
ar
X

iv
:1

00
6.

48
28

v1
 [

cs
.D

S]
 2

4
Ju

n
20

10

An Efficient Algorithm For Chinese Postman

Walk on Bi-directed de Bruijn Graphs

Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

Department of Computer Science and Engineering
University of Connecticut
Storrs, CT 06269, USA

{vamsik,rajasek,hieu}@engr.uconn.edu

Abstract. Sequence assembly from short reads is an important prob-
lem in biology. It is known that solving the sequence assembly problem
exactly on a bi-directed de Bruijn graph or a string graph is intractable.
However finding a Shortest Double stranded DNA string (SDDNA) con-
taining all the k-long words in the reads seems to be a good heuristic
to get close to the original genome. This problem is equivalent to find-
ing a cyclic Chinese Postman (CP) walk on the underlying un-weighted
bi-directed de Bruijn graph built from the reads. The Chinese Postman
walk Problem (CPP) is solved by reducing it to a general bi-directed
flow on this graph which runs in O(|E|2 log2(|V |)) time.

In this paper we show that the cyclic CPP on bi-directed graphs can be
solved without reducing it to bi-directed flow. We present a Θ(p(|V | +
|E|) log(|V |) + (dmaxp)

3) time algorithm to solve the cyclic CPP on
a weighted bi-directed de Bruijn graph, where p = max{|{v|din(v) −
dout(v) > 0}|, |{v|din(v) − dout(v) < 0}|} and dmax = max{|din(v) −
dout(v)}. Our algorithm performs asymptotically better than the bi-
directed flow algorithm when the number of imbalanced nodes p is much
less than the nodes in the bi-directed graph. From our experimental re-
sults on various datasets, we have noticed that the value of p/|V | lies
between 0.08% and 0.13% with 95% probability.

Many practical bi-directed de Bruijn graphs do not have cyclic CP walks.
In such cases it is not clear how the bi-directed flow can be useful in
identifying contigs. Our algorithm can handle such situations and identify
maximal bi-directed sub-graphs that have CP walks. A Θ(p(|V |+ |E|))
time heuristic algorithm based on these ideas has been implemented for
the SDDNA problem. This algorithm was tested on short reads from a
plant genome and achieves an approximation ratio of at most 1.0134. We
also present a Θ((|V |+ |E|) log(V)) time algorithm for the single source
shortest path problem on bi-directed de Bruijn graphs, which may be of
independent interest.

1 Introduction

Sequencing the human genome was one of the major scientific breakthroughs
in the last seven years. Analysis of the sequenced genome can give us vital

http://arxiv.org/abs/1006.4828v1

2 Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

information about the expression of genes, which in turn can help scientists
to develop drugs for diseases. Thus sequencing the genome of an organism is
of fundamental importance in both medicine and biology. Unfortunately the
technology used in major human genome sequencing projects – Human Genome
Project (HGP) [1] and Celera [2], was too expensive to be adopted in a large scale.
This led to the research on next-generation sequencing methods. Pyro-sequencing
technologies such as SOLiD, 454 and Solexa generate a large number of short
reads which are very accurate. Directed de Bruijn graph based sequence assembly
algorithms such as [3] and [4] seem to handle these short read data efficiently
compared to the string graph based algorithms (see e.g., [5]). Unfortunately
solving the sequence assembly problem exactly on both these graph models seems
intractable [6]. However heuristics such as finding a shortest string which includes
all the k-mers (sub strings of length k) seem to yield results close to the original
genome. In the case of directed de Bruijn graphs finding an Eulerian tour seems
to yield good results. If the graph is not Eulerian then a Chinese Postman
(CP) tour has been suggested in [4]. To account for the double strandedness of
the DNA molecule we need to simultaneously search for two complimentary CP
tours. In [6] the directed de Bruijn graphs are replaced with bi-directed de Bruijn
graphs to find two complimentary CP tours simultaneously. A CP tour on the
un-weighted bi-directed graph constructed from the reads serves as a solution
to the Shortest Double Stranded DNA string (SDDNA) problem. The solution
presented in [6] solves the SDDNA problem by reducing it to a general weighted
bi-directed flow problem. This algorithm runs in O(|E|2 log2(V)) time.

In this paper we present algorithms for SDDNA/CPP on bi-directed de
Bruijn graphs without using a bi-directed flow algorithm. Our algorithms are
based on identifying shortest bi-directed paths and use of weighted bi-partite
matching. Our algorithms perform asymptotically better than the bi-directed
flow algorithm when the imbalanced nodes in the bi-directed graphs are much
smaller in number than |V |. This restriction seems to be true in practice from
what we have observed in our experiments. On the other hand it turns out that
in many practical situations these bi-directed de Bruijn graphs fail to have cyclic
CP tours. In these cases it is not clear how the bi-directed flow algorithm [6] can
help us in identifying a set of contigs covering every k-long word at least once.
In contrast to this flow algorithm, our algorithm can be useful in obtaining a
minimal set of contigs when a cyclic CP tour does no exist. We now summa-
rize our results as follows. Firstly our deterministic algorithm to solve the cyclic
CPP on a general bi-directed graph takes Θ(p(|V | + |E|) log(|V |) + (dmax p)

