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Abstract

For any two vertices u and v in a connected graph G, a u − v path is a monophonic path if 
it contains no chords, and the monophonic distance d

m
(u, v) is the length of a longest u − v 

monophonic path in G. For any vertex v in G, the monophonic eccentricity of v is e
m
(v) = 

max {d
m
(u, v) : u ∈ V}. The subgraph induced by the vertices of G having minimum mono-

phonic eccentricity is the monophonic center of G, and it is proved that every graph is the 
monophonic center of some graph. Also it is proved that the monophonic center of every 
connected graph G lies in some block of G. With regard to convexity, this monophonic 
distance is the basis of some detour monophonic parameters such as detour monophonic 
number, upper detour monophonic number, forcing detour monophonic number, etc. The 
concept of detour monophonic sets and detour monophonic numbers by fixing a vertex 
of a graph would be introduced and discussed. Various interesting results based on these 
parameters are also discussed in this chapter.

Keywords: monophonic path, monophonic distance, detour monophonic number, 
upper detour monophonic number, forcing detour monophonic number, vertex detour 
monophonic number, upper vertex detour monophonic number, forcing vertex detour 
monophonic number

1. Introduction

In this chapter, we consider a finite connected graph G = (V(G), E(G)) having no loops and mul-

tiple edges. The order and size of G are denoted by p and q, respectively. Distance in graphs is 

a wide branch of graph theory having numerous scientific and real-life applications. There are 
many kinds of distances in graphs found in literature. For any two vertices u and v in G, the dis-

tance d(u, v) from u to v is defined as the length of a shortest u − v path in G. The eccentricity e(v) 

of a vertex v in G is the maximum distance from v to a vertex of G. The radius rad G of G is the 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



minimum eccentricity among the vertices of G, while the diameter diam G of G is the maximum 

eccentricity among the vertices of G. The distance between two vertices is a fundamental concept 

in pure graph theory, and this distance is a metric on the vertex set of G. More results related to 

this distance are found in Refs. [1–9]. This distance is used to study the central concepts like cen-

ter, median, and centroid of a graph [10–22]. With regard to convexity, this distance is the basis of 

some geodetic parameters such as geodetic number, connected geodetic number, upper geodetic 

number and forcing geodetic number [23–32]. The geodesic graphs, extremal graphs, distance 

regular graphs and distance transitive graphs are some important classes based on the distance 

in graphs [33, 34]. These concepts have interesting applications in location theory and convexity 

theory. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent 

with v. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete.

The detour distance, which is defined to be the length of a longest path between two vertices 
of a graph, is also a metric on the vertex set of G [35, 36]. For any two vertices u and v in G, the 

detour distance D(u, v) from u to v is defined as the length of a longest u − v path in G. The detour 

eccentricity e
D
(v) of a vertex v in G is the maximum detour distance from v to a vertex of G. The 

detour radius rad
D
 G of G is the minimum detour eccentricity among the vertices of G, while the 

detour diameter diam
D
 G of G is the maximum detour eccentricity among the vertices of G. With 

regard to detour convexity, the detour number of a graph was introduced and studied in Refs. 

[25, 37]. The detour concepts and colorings are widely used in the channel assignment prob-

lem in FM radio technology and also in certain molecular problems in theoretical chemistry.

The parameter geodetic (detour) number of a graph is global in the sense that there is exactly 

one geodetic (detour) number for a graph. The concept of geodetic (detour) sets and geodetic 

(detour) numbers by fixing a vertex of a graph was also introduced and discussed in Refs. 
[38–42]. With respect to each vertex of a graph, there is a geodetic (detour) number, and so 

there will be at most as many geodetic (detour) numbers as there are vertices in the graph.

2. Monophonic distance

Definition 2.1. A chord of a path u
1
, u

2
,…, u

n
 in a connected graph G is an edge u

i
 u

j
 with j ≥ i + 2.  

A u − v path P is called a monophonic path if it is a chordless path. The length of a longest u − v 

monophonic path is called the monophonic distance from u to v, and it is denoted by d
m
(u, v). A u − v 

monophonic path with its length equal to d
m
(u, v) is known as a u − v monophonic.

Example 2.2. Consider the graph G given in Figure 1. It is easily verified that d(v
1
, v

4
) = 2, D(v

1
, 

v
4
) = 6, and d

m
(v

1
, v

4
) = 4. Thus the monophonic distance is different from both the distance and 

the detour distance. The monophonic path P : v
1
, v

2
, v

8
, v

7
, v

4
 is v

1
 − v

4
 monophonic while the 

monophonic path Q : v
1
, v

3
, v

4
 is not v

1
 − v

4
 monophonic.

The usual distance d and the detour distance D are metrics on the vertex set V of a connected 

graph G, whereas the monophonic distance d
m
 is not a metric on V. For the graph G given in 

Figure 1, d
m
(v

4
, v

6
) = 5, d

m
(v

4
, v

5
) = 1 and d

m
(v

5
, v

6
) = 1. Hence d

m
(v

4
, v

6
) > d

m
(v

4
, v

5
) + d

m
(v

5
, v

6
), and 

so the triangle inequality is not satisfied.
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The following result is an easy consequence of the respective definitions.

