size of a triangle-free 2-matching in G by $\nu_{2}^{3}(G)$.

Definition 3. A triangle cluster is a connected graph whose edges partition into disjoint triangles such that any two triangles have at most one node in common and if such a node exists, it is an articulation point of the cluster. (See Fig.1.2(b) for an example.)

Fig. 1. (a) A perfect basic 2-matching. (b) A triangle cluster.

Let cluster (H) be the number of the connected components of H that are triangle clusters.

Theorem 2. $\quad \nu_{2}^{3}(G):=\min _{U \subseteq V G}(|V G|+|U|-\operatorname{cluster}(G-U))$.
One may notice a close similarity between Theorem 2 and Theorem 1 .

1.3 Our Contribution

The goal of the present paper is to devise a faster algorithm for constructing a maximum triangle-free 2-matching. We give a number of results that improve the above-mentioned $O(m n)$ time bound.

Firstly, let G be an arbitrary undirected graph. We claim that the direct augmenting approach of Cornuéjols and Pulleyblank is, in fact, superfluous. In Section 2 we show how one can compute a maximum triangle-free 2-matching with the help of the Edmonds-Gallai decomposition [LP86, Sec. 3.2]. The resulting algorithm runs in $O(m \sqrt{n})$ time (assuming that the maximum matching in G is computed by the algorithm of Micali and Vazirani (MV80). Also, this approach directly yields Theorem 2,

Secondly, there are some well-known results on matchings in regular graphs.

Theorem 3. Every 3-regular bridgeless graph has a perfect matching.
Theorem 4. Every regular bipartite graph has a perfect matching.
The former theorem is usually credited to Petersen while the second one is an easy consequence of Hall's condition.

Theorem 5 (Cole, Ost, Schirra COS01]). There exists a linear time algorithm that finds a perfect matching in a regular bipartite graph.

Theorem 4 and Theorem 5 imply the following:
Corollary 1. Every regular graph has a perfect 2-matching. The latter 2matching can be found in linear time.

In Section 3 we consider the analogues of Corollary 1 with 2-matchings replaced by triangle-free 2 -matchings. We prove that every d-regular graph $(d \geq 3)$ has a perfect triangle-free 2-matching. This result gives a simple and natural strengthening to the non-algorithmic part of Corollary 1 .

As for the complexity of finding a perfect 2-matching in a d-regular graph it turns out heavily depending on d. The ultimate goal is a linear time algorithm but we are only able to fulfill this task for $d=3$. The case of even $d(d \geq 4)$ turns out reducible to $d=4$, so the problem is solvable in $O\left(m+n^{3 / 2}\right)$ time by the use of the general algorithm (since $m=O(n)$ for 4-regular graphs). The case of odd $d(d \geq 5)$ is harder, we give an $O\left(n^{2}\right)$-time algorithm, which improves the general time bound of $O(m \sqrt{n})$ when $m=\omega\left(n^{3 / 2}\right)$.

2 General Graphs

2.1 Factor-Critical Graphs, Matchings, and Decompositions

We need several standard facts concerning maximum matchings (see LP86, Ch. 3] for a survey). For a graph G, let $\nu(G)$ denote the maximum size of a matching in G and $\operatorname{odd}(H)$ be the number of connected components of H with an odd number of vertices.

Theorem 6 (Tutte-Berge). $\nu(G)=\min _{U \subseteq V G} \frac{1}{2}(|V G|+|U|-\operatorname{odd}(G-U))$.
Definition 4. A graph G is factor-critical if for any $v \in V G, G-v$ admits a perfect matching.

Theorem 7 (Edmonds-Gallai). Consider a graph G and put

$$
\begin{aligned}
& D:=\{v \in V G \mid \text { there exists a maximum size matching missing } v\}, \\
& A:=\{v \in V G \mid v \text { is a neighbor of } D\} \\
& C:=V G-(A \cup D)
\end{aligned}
$$

Then $U:=A$ achieves the minimum in the Tutte-Berge formula, and D is the union of the odd connected components of $G[V G-A]$. Every connected component of $G[D]$ is factor-critical. Any maximum matching in G induces a perfect matching in $G[C]$ and a matching in $G[V G-C]$ that matches all nodes of A to distinct connected components of $G[D]$.