3)
time, where dmax = max{|din(v) − dout(v)|, v ∈ V }, p = max{|V +|, |V −|},
V + = {v|v ∈ V, din(v) − dout > 0} and V − = {v|v ∈ V, din(v) − dout < 0}.
Secondly we solve the SDDNA problem on an un-weighted bi-directed de Bruijn
graph deterministically in Θ(p(|V |+ |E|)+(dmax p)

3) time. As a consequence we
also present a Θ((|V |+ |E|) log(V)) time single source shortest bi-directed path
algorithm, which may be of independent interest to some assembly algorithms
such as Velvet [3] – TourBus heuristic.

Fast CPP Algorithms 3

The organization of the paper is as follows. In Section 2 we provide some
preliminaries. Section 3 defines the CPP and SDDNA problems. In Section 4
we introduce our algorithm for single source shortest bi-directed paths, which is
used as a component in our main algorithm. The main algorithm is introduced
in Section 7 along with algorithms for several sub-problems. Section 9 briefly
explains how we can handle situations when the bi-directed graphs do not have
cyclic CP tours. A greedy algorithm that runs in Θ(p(|V |+ |E|) time is described
in Section 8. Finally experimental studies are reported in Section 10.

2 Preliminaries

Let s ∈ Σn be a string of length n. Any substring sj (i.e., s[j, . . . j + k − 1], n−
k + 1 ≥ j ≥ 1) of length k is called a k−mer of s. The set of all k−mer’s of a
given string s is called the k−spectrum of s and is denoted by S(s, k). Given a
k−mer sj , s̄j denotes the reverse compliment of sj (e.g., if sj = AAGTA then
s̄j = TACTT). Let ≤ be the partial ordering among the strings of equal length,
then si ≤ sj indicates that string si is lexicographically smaller than sj . Given
any k−mer si, let ŝi be the lexicographically smaller string between si and s̄i.
We call ŝi the canonical k−mer of si. More formally, if si ≤ s̄i then ŝi = si else
ŝi = s̄i. A k−molecule of a given k−mer si is a tuple (si, s̄i) consisting of si
and its reverse compliment s̄i, the first entry in this tuple is called the positive
strand and the second entry is called the negative strand.

A bi-directed graph is a generalized version of a standard directed graph. In
a directed graph every edge (–⊲ or ⊳–) has only one arrow head. On the other
hand, in a bi-directed graph every edge (⊳–⊲, ⊳–⊳,⊲–⊳ or ⊲–⊲) has two arrow
heads attached to it. Formally, let V be the set of vertices of a bi-directed graph,
E = {(vi, vj , o1, o2)|vi, vj ∈ V ∧o1, o2 ∈ {⊳,⊲}} is the set of bi-directed edges in
a bi-directed graph G(V,E). A walk w(vi, vj) between two nodes vi, vj ∈ V of a
bi-directed graph G(V,E) is a sequence vi, ei1 , vi1 , ei2 , vi2 . . . vim , eim+1 , vj , such
that for every intermediate vertex vil , 1 ≤ l ≤ m, the orientation of the arrow
heads on either side is opposite. To make this more clear let eil , vil , eil+1

be the
sub-sequence in the walkw(vi, vj), eil = (vil−1

, vil , o1, o2), eil+1
= (vil , vil+1

, o1, o2)
then for the walk to be valid eil .o2 = eil+1

.o1. If vj = vi and ei1 .o1 = eim+1 .o2
then the walk is called cyclic. A walk on the bi-directed graph is referred to as
a bi-directed walk. We define a orientation function O : V 2 → {⊲,⊳}2 which
gives the orientation of the bi-directed edge between a pair of vertices – if one
exists . For instance if (vi, vj ,⊳,⊲) is a bi-directed edge between vi and vj then
O(vi, vj) = ⊳ − ⊲. An edge which is adjacent on a vertex with a orientation
⊲ (⊳) is called an incoming (outgoing) edge. The incoming(outgoing) degree
of a vertex v is denoted by din(v) (dout(v)). A vertex v is called balanced iff
din(v) − dout(v) = 0. A vertex is called imbalanced iff |din(v) − dout(v)| > 0.
The imbalance of a vertex is called positive iff din(v) − dout(v) > 0. Similarly
a vertex is negative imbalanced iff din(v) − dout(v) < 0. A bi-directed graph is
called connected iff every pair of vertices have a bi-directed walk between them.