Proposition 2.3. Let u and v be any two vertices in a graph G of order p. Then

 0 ≤ d (u, v)  ≤  d  
m
   (u, v)  ≤ D (u, v)  ≤ p − 1. 

Result 2.4. Let u and v be any two vertices in a connected graph G. Then

(i) d
m
(u, v) = 0 if and only if u = v.

(ii) d
m
(u, v) = 1 if and only if uv is an edge of G.

(iii) d
m
(u, v) = p − 1 if and only if G is the path with endvertices u and v.

(iv) d(u, v) = d
m
(u, v) = D(u, v) if and only if G is a tree.

Definition 2.5. For any vertex v in a connected graph G, the monophonic eccentricity of v is e
m
(v) = 

max {d
m
(u, v) : u ∈ V}. A vertex u of G such that d

m
(u, v) = e

m
(v) is called a monophonic eccentric vertex 

of v. The monophonic radius and monophonic diameter of G are defined by rad
m
 G = min {e

m
(v) : v ∈ V} 

and diam
m
 G = max {e

m
(v) : v ∈ V}, respectively.

Example 2.6. Table 1 shows the monophonic distance between the vertices and also the 

 monophonic eccentricities of vertices of the graph G given in Figure 1. It is to be noted that 

rad
m
 G = 3 and diam

m
 G = 5.

Remark 2.7. In any connected graph, the eccentricity of every two adjacent vertices differs by 
at most 1. However, this is not true in the case of monophonic distance. For the graph G given 

in Figure 1, e
m
(v

5
) = 3 and e

m
(v

6
) = 5.

Note 2.8. Any two vertices u and v in a tree T are connected by a unique path, and so 

d(u, v) = d
m
(u, v) = D(u, v). Hence rad T = rad

m
 T = rad

D
 T and diam T = diam

m
 T = diam

D
 T. 

The monophonic radius and the monophonic diameter of some standard graphs are given 

in Table 2.

Figure 1. The graph G in Example 2.2.
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The next theorem follows from Proposition 2.3.

Theorem 2.9. For a connected graph G, the following results hold:

a. e(v) ≤ e
m
(v) ≤ e

D
(v) for any vertex v in G.

b. rad G ≤ rad
m
 G ≤ rad

D
 G.

c. diam G ≤ diam
m
 G ≤ diam

D
 G.

Theorem 2.10. (a) If a, b and c are integers with 3 ≤ a ≤ b ≤ c, then there exists a connected graph 

G such that rad G = a, rad
m
 G = b and rad

D
 G = c.

(b) If a, b and c are integers with 5 ≤ a ≤ b ≤ c, then there exists a connected graph G such that 
diam G = a, diam

m
 G = b and diam

D
 G = c.

Proof. (a) The result is proved by considering three cases.

Case (i) 3 ≤ a = b = c. Consider G = P
2a + 1

, the path of order 2a + 1. It is clear that rad G = 

rad
m
 G = rad

D
 G = a.

Graph G K
p

C
p

W
1,p−1

 (p ≥ 4) K
1,p−1

 (p ≥ 2) K
m,n

 (m,n ≥ 2) P
p

rad
m
 G 1 p − 2 1 1 2

  ⌊  
p

 
__

 
2
  ⌋  

diam
m
 G 1 p − 2 p − 3 2 2 p − 1

Table 2. Monophonic radius and monophonic diameter of some standard graphs.

d
m
(v

i
, v

j
) v

1
v

2
v

3
v

4
v5 v

6
v

7
v

8
e
m
(v)

v
1

0 1 1 4 1 4 3 4 4

v
2

1 0 4 3 1 5 4 1 5

v
3

1 4 0 1 2 4 4 4 4

v
4

4 3 1 0 1 5 1 4 5

v
5

1 1 2 1 0 1 3 3 3

v
6

4 5 4 5 1 0 1 1 5

v
7

3 4 4 1 3 1 0 1 4

v
8

4 1 4 4 3 1 1 0 4

Table 1. Monophonic eccentricities of the vertices of the graph G in Figure 1.
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Case (ii) 3 ≤ a ≤ b < c. Let F
1
 : u

1
, u

2
,…, ua−1

 and F
2
 : v

1
, v

2
,…, va−1

 be two copies of the path Pa−1
 

of order a − 1. Let F
3
 : w

1
, w

2
,…, wb−a+3

 and F
4
 : z

1
, z

2
,…, zb−a+3

 be two copies of the path Pb−a+3
 of 

order b−a+3, and F
5
 = Kc−b+1

 the complete graph of order c − b + 1 with V(F
5
) = {x

1
, x

2
,…, xc−b+1

}. We 

construct the graph G as follows: (i) identify the vertices x
1
 in F

5
 and w

1
 in F

3
; also identify the 

vertices xc−b+1
 in F

5
 and z

1
 in F

4
; (ii) identify the vertices wb−a+3

 in F
3
 and u

2
 in F

1
, and identify the 

vertices zb−a+3
 in F

4
 and v

2
 in F

2
; and (iii) join each vertex w

i
 (1 ≤ i ≤ b−a+2) in F

3
 and u

1
 in F

1
, and 

join each vertex z
i
 (1 ≤ i ≤ b−a+2) in F

4
 and v

1
 in F

2
. The resulting graph G is shown in Figure 2.  