We note that once a maximum matching M in G is found, an Edmonds-Gallai decomposition of G can be constructed in linear time by running a search for an M-augmenting path. Most algorithms that find M yield this decomposition as a by-product. Also, the above augmenting path search may be adapted to produce an odd ear decomposition of every odd connected component of $G[V G-A]$:

Definition 5. An ear decomposition $G_{0}, G_{1}, \ldots, G_{k}=G$ of a graph G is a sequence of graphs where G_{0} consists of a single node, and for each $i=0, \ldots, k-$ 1, G_{i+1} obtained from G_{i} by adding the edges and the intermediate nodes of an ear. An ear of G_{i} is a path P_{i} in G_{i+1} such that the only nodes of P_{i} belonging to G_{i} are its (possibly coinciding) endpoints. An ear decomposition with all ears having an odd number of edges is called odd.

The next statement is widely-known and, in fact, comprises a part of the blossom-shrinking approach to constructing a maximum matching.
Lemma 1. Given an odd ear decomposition of a factor-critical graph G and a node $v \in V G$ one can construct in linear time a matching M in G that misses exactly the node v.

Finally, we classify factor-critical graphs depending on the existence of a perfect triangle-free 2-matching. The proof of the next lemma is implicit in CP83 and one can easily turn it into an algorithm:

Lemma 2. Each factor-critical graph G is either a triangle cluster or has a perfect triangle-free 2-matching x. Moreover, if an odd ear decomposition of G is known then these cases can be distinguished and x (if exists) can be constructed in linear time.

2.2 The Algorithm

For the sake of completeness, we first establish an upper bound on the size of a triangle-free 2-matching.

Lemma 3. For each $U \subseteq V G, \nu_{2}^{3}(G) \leq|V G|+|U|-\operatorname{cluster}(G-U)$.
Proof.
Removing a single node from a graph G may decrease $\nu_{2}^{3}(G)$ by at most 2 . Hence, $\nu_{2}^{3}(G) \leq \nu_{2}^{3}(G-U)+2|U|$. Also, $\nu_{2}^{3}(G-U) \leq(|V G|-|U|)-\operatorname{cluster}(G-$ $U)$ since every connected component of $G-U$ that is a triangle cluster lacks a perfect triangle-free 2 -matching. Combining these inequalities, one gets the desired result.

The next theorem both gives an efficient algorithm a self-contained proof of the min-max formula.

Theorem 8. A maximum triangle-tree 2-matching can be found in $O(m \sqrt{n})$ time.

Proof.
Construct an Edmonds-Gallai decomposition of G, call it (D, A, C), and consider odd ear decompositions of the connected components of $G[D]$. As indicated earlier, the complexity of this step is dominated by finding a maximum matching M in G. The latter can be done in $O(m \sqrt{n})$ time (see MV80).

The matching M induces a perfect matching M_{C} in $G[C]$. We turn M_{C} into double edges in the desired triangle-free 2-matching x by putting $x(e):=2$ for each $e \in M_{C}$.

Next, we build a bipartite graph H. The nodes in the upper part of H correspond to the components of $G[D]$, the nodes in the lower part of H are just the nodes of A. There is an edge between a component C and a node v in H if and only if there is at least one edge between C and v in G. Let us call the components that are triangle clusters bad and the others good. Consider another
bipartite graph H^{\prime} formed from H by dropping all nodes (in the upper part) corresponding to good components.

The algorithm finds a maximum matching $M_{H^{\prime}}$ in H^{\prime} and then augments it to a maximum matching M_{H} in H. This is done in $O(m \sqrt{n})$ time using Hopcroft-Karp algorithm HK73. It is well-known that an augmentation can only increase the set of matched nodes, hence every bad component matched by $M_{H^{\prime}}$ is also matched by M_{H} and vice versa. From the properties of EdmondsGallai decomposition it follows that M_{H} matches all nodes in A.

Each edge $e \in M_{H}$ corresponds to an edge $\widetilde{e} \in E G$, we put $x(\widetilde{e}):=2$.
Finally, we deal with the components of $G[D]$. Let C be a component that is matched (in M_{H}) by, say, an edge $e_{C} \in M_{H}$. As earlier, let \widetilde{e}_{C} be the preimage of e_{C} in G. Since C is factor-critical, there exists a matching M_{C} in C that misses exactly the node in C covered by \widetilde{e}_{C}. We find M_{C} in linear time (see Lemma (1) and put $x(e):=2$ for each $e \in M_{C}$.

As for the unmatched components, we consider good and bad ones separately. If an unmatched component C is good, we apply Lemma 2 to find (in linear time) and add to x a perfect triangle-free 2-matching in C. If C is bad, we employ Lemma 1 and find (in linear time) a matching M_{C} in C that covers all the nodes expect for an arbitrary chosen one and set $x(e):=2$ for each $e \in M_{C}$.