4 Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

A de Bruijn graphDk(s) of the order k on a given string s is defined as follows.
The vertex set V of Dk(s) is defined as the k−spectrum of s (i.e., V = S(s, k)).
We use the notation suf(vi, l)(pre(vi, l)) to denote the suffix(prefix) of length l
in string vi. The symbol . denotes concatenation between two strings. Finally the
set of directed edges E of Dk(s) is defined as follows E = {(vi, vj)|suf(vi, k −
1) = pre(vj , k − 1) ∧ vi[1].suf(vi, k − 1).vj [k] ∈ S(s, k + 1)}. We can further
generalize the definition of a de Bruijn graph Bk(S) on a set S = {s1, s2 . . . sn}
of strings, V = ∪n

i=1S(si, k) and E = {(vi, vj)|suf(vi, k−1) = pre(vj , k−1)∧∃ l :
vi[1].suf(vi, k − 1).vj [k] ∈ S(sl, k + 1)}.

To model the double strandedness of the DNA molecules we should also
consider the reverse compliments (S̄ = {s̄1, s̄2 . . . s̄n}) while we build the de
Bruijn graph. To address this a bi-directed de Bruijn graph BDk(S∪S̄) has been
suggested in [6]. The set of vertices V of BDk(S ∪ S̄) consists of all the possible
k−molecules from Σk. For every k+1−mer z ∈ S∪S̄, if x, y are the two k−mer’s
of z then an edge is introduced between the k−molecules (vi, vj) corresponding
to x and y. The orientations of the arrow heads on the edges is chosen as follows.
If both x, y are the positive strands in vi, vj an edge (vi, vj ,⊲,⊲) is introduced.
If x is a positive strand in vi and y is a negative strand in vj an edge (vi, vj ,⊲,⊳)
is introduced. Finally if x is a negative strand in vi and y is a positive strand in
vj an edge (vi, vj ,⊳,⊲) is introduced.

3 Problem Definitions

A Chinese Postman walk in a bi-directed graph is a bi-directed walk which visits
every edge at least once. A cyclic Chinese Postman walk of minimum cost on a
weighted bi-directed graph is denoted as CPW. The problem of finding a CPW
is referred to as CPP. The problem of finding a CPW on an un-weighted bi-
directed de Bruijn graph (of order k) constructed from a set of reads is called
the Shortest Double stranded DNA string (SDDNA) problem. In this paper we
give algorithms for the cyclic CPP and SDDNA problems.

4 Single Source Shortest Path Algorithm on a Bi-directed
de Bruijn Graph

We first present an algorithm for the single source shortest path problem on a
bi-directed de Bruijn graph. The bi-directed de Bruijn graph in the context of
sequence assembly has non-negative weights on the edges. This makes it possible
to extend the classic Dijkstra’s single source shortest path algorithm to these
graphs. In our algorithm we attach two labels for each vertex in the bi-directed
graph. Given a source vertex s, the algorithm initializes all the labels similar to
Dijkstra’s algorithm. In each stage of the algorithm a label with the smallest cost
is picked and some of labels corresponding to adjacent nodes are updated. The
only major difference between Dijkstra’s algorithm and our algorithm is the way
we update the labels. Dijkstra’s algorithm updates all the labels/nodes which

Fast CPP Algorithms 5

are adjacent to the smallest label/node currently picked. However our algorithm
updates only those labels/nodes which are consistent with the bi-directed walk
property.

We now give details of our algorithm and prove its correctness. Let G =
(V,E) be the bi-directed graph of interest. Also let s be the source and t be the
destination. We are interested in finding a shortest bi-directed walk from s to t.
We introduce two labels dist+[u], dist−[u] for every vertex u ∈ V . The algorithm
first initializes labels corresponding to the source (i.e. dist+[s] and dist−[s]) to
zero. Along with this labels of all the nodes adjacent to s are also initialized
with the corresponding edge weight. The orientation of the edge determines the
label we use for initialization. For instance, if (s, v) is a bi-directed edge with
⊲−⊳ as the orientation, the label dist−[v] is initialized with ws,v. On the other
hand dist−[v] is left uninitialized. In contrast, if the orientation of the edge is
⊲−⊲ then dist[v] is initialized to ws,v and dist−[v] is left uninitialized. All the
uninitialized labels contains ∞ by default.

In each iteration of the algorithm a label with the minimum cost is picked.
Since we have two types of labels, the minimum label can come from either dist+

or dist−. In the first case let u+ be the node corresponding to the minimum label
during the iteration. This intuitively means that we have a path from s to u+ and
the orientation of the edge adjacent to u+ in this path is either ⊳−⊲ or ⊲−⊲ –
we are going to prove this fact later in the correctness. On the other hand if u+

is different from the destination t, then u+ may possibly appear as an internal
node in the shortest bi-directed walk between s and t. In this case the path
through u+ should satisfy bi-directed walk constraint. Thus we should explore
only those node(s) adjacent to u+ with an edge(s) orientated as ⊲−⊳ or ⊲−⊲.
The orientation of the edge determines the type of the label we need to update
– similar to the label initialization. For instance let (u+, v) be an edge adjacent
on u+ with a orientation of ⊲ − ⊳. In this case we should use label dist−[v]
to make an update. Similarly if the orientation of the same edge is ⊲ −⊲ then
dist+[v] is used in the update process. Consistent with the classical terminology
of the Dijkstra’s algorithm, we refer to the minimum cost label picked in each
iteration as the permanent label. For instance if a label dist−[v] is picked to be
the minimum label in an iteration then we call dist[v] as the permanent label of
node v. Now to prove the correctness of the algorithm. It is sufficient to show
that the cost on the permanent label of a node in each iteration is the weight of
the shortest bi-directed path from s to that node.