It is easily verified that e(v) = a if v ∈ V(F
5
); e(v) > a if v ∈ V(G) − V(F

5
), e

m
(v) = b if v ∈ V(F

5
); e

m
(v) > b  

if v ∈ V(G) − V(F
5
) and e

D
(v) = c if v ∈ V(F

5
); and e

D
(v) > c if v ∈ V(G) − V(F

5
). It follows that 

rad G = a, rad
m
 G = b, and rad

D
 G = c.

Case (iii) 3 ≤ a < b = c. Let E
1
 : v

1
, v

2
,…, v

2a+1
 be a path of order 2a + 1. Let E

2
 : u

1
, u

2
,…, ub−a+3

 and 

E
3
: w

1
, w

2
,…, wb−a+3

 be two copies of the path Pb−a+3
 of order b − a + 3, and let E

i
 (4 ≤ i ≤ 2(b − a) + 3) be 

2(b − a) copies of K
1
. We construct the graph G as follows: (i) identify the vertices v

a+1
 in E

1
, u

1
 in 

E
2
, and w

1
 in E

3
; (ii) identify the vertices va−1

 in E
1
 and ub−a+3

 in E
2
, and identify the vertices v

a+3
 in E

1
 

and wb−a+3
 in E

3
; and (iii) join each E

i
 (4 ≤ i ≤ b − a + 3) with v

a+1
 in E

1
 and ui−1

 in E
2
, and join each E

i
  

(b − a + 4 ≤ i ≤ 2(b − a) + 3) with v
a+1

 in E
1
 and wi−b+a−1

 in E
3
. The resulting graph G is shown in Figure 3.

Figure 2. A graph G in Case (ii) of Theorem 2.10(a).

Figure 3. A graph G in Case (iii) of Theorem 2.10(a).
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It is easily verified that e(v
a+1

) = a; e(v) > a if v ∈ V(G) − {v
a+1

}; e
m
(v

a+1
) = b; e

m
(v) > b if v ∈ V(G) − {v

a+1
}, 

and e
D
(v

a+1
) = c; and e

D
(v) > c if v ∈ V(G) − {v

a+1
}. It follows that rad G = a, rad

m
 G = b, and rad

D
 G = c.

(b) This result is also proved by considering three cases.

Case (i) 5 ≤ a = b = c. Let G be a path of order a+1. Then diam G = diam
m
 G = diam

D
 G = a.

Case (ii) 5 ≤ a ≤ b < c. Let F
1
 : u

1
, u

2
,…, ua−1

 be the path Pa−1
 of order a − 1; F

2
 : w

1
, w

2
,…, wb−a+3

 be 

the path Pb−a+3
 of order b − a + 3; and F

3
 = Kc−b+1

 be the complete graph of order c − b +1 with V (F
3
) 

= {x
1
, x

2
,…, xc−b+1

}. We construct the graph G as follows: (i) identify the vertices x
1
 in F

3
 and w

1
 

in F
2
, and identify the vertices wb−a+3

 in F
2
 and u

2
 in F

1
, and (ii) join each vertex w

i
 (1 ≤ i ≤ b −  

a + 2) in F
2
 and u

1
 in F

1
. The resulting graph G is shown in Figure 4. It is easily verified that e(v) =  

a if v ∈ (V(F
3
) − {x

1
}) ∪ {ua−1

}; e(v) < a if v ∈ V(F
2
) ∪ (V(F

1
) − {ua−1

}), and e
m
(v) = b if v ∈ (V(F

3
) − {x

1
}) ∪ {ua−1

};   

e
m
(v) < b if v ∈ V(F

2
) ∪ (V(F

1
) − {ua−1

}), and e
D
(v) = c if v ∈ (V(F

3
) − {x

1
}) ∪ {ua−1

}; and e
D
(v) < c if v ∈ 

V(F
2
) ∪ (V(F

1
) − {ua−1

}). It follows that diam G = a, diam
m
 G = b and diam

D
 G = c.

Case (iii) 5 ≤ a < b = c. Let E
1
 : v

1
, v

2
,…, v

a+1
 be a path of order a + 1; E

2
 : w

1
, w

2
,…, wb−a+3

 be another 

path of order b − a + 3; and E
i
 (3 ≤ i ≤ b − a + 2) be b − a copies of K

1
. Let G be the graph obtained from 

E
i
 for i = 1, 2,…, b − a + 2 by identifying the vertices va−2

 and v
a
 of E

1
 with w

1
 and wb−a+3

 of E
2
, respec-

tively, and joining each E
i
 (3 ≤ i ≤ b − a + 2) with va−2

 and w
i
. The graph G is shown in Figure 5.

Figure 4. A graph G in Case (ii) of Theorem 2.10(b).

Figure 5. A graph G in Case (iii) of Theorem 2.10(b).
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It is easily verified that e(v) = a if v ∈ {v
1
, v

a+1
}; e(v) ≤ a if v ∈ V(G) − {v

1
, v

a+1
}, and e

m
(v) = b if v ∈ {v

1
, 

v
a+1

}; e
m
(v) ≤ b if v ∈ V(G) − {v

1
, v

a+1
}, and e

D
(v) = c if v ∈ {v

1
, v

a+1
}; and e

D
(v) ≤ c if v ∈ V(G) − {v

1
, v

a+1
}. 

It follows that rad G = a, rad
m
 G = b and rad

D
 G = c.