The running time of the above procedure is dominated by constructing the Edmonds-Gallai decomposition of G and finding matchings $M_{H^{\prime}}$ and M_{H}. Clearly, it is $O(m \sqrt{n})$.

It remains to prove that x is a maximum triangle-free 2 -matching. Let $n_{\text {bad }}$ be the number of bad components in $G[D]$. Among these components, let $k_{\text {bad }}$ be matched by $M_{H^{\prime}}$ (and, hence, by $\left.M_{H}\right)$. Then $\|x\|=|V G|-\left(n_{\text {bad }}-k_{\text {bad }}\right)$. From König-Egervary theorem (see, e.g., LP86) there exists a vertex cover L in H^{\prime} of cardinality $k_{\text {bad }}$ (i.e. a subset $L \subseteq V H^{\prime}$ such that each edge in H^{\prime} is incident to at least one node in L). Put $L=L_{A} \cup L_{D}$, where L_{A} are the nodes of L belonging to the lower part of H and L_{D} are the nodes from the upper part. The graph $G-L_{A}$ contains at least $n_{\text {bad }}-\left|L_{D}\right|$ components that are triangle clusters. (They correspond to the uncovered nodes in the upper part of H^{\prime}. Indeed, these components are only connected to L_{A} in the lower part.) Hence, putting $U:=L_{A}$ in Lemma 3 one gets $\nu_{2}^{3}(G) \leq|V G|+\left|L_{A}\right|-\left(n_{\text {bad }}-\left|L_{D}\right|\right)=$ $|V G|+|L|-n_{\text {bad }}=|V G|-\left(n_{\text {bad }}-k_{\text {bad }}\right)=\|x\|$. Therefore, x is a maximum triangle-free 2-matching, as claimed.

3 Regular Graphs

3.1 Existence of a Perfect Triangle-Free 2-Matching

Theorem 9. Let G be a graph with $n-q$ nodes of degree d and q nodes of degree $d-1(d \geq 3)$. Then, there exists a triangle-free 2-matching in G of size at least $n-q / d$.

Proof.

Consider an arbitrary subset $U \subseteq V G$. Put $t:=\operatorname{cluster}(G-U)$ and let C_{1}, \ldots, C_{t} be the triangle cluster components of $G-U$. Fix an arbitrary component $H:=C_{i}$ and let k be the number of triangles in H. One has $|V H|=2 k+1$. Each node of H is incident to either d or $d-1$ edges. Let q_{i} denote the number of nodes of degree $d-1$ in H. Since $|E H|=3 k$ it follows that $(2 k+1) d-6 k-q_{i}=d+(2 d-6) k-q_{i} \geq d-q_{i}$ edges of G connect H to U. Totally, the nodes in U have at least $\sum_{i=1}^{t}\left(d-q_{i}\right) \geq t d-q$ incident edges. On the other hand, each node of U has the degree of at most d, hence $t d-q \leq|U| d$ therefore $t-|U| \leq q / d$. By the min-max formula (see Theorem 2) this implies the desired bound.

Corollary 2. Every d-regular graph $(d \geq 3)$ has a perfect triangle-free 2matching.

3.2 Cubic graphs

For $d=3$ we speed up the general algorithm ultimately as follows:
Theorem 10. A a perfect triangle-free 2-matching in a 3-regular graph can be found in linear time.

Proof.
Consider a 3 -regular graph G. First, we find an arbitrary inclusion-wise maximal collection of node-disjoint triangles $\Delta_{1}, \ldots, \Delta_{k}$ in G. This is done in linear time by performing a local search at each node $v \in V G$. Next, we contract $\Delta_{1}, \ldots, \Delta_{k}$ into composite nodes z_{1}, \ldots, z_{k} and obtain another 3-regular graph G^{\prime} (note that G^{\prime} may contain multiple parallel edges).

Construct a bipartite graph H^{\prime} from G^{\prime} as follows. Every node $v \in V G^{\prime}$ is split into a pair of nodes v^{1} and v^{2}. Every edge $\{u, v\} \in E G^{\prime}$ generates edges $\left\{u^{1}, v^{2}\right\}$ and $\left\{v^{1}, u^{2}\right\}$ in H^{\prime}. There is a natural surjective many-to-one correspondence between perfect matchings in H^{\prime} and perfect 2-matchings in G^{\prime}. Applying the algorithm of Cole, Ost and Schirra COS01 to H^{\prime} we construct a perfect 2-matching x^{\prime} in G^{\prime} in linear time. As usual, we assume that x^{\prime} is basic, in particular x^{\prime} contains no circuit of length 2 (i.e. $\operatorname{supp}\left(x^{\prime}\right)$ contains no pair of parallel edges).