Theorem 1. The permanent label of a node u ∈ V in each iteration of Algo-

rithm 1 is the weight of the shortest bi-directed path from s to u.

Proof. We prove the statement by induction on the number (n) of iterations in
Algorithm 1. We now prove the base case when n = 1. Since we have initialized
dist+[s] = dist−[s] = 0 and the values of the remaining both initialized and
uninitialized nodes are > 0; the first iteration picks s and zero is trivially the
cost of shortest bi-directed path form s to s.

6 Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

Algorithm 1: Algorithm to find the shortest bi-directed path from s to t

INPUT : Bi-directed graph G = (V,E) and two vertices s, t ∈ V
OUTPUT: Cost of the shortest bi-directed path between s and t

1

dist+[s] = dist−[s] = 02

dist+[v] = dist−[v] = ∞ ∀v ∈ V ∧ v 6= s3

4

while dist+ 6= φ or dist− 6= φ do5

u+ = minu{dist
+}6

u− = minu{dist
−}7

8

if u+ = t or u− = t then9

return min{dist+[u+], dist−[u−]}10

11

12

if dist+[u+] < dist−[u−] then13

U+ = {v|(u+, v) ∈ E ∧ (O)(u+, v) = ⊳−⊳)}}14

U− = {v|(u+, v) ∈ E ∧ (O)(u+, v) = ⊳−⊲)}}15

dist[u+] = dist+[u+]16

dist+ = dist+ − {u+}17

else18

U+ = {v|(u−, v) ∈ E ∧ (O)(u−, v) = ⊲−⊳)}}19

U− = {v|(u−, v) ∈ E ∧ (O)(u+, v) = ⊲−⊲)}}20

dist[u−] = dist−[u−]21

dist− = dist− − {u−}22

23

24

foreach u ∈ dist+ do25

dist+[u] = min{dist+[u], dist+[u+] + w[u+, u]}26

foreach u ∈ dist− do27

dist−[u] = min{dist−[u], dist−[u−] + w[u−, u]}28

29

30

return ∞31

Fast CPP Algorithms 7

4 6

5

3

(a)

1

3

4 2

(b)

1 2

Fig. 1. (a) node 4 contains two bi-directed walks from node 1, the green colored path
is the shortest.(b) the walk starting from node 1 and ending at node 1 is a Chinese
walk but not a cyclic Chinese walk.

Assume that the statement is true for n = 1 . . . k. As per the induction
hypothesis the permanent labels dist[s], dist[vi2] . . . dist[vik] correspond to the
costs of the shortest bi-directed paths between s and s, vi2 . . . vik .

Now let dist′[vik+1
] < dist[vik+1

] be the cost of the shortest bi-directed walk
from s to vik+1

. Also let s, vj2 . . . vjk , vik+1
be the path corresponding to the cost

dist′[vik+1
]. Note that vjk cannot be one of the nodes with a permanent label. If

not, we would have dist′[vik+1
] = dist[vik+1

] (because we should have updated
vk+1 when the vjk was given a permanent label) which is a contradiction. Now
let dist′[vjk] be the cost of the shortest path from s to vjk . Clearly, dist

′[vjk] <
dist[vik+1

] and this means that none of the nodes vj2 , vj3 . . . vjk haa a permanent
label. Since in the iteration n = 1 the algorithm updated the labels adjacent to
all the nodes this means that either dist+[vj2] or dist−[vj2] should have a cost
0 < ws,j2 and dist′[vik+1

] ≥ ws,j2 . In each iteration from n = 1, . . . , (k + 1) we
picked the globally minimum label dist[vik+1

] < ws,j2 ≤ dist′[vik+1
] which is a

contradiction. �

We now give a simple example to illustrate the algorithm. Consider the bi-
directed graph in Figure 4(a), with a unit weight on every edge. Let s = 1
and t = 4 for instance. From Figure 4(a) we see two bi-directed walks – red,
green. The green path is the shortest path of length 4 units. Now let us run our
algorithm on this graph. The algorithm starts with initializing from s = 1 and
from then on Table 3 shows how the dist labels are updated until iteration 7
where we reach the target node 4 and stop the algorithm.

8 Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

5 Terminal Oriented Shortest Bi-directed Walks

In the previous section we have seen how to find a shortest bi-directed walk be-
tween two nodes in a given bi-directed graph. We now define a terminal oriented

bi-directed walk as follows. Let w(vi, vj) = vi, ei1 , vi1 , ei2 , vi2 . . . vim , eim+1 , vj be
any bi-directed walk between two nodes vi and vj in a bi-directed graph. Then
this bi-directed walk w(vi, vj) is called terminal oriented bi-directed walk iff
ei1 .o1 = ⊲ and eim1

.o2 = ⊲. For example in Figure 4(a) there are two bi-
directed walks between nodes 4 and 1 – marked with green and red. However
only the green bi-directed walk is terminally oriented. A terminal oriented bi-
directed walk w is called the shortest terminal oriented bi-directed walk iff there
is no other terminal oriented bi-directed walk shorter than w.