For any connected graph G, the inequalities rad G ≤ diam G ≤ 2 rad G and rad
D
 G ≤ diam

D
 G ≤ 2 

rad
D
 G hold. However, this is not true in the case of monophonic radius and monophonic diam-

eter. For example, when the graph G is the wheel W
1,p−1

 (p ≥ 6), it is easily seen that rad
m
 G = 1 and 

diam
m
 G = p − 3 ≥ 3 so that diam

m
 G > 2 rad

m
 G.

It is proved in Ref. [6] that if a and b are any two positive integers such that a ≤ b ≤ 2a, then 

there is a connected graph G with rad G = a and diam G = b. Also, it is proved in Ref. [35] that 

if a and b are any two positive integers such that a ≤ b ≤ 2a, then there is a connected graph G 

with rad
D
 G = a and diam

D
 G = b.

Now, the following theorem gives a realization result for rad
m
 G ≤ diam

m
 G.

Theorem 2.11. If a and b are positive integers with a ≤ b, then there exists a connected graph G such 
that rad

m
 G = a and diam

m
 G = b.

Proof. This result is proved by considering three cases.

Case (i) a = b ≥ 1. Let G be the cycle C
a+2

. Then rad
m
 G = a and diam

m
 G = b.

Case (ii) a < b ≤ 2a. Let C
1
 : u

1
, u

2
,…, u

a+2
, u

1
 be a cycle of order a + 2 and C

2
 : v

1
, v

2
,…, vb−a+2

, v
1
 be 

a cycle of order b − a + 2. Let G be the graph obtained by identifying the vertex u
1
 of C

1
 and v

1
 

of C
2
. Since b ≤ 2a, it follows that b − a + 2 ≤ a + 2. It is clear that d

m
(u

1
, x) ≤ a for any x in G and 

d
m
(u

1
, u

a+1
) = a. Therefore, e

m
(u

1
) = a. Also, it is clear that there is no vertex x with e

m
(x) < a and 

so rad
m
 G = a. It is clear that d

m
(u

3
, v

3
) = b and d

m
(u

3
, x) ≤ b for any vertex x in G and so e

m
(u

3
) = b. 

Also, it is easy to see that e
m
(x) ≤ b for every vertex x in G so that diam

m
 G = b.

Case (iii) b > 2a. Let G be the graph obtained by identifying the central vertex of the wheel W = 

K
1
 + C

b+2
 (b ≥ 2) and an endvertex of the path P

2a
. Since b > 2a, e

m
(x) = b for any vertex x ∈ V(C

b+2
). 

Also, a ≤ e
m
(x) ≤ 2a for any vertex x ∈ V(P

2a
) and e

m
(v

a
) = a. Hence rad

m
 G = a and diam

m
 G = b.

2.1. Monophonic center and monophonic periphery

Definition 2.12. A vertex v in a connected graph G is called a monophonic central vertex if e
m
(v) = 

rad
m
 G, and the subgraph induced by the monophonic central vertices of G is the monophonic 

center C
m
(G) of G. A vertex v in G is called a monophonic peripheral vertex if e

m
(v) = diam

m
 G, and 

the subgraph induced by the monophonic peripheral vertices of G is the monophonic periphery  
P

m
(G) of G.

Example 2.13. Consider the graph G given in Figure 1. It is easily verified that v
5
 is the mono-

phonic central vertex and v
2
, v

4
, and v

6
 are the monophonic peripheral vertices of G.

Remark 2.14. The monophonic center of a connected graph need not be connected. For the 

graph G given in Figure 6, C
m
(G) = {v

3
, v

6
}.

Theorem 2.15. Every graph is the monophonic center of some connected graph.
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Proof. Let G be a graph. We show that G is the monophonic center of some graph. Let l = d
m
 

be the monophonic diameter of G. Let P : u
1
, u

2
,…, ul and Q : v

1
, v

2
,…, vl be two copies of the 

path Pl. The required graph H given in Figure 7 is got from G, P, and Q by joining each vertex 

of G with u
1
 in P and v

1
 in Q. Then e

mH
(x) = d

m
 for each vertex x in G and d

m
 + 1 ≤ e

mH
(x) ≤ 2 d

m
 

for each vertex x not in G. Therefore, V(G) is the set of monophonic central vertices of H and 

so C
m
(H) = G.

More specifically, it is proved in Ref. [43] that the center of every connected graph G lies in a 

single block of G. Also, it is proved in Ref. [35] that the detour center of every connected graph 

G lies in a single block of G. The same result is true for the monophonic center also, as proved 

in the following theorem.

Theorem 2.16. The monophonic center C
m
(G) of every connected graph G is a subgraph of some block 

of G.

Proof. Suppose that there is a connected graph G such that its monophonic center C
m
(G) is 

not a subgraph of a single block of G. Then G has a cut vertex v such that G − v contains two 

components H
1
 and H

2
, each containing vertices of C

m
(G). Let u be a vertex of G such that 

e
m
(v) = d

m
(u,v), and let P

1
 be a u − v longest monophonic path in G. Then at least one of H

1
 and H

2
  

contains no vertices of P
1
, say H

2
 contains no vertex of P

1
. Now, take a vertex w in C

m
(G) that 

belongs to H
2
, and let P

2
 be a v − w longest monophonic path in G. Since v is a cut vertex, P

1
 fol-

lowed by P
2
 gives a u − w longest monophonic path with its length greater than that of P

1
. This 

gives e
m
(w) > e

m
(v) so that w is not a monophonic central vertex of G, which is a contradiction.