Our final goal is to expand x^{\prime} into a perfect triangle-free 2-matching x in G. The latter is done as follows. Consider an arbitrary composite node z_{i} obtained by contracting Δ_{i} in G. Suppose that a double edge e of x^{\prime} is incident to z_{i} in G^{\prime}. We keep the preimage of e as a double edge of x and add another double edge connecting the remaining pair of nodes in Δ_{i}. See Fig. 3.2(a).

Next, suppose that x^{\prime} contains an odd-length circuit C^{\prime} passing through z_{i}. Then, we expand z_{i} to Δ_{i} and insert an additional pair of edges to C^{\prime}. Note that the length of the resulting circuit C is odd and is no less than 5. See Fig. 3.2(b).

Clearly, the resulting 2-matching x is perfect. But why is it triangle-free? For sake of contradiction, suppose that Δ is a triangle in $\operatorname{supp}(x)$. Then, Δ is an

Fig. 2. Uncontraction of z_{i}.
odd circuit in x^{\prime} and no node of Δ is composite. Hence, Δ is a triangle disjoint from $\Delta_{1}, \ldots, \Delta_{k}-$ a contradiction.

Combining the above connection between triangle-free 2-matchings in G and 2-matchings in G^{\prime} with the result of Voorhoeve Voo79 one can prove the following:

Theorem 11. There exists a constant $c>1$ such that every 3-regular graph G contains at least c^{n} perfect triangle-free 2-matchings.

3.3 Even-degree graphs

To find a perfect triangle-free 2 -matching in a $2 k$-regular graph $G(k \geq 2)$ we replace it by a 4 -regular spanning subgraph and then apply the general algorithm.

Lemma 4. For each $2 k$-regular ($k \geq 1$) graph G there exists and can be found in linear time a 2-regular spanning subgraph.

Proof.

Since the degrees of all nodes in G are even, $E G$ decomposes into a collection of edge-disjoint circuits. This decomposition takes linear time. For each circuit C from the above decomposition we choose an arbitrary direction and traverse C in this direction turning undirected edges into directed arcs. Let \vec{G} denote the resulting digraph. For each node v exactly k arcs of \vec{G} enter v and exactly k arcs leave v.

Next, we construct a bipartite graph H from \vec{G} as follows: each node $v \in \vec{G}$ generates a pair of nodes $v^{1}, v^{2} \in V H$, each $\operatorname{arc}(u, v) \in A \vec{G}$ generates an edge $\left\{u^{1}, v^{2}\right\} \in E H$. The graph H is k-regular and, hence, contains a perfect matching M (which, by Theorem 5, can be found in linear time). Each edge of M corresponds to an arc of \vec{G} and, therefore, to an edge of G. Clearly, the set of the latter edges forms a 2-regular spanning subgraph of G.

Theorem 12. A perfect triangle-free 2-matching in a d-regular graph ($d=2 k$, $k \geq 2)$ can be found in $O\left(m+n^{3 / 2}\right)$ time.

Proof.

Consider an undirected $2 k$-regular graph G. Apply Lemma 4 and construct find a 2-regular spanning subgraph H_{1} of G. Next, discard the edges of H_{1} and reapply Lemma 4 thus obtaining another 2-regular spanning subgraph H_{2} (here we use that $k \geq 2)$. Their union $H:=\left(V G, E H_{1} \cup E H_{2}\right)$ is a 4-regular spanning subgraph of G. By Corollary 2 graph H still contains a perfect triangle-free 2matching x, which can be found by the algorithm from Theorem 8 , It takes $O(m)$ time to construct H and $O\left(n^{3 / 2}\right)$ time, totally $O\left(m+n^{3 / 2}\right)$ time, as claimed.

3.4 Odd-degree graphs

The case $d=2 k+1(k \geq 2)$ is more involved. We extract a spanning subgraph H of G whose node degrees are 3 and 4. A careful choice of H allows us to ensure that the number of nodes of degree 3 is $O(n / d)$. Then, by Theorem 9 subgraph H contains a nearly-perfect triangle-free 2-matching. The latter is found and then augmented to a perfect one with the help of the algorithm from CP80. More details follow.

Lemma 5. There exists and can be found in linear time a spanning subgraph H of graph G with nodes degrees equal to 3 and 4. Moreover, at most $O(n / d)$ nodes in H are of degree 3.

Proof.