5.1 An algorithm for finding a terminal oriented shortest

bi-directed walk

It is easy to modify Algorithm 1 to find a terminal oriented shortest path between
s and t. We only have to modify the initialization step and the step which
checks if the target node has been reached. During the initialization at line
2 of Algorithm 1 we make dist+[s] = 0 and dist−[s] = ∞. This avoids the
exploration of bi-directed walks which does not start with ⊲. In line 9, we stop
our exploration only if u+ = t. These changes ensure that the bi-directed walk
at s starts with ⊲ and ends with ⊲ at t.

6 A Sufficient Condition for an Eulerian Tour on a
Bi-directed Graph

The following Lemma 1 [6] is a sufficient condition for a cyclic Eulerian tour in a
bi-directed graph. A bi-directed graph which has a cyclic Eulerian tour is called
an Eulerian bi-directed graph.

Lemma 1. A connected bi-directed graph is Eulerian if and only if every vertex

is balanced.

Note that if a bi-directed graph is Eulerian then a cyclic CP walk is the same
as a cyclic Eulerian walk. We emphasize the cyclic adjective for the following
reason. Figure 4(b) has a CP walk starting and ending at vertex 1. However
the CP walk is not cyclic because the walk starts with ⊲ and ends with ⊳. The
bi-directed graph in Figure 4(b) is not balanced. If the bi-directed graph is not
Eulerian, the key strategy to find a cyclic CP walk is to make it Eulerian by
introducing multi-edges into the original graph. The hope is that introducing
multi-edges would make the bi-directed graph balanced. Thus a cyclic Eulerian
walk on a balanced multi-edge bi-directed graph would give a cyclic CP walk
on the original graph. Since we are interested in finding a shortest cyclic CP
walk, we would like to minimize the number of multi-edges we introduce in the
original graph.

Fast CPP Algorithms 9

4 6

5

3

(a)

4 6

5

3

(b)

1 2 1 2

Fig. 2. (a) a simple bi-directed graph, (b) a multi-bi-directed graph. Notice that ori-
entations of the multi-edges is the same as the orientation of the original edge.

7 A Deterministic Algorithm to Find a Cyclic CP Walk
on a Bi-directed Graph

We now describe our deterministic algorithm to find a cyclic CP walk on a
weighted bi-directed graph. First we define a multi-bi-directed graph as a bi-
directed graph in which an edge between two nodes is overlaid at least once,
without changing its orientation. Figure 6(a) shows a bi-directed graph; Fig-
ure 6(b) shows a valid multi-bi-directed graph. Notice that while overlaying
the edge we did not change its orientation. Since the orientation of the multi-
edges is same as the original edges, any bi-directed walk involving multi-edges
is consistent with the bi-directed walk in the original graph. Another important
property of the multi-bi-directed graphs is their ability to make the nodes bal-
anced. Notice that the vertex 3 in the original bi-directed graph is positively
imbalanced – din(v3) = 2, dout(v3) = 1. However in the multi-bi-directed graph
in Figure 6(b) we are able to balance vertex 3 by introducing some multi-edges
into the original graph. Given a bi-directed graph G = (V,E), let Gm = (V,Em)
be some multi-bi-directed graph corresponding to G. The following Lemma 2
gives a characterization for G to have a cyclic CP walk.

Lemma 2. A non Eulerian bi-directed graph G = (V,E) has a cyclic Chinese

Postman walk ⇐⇒ ∃ a corresponding multi-bi-directed graph Gm = (V,Em)
which is Eulerian.

Proof. If G has a cyclic Chinese Postman walk, introduce a unique multi-edge
in Gm for every repeated edge in the cyclic Chinese Postman walk. This makes
the cyclic Chinese Postman walk on the original graph a cyclic Eulerain walk on
the multi-bi-directed graph Gm. Proving the other direction is very similar. �

Given a multi-bi-directed graphGm(V,Em) corresponding to some bi-directed
graph G = (V,E), we define the multi-bi-directed graph weight as W(Gm) =

10 Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

∑

e∈Em

c(e), where c : e ∈ E → R
+ is a cost function on the bi-directed graph

G(V,E). We denoteG∗(V,E∗) as the minimum weight Eulerian multi-bi-directed
graph corresponding to G(V,E) if at all one exists. The following Lemmas are
easy to prove.

Lemma 3. Finding a cyclic CP walk on a bi-directed graph G(V,E) is equiv-

alent to finding a minimum weight Eulerian multi-bi-directed graph G∗(V,E∗)
corresponding to G.

Lemma 4. If a bi-directed-graph G(V,E) has a cyclic CP walk then the cost of

that walk is equal to the weight of G∗(V,E∗).