Corollary 2.17. For any tree, the monophonic center is isomorphic to K
1
 or K

2
.

Figure 7. A graph H in Theorem 2.15.

Figure 6. A graph G in Remark 2.14.
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It is proved in Ref. [44] that a nontrivial graph G is the periphery of some connected graph if 

and only if every vertex of G has eccentricity 1 or no vertex of G has eccentricity 1. Also, it is 

proved in Ref. [35] that a connected graph G of order p ≥ 3 and radius 1 is the detour periphery 

of some connected graph if and only if G is Hamiltonian. A similar result is given in the next 

theorem, and for a proof, one may refer to Ref. [45].

Theorem 2.18. A nontrivial graph G is the monophonic periphery of some connected graph if and only 
if every vertex of G has monophonic eccentricity 1 or no vertex of G has monophonic eccentricity 1.

Definition 2.19. A connected graph G is monophonic self-centered if rad
m
 G = diam

m
 G, that is, if G 

is its own monophonic center.

Example 2.20. The complete graph K
n
, the cycle C

n
, and the complete bipartite graph K

m,n
 (m, n ≥ 2) 

are monophonic self-centered graphs.

The following problem is left open.

Problem 2.21. Characterize monophonic self-centered graphs.

Further results on monophonic distance in graphs can be found in Refs. [45, 46].

3. Detour monophonic number

Throughout this section, by a u − v detour monophonic path, we mean a longest u − v mono-

phonic path.

Definition 3.1. A set S of vertices of a connected graph G is called a detour monophonic set if every 
vertex of G lies on a u − v detour monophonic path for some u, v ∈ S. The detour monophonic number 
of G is defined as the minimum cardinality of a detour monophonic set of G and is denoted by dm(G).

Example 3.2. For the graph G given in Figure 8, S
1
 = {v

1
, v

2
, v

3
}, S

2
 = {v

2
, v

3
, v

4
}, S

3
 = {v

5
, v

6
, v

2
},  

S
4
 = {v

5
, v

6
, v

3
}, S

5
 = {v

1
, v

3
, v

5
}, S

6
 = {v

1
, v

3
, v

6
}, S

7
 = {v

2
, v

4
, v

5
}, and S

8
 = {v

2
, v

4
, v

6
} are the minimum 

detour monophonic sets of G and so dm(G) = 3.

Figure 8. The graph G in Example 3.2.

Monophonic Distance in Graphs
http://dx.doi.org/10.5772/intechopen.68668

123



If a vertex belongs to every minimum detour monophonic set of G, then it is called a detour 

monophonic vertex of G. If S is the unique minimum detour monophonic set of G, then S is the 

set of all detour monophonic vertices of G. In the next theorem, we show that there are certain 

vertices in a nontrivial connected graph G that are detour monophonic vertices of G.

Theorem 3.3. Every detour monophonic set of a connected graph G contains all its extreme vertices. 
Moreover, if the set of all extreme vertices S of G is a detour monophonic set of G, then S is the unique 
minimum detour monophonic set of G.

Proof. Let v be an extreme vertex and let S be a detour monophonic set of G. If v is not an ele-

ment of S, then there exist two elements x and y in S such that v is an internal vertex of an x − y 

detour monophonic path, say P. Let u and w be the vertices on P adjacent to v. Then u and w 

are not adjacent and so v is not an extreme vertex of G, which is a contradiction. Therefore v 

belongs to every detour monophonic set of G. Thus, if S is the set of all extreme vertices of G, 

then dm(G) ≥ |S|. On the other hand, if S is a detour monophonic set of G, then dm(G) ≤ |S|. 
Therefore dm(G) = |S| and S is the unique minimum detour monophonic set of G.

The following two theorems are easy to prove.

Theorem 3.4. Let G be a connected graph with a cut vertex v and let S be a detour monophonic set of 
G. Then every component of G − v contains an element of S.

Theorem 3.5. No cut vertex of a connected graph G belongs to any minimum detour monophonic set of G.

Since every end-block B is a branch of G at some cut vertex, it follows Theorem 3.4 and 

Theorem 3.5 that every minimum detour monophonic set of G contains at least one vertex 

from B that is not a cut vertex. Thus the following corollaries are consequences of Theorems 

3.4 and 3.5.

Corollary 3.6. If G is a connected graph with k ≥ 2 end-blocks, then dm(G) ≥ k.

Corollary 3.7. If k is the maximum number of blocks to which a vertex in a graph G belongs, then 
dm(G) ≥ k.

Theorem 3.8. For any connected graph G, 2 ≤ dm(G) ≤ p.

Theorem 3.9. For any connected graph G, dm(G) = p if and only if G is complete.

Proof. Let dm(G) = p. Suppose that G is not a complete graph. Then there exist two vertices u 

and v such that u and v are not adjacent in G. Since G is connected, there is a detour mono-

phonic path from u to v, say P, with length at least 2. Clearly, (V(G) − V(P)) ∪ {u, v} is a detour 

monophonic set of G and hence dm(G) ≤ p − 1, which is a contradiction. Conversely, if G is 

complete, then by Theorem 3.3, dm(G) = p.