Let us partition the nodes of G into pairs (in an arbitrary way) and add $n / 2$ virtual edges connecting these pairs. The resulting graph G^{\prime} is $2 k+2$-regular. (Note that G^{\prime} may contain multiple parallel edges.)

Our task is find a 4-regular spanning subgraph H^{\prime} of G^{\prime} containing at most $O(n / d)$ virtual edges. Once this subgraph is found, the auxiliary edges are dropped creating $O(n / d)$ nodes of degree 3 (recall that each node of G is incident to exactly one virtual edge).

Subgraph H^{\prime} is constructed by repeatedly pruning graph G^{\prime}. During this process graph G^{\prime} remains d^{\prime}-regular for some even d^{\prime} (initially $d^{\prime}:=d+1$).

At each pruning step we first examine d^{\prime}. Two cases are possible. Suppose d^{\prime} is divisible by 4 , then a large step is executed. The graph G^{\prime} is decomposed into a collection of edge-disjoint circuits. In each circuit, every second edge is marked as red while others are marked as blue. This red-blue coloring partitions G^{\prime} into a pair of spanning $d^{\prime} / 2$-regular subgraphs. We replace G^{\prime} by the one containing the smallest number of virtual edges. The second case (which leads to a small step) applies if d^{\prime} is not divisible by 4 . Then, with the help of Lemma 4 a 2-regular spanning subgraph is found in G^{\prime}. The edges of this subgraph are removed from G^{\prime}, so d^{\prime} decreases by 2 .

The process stops when d^{\prime} reaches 4 yielding the desired subgraph H^{\prime}. Totally, there are $O(\log d)$ large (and hence also small) steps each taking time proportional to the number of remaining edges. The latter decreases exponentially, hence the total time to construct H^{\prime} is linear.

It remains to bound the number of virtual edges in H^{\prime}. There are exactly $t:=\left\lfloor\log _{2}(d+1) / 4\right\rfloor$ large steps performed by the algorithm. Each of the latter decreases the number of virtual edges in the current subgraph by at least a factor of 2. Hence, at the end there are $O\left(n / 2^{t}\right)=O(n / d)$ virtual edges in H^{\prime}, as required.

Theorem 13. A perfect triangle-free 2-matching in a d-regular graph ($d=$ $2 k+1, k \geq 2$) can be found in $O\left(n^{2}\right)$ time.

Proof.

We apply Lemma 5 and construct a subgraph H in $O(m)$ time. Next, a maximum triangle-free 2-matching x is found in H, which takes $O\left(|E H| \cdot|V H|^{1 / 2}\right)=$ $O\left(n^{3 / 2}\right)$ time. By Theorem 9 the latter 2-matching obeys $n-\|x\|=O(n / d)$. To turn x into a perfect triangle-free 2-matching in G we apply the algorithm from CP80 and perform $O(n / d)$ augmentation steps. Each step takes $O(m)$ time, so totally the desired perfect triangle-free 2 -matching is constructed in $O\left(m+n^{3 / 2}+m n / d\right)=O\left(n^{2}\right)$ time.

Acknowledgements

The authors are thankful to Andrew Stankevich for fruitful suggestions and helpful discussions.

References

COS01. R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in $O(E \log D)$ time. Combinatorica, Vol. 21:5-12, 2001.
CP80. G. Cornuéjols and W. R. Pulleyblank. Perfect triangle-free 2-matchings. Mathematical Programming Studies, Volume 13:1-7, 1980.
CP83. G. Cornuéjols and W. R. Pulleyblank. Critical graphs, matchings and tours or a hierarchy of relaxations for the travelling salesman problem. Combinatorica, 3(1):35-52, 1983.
HK73. J. E. Hopcroft and R. M. Karp. An $n^{5 / 2}$ algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225-231, 1973.
LP86. L. Lovász and M. D. Plummer. Matching Theory. Akadémiai Kiadó - North Holland, Budapest, 1986.
MV80. S. Micali and V. Vazirani. An $O(\sqrt{|V|} \cdot|E|)$ algorithm for finding maximum matching in general graphs. Proc. 21st IEEE Symp. Foundations of Computer Science, pages 248-255, 1980.
Sch03. A. Schrijver. Combinatorial Optimization. Springer, Berlin, 2003.
Voo79. M. Voorhoeve. A lower bound for the permanents of certain (0,1)-matrices. Nederl. Akad. Wetensch. Indag. Math., 41(1):83-86, 1979.

[^0]: * Email: max@adde.math.msu.su. Supported by RFBR grant 09-01-00709-a
 ** Email: agusakov@gmail.com
 *** Email: ilyaraz@gmail.com