7.1 Balancing bi-partite graph

Given a bi-directed de Bruijn graph G(V,E) we define a corresponding Balanc-

ing Bi-partite Graph, B(P,Q,Eb) as follows. Let V + = {v| din(v)−dout(v) > 0},
V − = {v| din(v) − dout(v) < 0}. P = ∪p∈V +{p(1), p(2) . . . p(|din(p)−dout(p)|)},

Q = ∪q∈V −{q(1), q(2) . . . q(|din(q)−dout(q)|)}. We now introduce an edge between

p(i) ∈ P and q(j) ∈ Q iff p, q ∈ V are connected by a terminal oriented bi-

directed walk from p to q. Let distt(p, q) be the weight of this walk. Then Eb =
{(p(i), q(j))| distt(p, q) 6= ∞ ∧ p, q ∈ V }. The weight of the edge (p(i), q(j)) ∈ Eb

is the weight of terminal oriented bi-directed walk distt(p, q).

Lemma 5. A non Eulerain bi-directed graph G(V,E) has a cyclic CP walk ⇐⇒
the balancing bi-partite graph B(P,Q,Eb) has a perfect match.

Proof. (Forward direction:) Since G has a cyclic CP walk, every un-balanced
node v ∈ V (positive or negative) should appear at least i ≥ |din(v) − dout(v)|
times. Label each occurrence of v in the cyclic CP walk by v(i). Also note that∑

p∈V + |din(p) − dout(p)| =
∑

q∈V −
|din(q) − dout(q)|, since G has a cyclic CP

walk. Now we can pair every ith occurrence of a positively imbalanced node p
to some jth occurrence of a negatively imbalanced node q since p(i) and q(j) are
connected by a terminal oriented bi-directed walk in the cyclic CP walk. Every
such pairing corresponds to a matched edge in B(P,Q,Eb).

(Reverse direction:) Consider the perfect match Mb in B(P,Q,Eb). For every
edge (p(i), q(j)) ∈ Mb over-lay the underlying oriented bi-directed walk between
p, q ∈ V on G(V,E). This makes G(V,E) a balanced multi-bi-directed graph.
Then by Lemma 2 we can construct a cyclic CP walk in G. �

7.2 Constructing a family of Eulerian multi-bi-directed graphs

We now give a construction for generating Eulerian multi-bi-directed graphs
corresponding to a given non Eulerian bi-directed graph which has a cyclic CP
walk. We call this a Balancing Match Family denoted by F . Lemma 5 can be used
to generate F . Assume that G(V,E) is a non Eulerian bi-directed graph that
has a cyclic CP walk. The following construction generates a family of Eulerian
multi-bi-directed graphs corresponding to G(V,E).

Fast CPP Algorithms 11

– STEP-1: Create a balancing bi-partite graph B(P,Q,Em) corresponding to
G(V,E) by choosing some terminal oriented bi-directed walk between p(i) ∈
P and q(j) ∈ Q.

– STEP-2: Find a perfect match Mb in B(P,Q,Em). For each edge in Mb

overlay the corresponding terminal oriented bi-directed walk on G(V,E).
This generates a Eulerian multi-bi-directed graph Gm(V,Em).

The following Lemma 6 is easy to see.

Lemma 6. If G(V,E) is a non Eulerian bi-directed graph that has a cyclic CP

walk, then every corresponding Eulerian multi-bi-directed graph Gm(V,Em) be-

longs to the family F .

The following Lemma gives an expression for the weight of any Gm(V,Em) ∈
F .

Lemma 7. Let G(V,E, c) be a non Eulerian weighted bi-directed graph which

has a cyclic CP walk c : E → R
+. Let Gm(V,Em, c) ∈ F be some Eulerian multi-

bi-directed graph. Then, W(Gm) =
∑

e∈E

c(e) +
∑

(p(i),q(j))∈Mb

distt(p, q), where Mb

is a perfect match in B(P,Q,Eb).

Proof. Since Gm is Eulerian it should cover every edge in G - this corresponds to
the first term. Secondly, since Gm(V,Em, c) ∈ F the cost of multi-edges coming
from overlaying the terminal bi-directed walk corresponds to the match Mb in
B(P,Q,Eb). This corresponds to the second term. �

7.3 An algorithm for finding an optimal cyclic CP walk

We now put together all the results in the preceding sub-section(s) to give an
algorithm to find G∗(V,E∗). The algorithm is summarized in the following steps.

– STEP-1: We first identify positive and negative imbalanced nodes in G. Let
V + = {v|din(v)− dout(v) > 0}, V − = {v|din(v)− dout(v) < 0}

– STEP-2: Find the cost of a terminal oriented shortest bi-directed walk be-
tween every pair (v, u) ∈ V + × V −. Let this cost be denoted as distt(v, u).

– STEP-3: Create a balancing bi-partite graph B(P,Q,Eb) as follows. Let P =
∪v∈V +{v(1), v(2), . . . , v(|din(v)−dout(v)|)},Q = ∪u∈V −{u(1), u, . . . , u(|din(u)−dout(u)|)},
E = {(v(i), u(j))|v(i) ∈ P ∧ u(j) ∈ Q}. The cost of an edge c(v(i), u(j)) =
distt(v, u).