Theorem 3.10. If G is a nontrivial connected graph of order p and monophonic diameter d, then dm(G) 
≤ p − d + 1.

Proof. Let x, y ∈ V(G) such that G contains an x − y detour monophonic path P of length 

diam
m
 G = d. Let S = (V(G)−V(P)) ∪ {x, y}. Since S is a detour monophonic set of G, it follows that 

dm(G) ≤ |S| ≤ p − d + 1.
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Theorem 3.11. For every nontrivial tree T of order p and monophonic diameter d, dm(T) = p − d + 1 if 

and only if T is a caterpillar.

Proof. Let T be any nontrivial tree. Let P : u = v
0
, v

1
,…, v

d
 be a monophonic diametral path. Let 

k be the number of endvertices of T and let l be the number of internal vertices of T other than 

v
1
, v

2
,…, v

d−1. Then d − 1 + l + k = p. By Theorem 3.3 and Theorem 3.5, dm(T) = k and so dm(T) = 

p − d − l + 1. Hence dm(T) = p − d + 1 if and only if l = 0, if and only if all the internal vertices of 

T lie on the monophonic diametral path P, and if and only if T is a caterpillar.

It is known that rad
m
 G ≤ diam

m
 G for a connected graph G. It is proved in Ref. [45] that if a 

and b are any two positive integers such that a ≤ b, then there is a connected graph G with 

rad
m
 G = a and diam

m
 G = b. The same result can also be extended so that the detour mono-

phonic number can be prescribed when rad
m
 G < diam

m
 G, and for a proof, one may refer to 

Ref. [47].

Theorem 3.12. For positive integers r, d and n ≥ 4 with r < d, there exists a connected graph G with 
rad

m
 G = r, diam

m
 G = d and dm(G) = n.

Problem 3.13. For any three positive integers r, d and n ≥ 4 with r = d, does there exist a con-

nected graph G with rad
m
 G = r, diam

m
 G = d and dm(G) = n?

3.1. Upper detour monophonic number

Definition 3.14. A detour monophonic set S of a connected graph G is called a minimal detour 
monophonic set if no proper subset of S is a detour monophonic set of G. The maximum cardinality 
of a minimal detour monophonic set of G is the upper detour monophonic number of G, denoted by 
dm+(G).

Example 3.15. Consider the graph G given in Figure 8. The minimal detour monophonic sets 

are S
1
 = {v

1
, v

2
, v

3
}, S

2
 = {v

2
, v

3
, v

4
}, S

3
 = {v

5
, v

6
, v

2
}, S

4
 = {v

5
, v

6
, v

3
}, S

5
 = {v

1
, v

3
, v

5
}, S

6
 = {v

1
, v

3
, v

6
},  

S
7
 = {v

2
, v

4
, v

5
}, S

8
 = {v

2
, v

4
, v

6
} and S

9
 = {v

1
, v

4
, v

5
, v

6
}. For this graph, the upper detour mono-

phonic number is 4, and the detour monophonic number is 3.

Note 3.16. Every minimum detour monophonic set is a minimal detour monophonic set, but 

the converse is not true. For the graph G given in Figure 8, S
9
 is a minimal detour monophonic 

set, but it is not a minimum detour monophonic set of G.

The following three theorems are easy to prove.

Theorem 3.17. For any connected graph G, 2 ≤ dm(G) ≤ dm+(G) ≤ p.

Theorem 3.18. For a connected graph G, dm(G) = p if and only if dm+(G) = p.

Theorem 3.19. If G is a connected graph of order p with dm(G) = p − 1, then dm+(G) = p − 1.

The next theorem is an interesting realization result, and for a proof, one may refer to Ref. [48].

Theorem 3.20. For any three positive integers a, b and n with 2 ≤ a ≤ n ≤ b, there is a connected graph 
G with dm(G) = a, dm+(G) = b and a minimal detour monophonic set of cardinality n.
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3.2. Forcing detour monophonic number

A connected graph G may contain more than one minimum detour monophonic sets. For 

example, the graph G given in Figure 8 contains eight minimum detour monophonic sets. 

For each minimum detour monophonic set S in G, there is always some subset T of S that 

uniquely determines S as the minimum detour monophonic set containing T. Such sets are 

called “forcing detour monophonic subsets” and these sets are discussed in this section.

Definition 3.21. Let S be a minimum detour monophonic set of a connected graph G. A subset S′ of 
S is a forcing detour monophonic subset for S if S is the unique minimum detour monophonic set that 

contains S′. A forcing detour monophonic subset for S of minimum cardinality is a minimum forcing 
detour monophonic subset of S. The cardinality of a minimum forcing detour monophonic subset of S 
is the forcing detour monophonic number fdm(S) in G. The forcing detour monophonic number of G is 
fdm(G) = min {fdm(S)}, where the minimum is taken over all minimum detour monophonic sets S in G.

Example 3.22. For the graph G given in Figure 9, S
1
 = {z, w, v}, S

2
 = {z, w, u} and S

3
 = {z, w, x} are the 

minimum detour monophonic sets of G. It is clear that fdm(S
1
) = 1, fdm(S

2
) = 1 and fdm(S

3
) = 1 so that 

fdm(G) = 1. For the graph G given in Figure 10, S = {y, v} is the unique minimum detour monophonic 

set of G and so fdm(G) = 0.

The next theorem follows immediately from the definitions of the detour monophonic num-

ber and the forcing detour monophonic number of a graph G.

Theorem 3.23. For a connected graph G, 0 ≤ fdm(G) ≤ dm(G) ≤ p.

Figure 10. A graph G with fdm(G) = 0.

Figure 9. A graph G with fdm(G) = 1.
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The following theorem characterizes graphs G for which fdm(G) = 0, fdm(G) = 1 and fdm(G) = 

dm(G). The proof is an easy consequence of the definitions of the detour monophonic number 
and the forcing detour monophonic number.

Theorem 3.24. Let G be a connected graph. Then

(i) fdm(G) = 0 if and only if G contains exactly one minimum detour monophonic set.

(ii) fdm(G) = 1 if and only if G contains two or more minimum detour monophonic sets, one of which 
is a unique minimum detour monophonic set that contains one of its elements.

(iii) fdm(G) = dm(G) if and only if no minimum detour monophonic set of G is the unique minimum 
detour monophonic set that contains any of its proper subsets.

The next theorem gives a realization result for the parameters fdm(G) and dm(G), and for a 

proof, the reader may refer to Ref. [49].

Theorem 3.25. For every pair a, b of positive integers with 0 ≤ a < b and b ≥ 2, there exists a connected 

graph G such that fdm(G) = a and dm(G) = b.

Further results on detour monophonic concepts in graphs can be found in Refs. [47–50].

4. Vertex detour monophonic number

The parameter detour monophonic number of a graph is global in the sense that there is 

exactly one detour monophonic number for a graph. The concept of detour monophonic sets 

and detour monophonic numbers by fixing a vertex of a graph was also introduced and dis-

cussed in this section. With respect to each vertex of a graph, there is a detour monophonic 

number, and so there will be at most as many detour monophonic numbers as there are ver-

tices in the graph.

Definition 4.1. For any vertex x in a connected graph G, a set S
x
 of vertices in G is called an x-detour 

monophonic set if every vertex of G lies on an x − y detour monophonic path in G for some y in S
x
. The 

x-detour monophonic number of G, denoted by dm
x
(G), is defined to be the minimum cardinality of an 

x-detour monophonic set of G. An x-detour monophonic set of cardinality dm
x
(G) is called a dm

x
-set of G.

It is easy to observe that for any vertex x in G, x does not belong to any dm
x
-set of G.

Example 4.2. For the graph G given in Figure 11, the minimum vertex detour monophonic 

sets and the vertex detour monophonic numbers are given in Table 3.

The next two theorems are easy to prove.

Theorem 4.3. For any vertex x in a connected graph G, the following results hold.

(i) Every dm
x
-set of G contains all its extreme vertices other than the vertex x (whether x is extreme 

vertex or not).

(ii) No dm
x
-set of G contains a cut vertex of G.
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Theorem 4.4. For any vertex x in a connected graph G of order p, 1 ≤ dm
x
(G) ≤ p − 1.

Theorem 4.5. For any vertex x in a connected graph G of order p, dm
x
(G) = p − 1 if and only if 

deg x = p − 1.

Proof. Let x be any vertex in a connected graph G of order p. Let dm
x
(G) = p − 1. If deg x < p−1, 

then there is a vertex u in G that is not adjacent to x. Since G is connected, there is a detour 

monophonic path from x to u, say P, with length greater than or equal to 2. Then (V(G)−V(P)) 

∪ {u} is an x-detour monophonic set of G so that dm
x
(G) ≤ p − 2, which is a contradiction. 

Conversely, let deg x = p − 1. Hence x is adjacent to all other vertices of G. This shows that all 

these vertices form the dm
x
-set of G and so dm

x
(G) = p − 1.

Corollary 4.6. A graph G is complete if and only if dm
x
(G) = p − 1 for every vertex x in G.

4.1. Upper vertex detour monophonic number

Definition 4.7. Let x be any vertex of a connected graph G. An x-detour monophonic set S
x
 is called a 

minimal x-detour monophonic set if no proper subset of S
x
 is an x-detour monophonic set. The upper 

x-detour monophonic number is the maximum cardinality of a minimal x-detour monophonic set of G 
and is denoted by dm

x
+(G).

Example 4.8. For the graph G given in Figure 12, the minimum vertex detour monophonic 

sets the vertex detour monophonic numbers, the minimal vertex detour monophonic sets and 

the upper vertex detour monophonic numbers are given in Table 4.

Vertex Minimum vertex detour monophonic sets Vertex detour monophonic number

t {z,w} 2

y {w,z,t}, {w,z,u} 3

z {u,w}, {w,y} 2

u {w,z,y} 3

v {w,t,z}, {w,u,z} 3

w {t,z}, {z,u} 2

Table 3. Vertex detour monophonic numbers of the graph G in Figure 11.

Figure 11. The graph G in Example 4.2.
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Since every minimum x-detour monophonic set is a minimal x-detour monophonic set, we 

have 1 ≤ dm
x
(G) ≤ dm

x
+(G) ≤ p − 1. In view of this, we have the following theorems, and for 

proofs one may refer to Ref. [51].