– STEP-4: Find a minimum cost perfect match in B. Let this match be Mb. If
B does not have a perfect match then G does not have a cyclic CP walk.

– STEP-5: For each edge (v(i), u(j)) ∈ Mb , overlay the terminal oriented short-
est bi-directed walk between v and u in the G(V,E). After overlaying all
the terminal oriented bi-directed walks from Mb on to G(V,E) we obtain
G∗(V,E∗). We will prove that it is optimal in Theorem 2.

12 Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

Theorem 2. If G(V,E) is a bi-directed graph that has a cyclic CP walk, then the

cost of this cyclic CP walk is equal to W(G∗) =
∑

e∈E

c(e)+
∑

(v(i),u(j))∈Mb

distt(v, u).

Here Mb is the min-cost perfect match in the balancing bi-partite graph B.

Proof. By Lemma 6 the multi-bi-directed graph G∗(V,E∗) belongs to F . Now by
Lemma 7, any optimal solution has to minimize the second term (

∑
(p(i),q(j) dist

t(p, q)).
To minimize this the algorithm chooses shortest terminal oriented bi-directed

walk in STEP-2. Finally, in STEP-5 the algorithm finds a minimum cost perfect
match. Both these steps ensure that W(G∗) is minimum in the entire family of
multi-bi-directed graphs in F .�

7.4 Runtime analysis of the algorithm to find a cyclic CP walk

Let p = max{|V +|, |V −|} and dmax = max
v∈V

{|din(v) − dout(v)}. STEP-2 of the

algorithm runs in Θ(p(|V |+|E|) log(|V |)) time to compute distt(v, u). In STEP-3

|P | ≤ dmaxp , |Q| ≤ dmaxp. For STEP-4 Hungarian method can be applied to
solve the weighted matching problem in Θ((dmaxp)

3) time. So the total runtime
of this deterministic algorithm is Θ(p(|V | + |E|) log(|V |) + (dmaxp)

3). As men-
tioned before if p is much smaller than |V | this algorithm performs better than
the bi-directed flow algorithm.

7.5 Runtime analysis of the algorithm to find SDDNA

Since SDDNA runs on a bi-directed de Bruijn graph which is un-weighted, STEP-
2 of the algorithm runs in Θ(p(|V |+ |E|)) time – because we don’t need to use
a Heap, we just do a BFS on the bi-directed graph. The rest of the analysis
for the runtime remains the same and the total run time of the algorithm is
Θ(p(|V |+ |E|) + (dmaxp)

3).

8 A Θ(p(|V | + |E|)) Time Heuristic Algorithm for the
SDDNA Problem

From the analysis in the previous section, to solve the SDDNA problem deter-
ministically we need to spend Θ(p(|V |+|E|)+(dmaxp)

3) time. However if we just
replace the Hungarian method in STEP-4 with a simple greedy algorithm we can
get rid of the (dmaxp)

3 term in the asymptotic complexity. Although we have a
constant 2/3− ǫ approximation algorithm for maximum weighted matching, we
are not aware of any constant approximation algorithms for minimum weight

perfect matching. As a result this just remains as a heuristic algorithm. On the
other hand this algorithm seems to be performing very close to the optimal (see
Section 10.2).

Fast CPP Algorithms 13

9 Dealing with Practical Bi-directed de Bruijn Graphs
with no Cyclic CP Walks

As we have mentioned earlier most of the bi-directed de Bruijn graphs con-
structed from the reads do not satisfy the sufficient condition for cyclic CP
walks. In such cases our algorithm can still be used, by modifying it to find a
maximum match in the balancing bi-partite graph rather than perfect match.
We can introduce a hypothetical node h and connect all the un-matched nodes
in the balancing bi-partite graph to h with appropriate bi-directed edges and
thus make all the original nodes balanced. We can now find a cyclic CP walk in
this hypothetical graph. Every sub-walk in the cyclic CP walk that starts from
h and ends at h can be reported as a contig. Thus our algorithm is capable of
handling cases when the bi-directed graph cannot have a cyclic CP walk.

10 Experimental Results

As we have mentioned in the previous sections the asymptotic complexity of our
algorithm depends on p – the maximum of positively and negatively imbalanced
nodes. In the case of de Bruijn graphs dmax ≤ |Σ|, where |Σ| is the size the
alphabet from which the strings are drawn. In our case this is exactly four. So
we can safely ignore dmax in the case of de Bruijn graphs and just concentrate
on p. In the rest of the discussion we would like to refer to p as the number of
imbalanced nodes.