Theorem 4.9. Let x be any vertex in a connected graph G of order p ≥ 3. If dm
x
(G) = 1, then dm

x
+(G) ≤  

p − 2.

Theorem 4.10. Let x be any vertex in a connected graph G. Then dm
x
(G) = p − 1 if and only if dm

x
+(G) =  

p − 1.

Theorem 4.11. For any four integers j, k, l and p with 2 ≤ j ≤ k ≤ l ≤ p − 7, there exists a connected 

graph G of order p with dm
x
(G) = j, dm

x
+(G) = l and a minimal x-detour monophonic set of cardinality k.

4.2. Forcing vertex detour monophonic number

Definition 4.12. Let x be any vertex of a connected graph G and let S
x
 be a minimum x-detour mono-

phonic set of G. A subset S′ of S
x
 is an x-forcing subset for S

x
 if S

x
 is the unique minimum x-detour 

monophonic set that contains S′. An x-forcing subset for S
x
 of minimum cardinality is a minimum 

x-forcing subset of S
x
. The cardinality of a minimum x-forcing subset of S

x
 is the forcing x-detour 

monophonic number fdm
x
(S

x
) in G. The forcing x-detour monophonic number of G is fdm

x
(G) = 

min { fdm
x
(S

x
)}, where the minimum is taken over all minimum x-detour monophonic sets S

x
 in G.

Figure 12. The graph G in Example 4.8.

Vertex x Minimum x-detour 

monophonic sets

dm
x
(G) Minimal x-detour  

monophonic sets

dm
x

+(G)

t {u,y}, {u,z} 2 {u,y}, {u,z} 2

u {t,y}, {t,z} 2 {t,y}, {t,z} 2

v {w,y}, {z,y} 2 {w,y}, {z,y}, {w,t,u} 3

w {z,y}, {z,v} 2 {z,y}, {z,v}, {v,t,u} 3

y {v,z}, {v,t}, {v,u} 2 {v,z}, {v,t}, {v,u}, {t,u,w} 3

z {w,y}, {w,t}, {w,u} 2 {w,y}, {w,t}, {w,u}, {v,t,u} 3

Table 4. Upper vertex detour monophonic numbers of the graph G in Figure 12.
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Definition 4.13. Let x be any vertex of a connected graph G. The upper forcing x-detour monophonic 
number, fdm

x
+(G), of G is the maximum forcing x-detour monophonic number among all minimum 

x-detour monophonic sets of G.

Example 4.14. For the graph G given in Figure 13, the minimum vertex detour monophonic 

sets, the vertex detour monophonic numbers, the forcing vertex detour monophonic sets, the 

forcing vertex detour monophonic numbers and the upper forcing vertex detour monophonic 

numbers are given in Table 5.

Theorem 4.15. For any vertex x in a connected graph G, 0 ≤ fdm
x
(G) ≤ fdm

x
+(G) ≤ dm

x
(G).

The following theorem gives a realization result for the parameters fdm
x
(G), fdm

x
+(G), dm

x
(G), 

and for a proof, one may refer to Ref. [52].

Theorem 4.16. For any three integers r, s and t with 2 ≤ r ≤ s ≤ t with 2r − s ≥ 0, there exists a con-

nected graph G with fdm
x
(G) = r, fdm

x
+(G) = s and dm

x
(G) = t for some vertex x in G.

There are useful applications of these concepts to security-based communication network 

design. In the case of designing the channel for a communication network, although all the 

vertices are covered by the network when considering detour monophonic sets, some of the 

edges may be left out. This drawback is rectified in the case of edge detour monophonic 
sets so that considering edge detour monophonic sets is more advantageous to real-life 

application of communication networks. The edge detour monophonic sets are discussed in 

Refs. [53–55].

Figure 13. The graph G in Example 4.14.

Vertex x dm
x
-sets dm

x
(G) x-forcing subsets fdm

x
(G) fdm

x
+(G)

t {v,w}, {y,z}, {w,y} 2 {v}, {z}, {w,y} 1 2

u {t,v,w}, {t,y,z}, {t,w,y} 3 {v}, {z}, {w,y} 1 2

v {t,z} 2 Φ 0 0

w {t,v}, {t,z} 2 {v}, {z} 1 1

y {t,v}, {t,z} 2 {v}, {z} 1 1

z {t,v} 2 Φ 0 0

Table 5. Forcing and upper forcing vertex detour monophonic numbers of the graph G in Figure 13.
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5. Conclusion

In this chapter, the new distance known as monophonic distance in a graph is introduced, 

and its properties are studied. Its relationship with the usual distance and detour distance 

is discussed. Various realization theorems are proved with regard to the radius (diameter), 

monophonic radius (monophonic diameter) and detour radius (detour diameter). Results 

regarding monophonic center and monophonic periphery of a graph are presented. Further, 

the concept of a detour monophonic set in a graph is introduced and its various properties 

are presented. Consequently, the parameters, viz., detour monophonic number, upper detour 

monophonic number and forcing detour monophonic number of a graph are introduced and 

studied. In a similar way, the vertex detour monophonic number, the upper vertex detour 

monophonic number and the forcing vertex detour monophonic number of a graph are intro-

duced and studied. Many interesting characterization theorems and also realization theo-

rems with regard to all these parameters are presented. The results presented in this chapter 

would help the researchers in graph theory to develop new results and applications to various 

branches of science.
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