10.1 Estimation of the mean of the random variable p

|V |

It is clear that p is a random variable with support in [0, |V |]. So we would like
to estimate the expected number of imbalanced nodes in a graph with |V | bi-
directed edges. We estimated the mean of the random variable p

|V | from several

samples of bi-directed de Bruijn graphs constructed from reads from a plant
genome. A simple t−test is applied to to estimate the 95% confidence interval of
p
|V | . See Table 1 for the details of the samples used. Notice that as we increase the

size of k (de Bruijn graph order) from 21 to 25, the number of imbalanced nodes
in columns corresponding to |V +| and |V −| reduces. This is because increasing
k reduces the number of edges which may reduce the number of imbalanced
nodes. On the other hand for a fixed value of k the number of imbalanced nodes
increases consistently with the nodes. However the rate of growth is very slow
compared to the rate of growth of the number of nodes. Finally we use this
evidence to hypothesize that the number of imbalanced nodes in practical bi-
directed graphs is only between 0.087% to 0.133% of the number of nodes in the
graph, with a probability of 95%.

14 Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

10.2 Performance of the greedy heuristic and handling cases which

do not have cyclic CP walks

The greedy heuristic described in Section 8 has been compared with the opti-
mal maximum match with minimum cost. As we mentioned in Section 9 many
of these graphs do not contain cyclic CP walks so they do not have a perfect
match. To cope with this situation we treated the balancing bi-directed graph
as a complete bi-directed graph, by introducing a hypothetical edge with large
cost whenever there is no edge between two nodes in the original graph. Thus
we just used the size of the match to compare the cost of the greedy algorithm
and the optimal algorithm to solve the matching problem. Table 2 gives the de-
tails of the balancing bi-partite graph obtained from several read samples. As we
have mentioned before, to get the approximation ratio we treated a balancing
bi-partite graph as a complete bi-partite graph Kp,p. If Mopt and Mgdy are the
sizes of maximum and maximal matches then we treated the cost of hypothet-
ical perfect match as (p − |Mopt|) and (p − |Mgdy|) and their ratio is used as
approximation ratio. Finally from the evidence in Table 2 we hypothesize that
the approximation ratio for this is between 1.008 and 1.016 with a probability
of 95%.

10.3 Implementation and Data

An implementation of the algorithms discussed is available at http://trinity.
engr.uconn.edu/~vamsik/fast_cpp.tgz.

11 Conclusion and further research

In this paper we have given an algorithm for cyclic Chinese Postman walk on a
bi-directed de Bruijn graph. Our algorithm is based on identifying shortest bi-
directed walks and weighted matching. This algorithm performs asymptotically
better than the bi-directed flow algorithm when the number of imbalanced nodes
are much smaller than the nodes in the bi-directed graph. On the other hand
this algorithm can also handle the instances of bi-directed graphs which does not
have a cyclic CP walk and provide a minimal set of walks, cyclic walks which
cover every edge in the bi-directed graph at least once.

There are several research directions which can be pursued. Firstly, we need
to address how the addition of paired reads may impose new constraints on the
cyclic CPP walk. Secondly, while Eulerization of the bi-directed graph we have
chosen the shortest path bi-directed path, however this may not correspond to
the repeating region in the genome. Other strategy to make the graph Eulerian
is to choose the path with maximum read multiplicity. This on other hand may
increase the length of the Chinese walk, can we simultaneously optimize these
two objectives ?.
Acknowledgements. This work has been supported in part by the following
grants: NSF 0326155, NSF 0829916 and NIH 1R01GM079689-01A1.

Fast CPP Algorithms 15

READS k NODES P-IMBAL N-IMBAL BAL-BI-GRAPH

|V +| |V −| |P | |Q| p p×100

|V |
102400 21 1588569 1157 1133 1186 1173 1186 0.075

153600 21 2353171 2240 2141 2298 2211 2298 0.098

204800 21 3097592 3509 3492 3601 3590 3601 0.116

256000 21 3825101 4953 5004 5074 5131 5131 0.134

307200 21 4538734 6719 6748 6878 6912 6912 0.152

358400 21 5235821 8586 8603 8789 8802 8802 0.168

409600 21 5917489 10665 10693 10914 10934 10934 0.185

102400 25 1202962 569 521 588 540 588 0.049

153600 25 1788533 1104 1026 1139 1062 1139 0.064

204800 25 2362981 1744 1708 1788 1759 1788 0.076

256000 25 2927656 2521 2523 2579 2592 2592 0.089

307200 25 3484849 3370 3414 3451 3517 3517 0.101

358400 25 4032490 4333 4369 4441 4485 4485 0.111

409600 25 4571554 5390 5467 5518 5613 5613 0.123

[

x̄− zα
2

S√
n
, x̄+ z−α

2

S√
n

]

: 95% C.I for average p×100

|V | is [0.0872%, 0.1330%]

Table 1. The value of p on short read data from a plant genome sequencing data from
CSHL

READS k NODES max |P |, |Q| OPT GRDY APX-RATIO

SIZE COST SIZE COST

|V | p |Mopt| p− |Mopt| |Mgdy | p− |Mgdy |
GDY
OPT

102400 21 1202962 1186 416 770 406 780 1.0130

153600 21 1788533 2298 725 1573 704 1594 1.0134

204800 21 2362981 3601 1092 2509 1073 2528 1.0076

256000 21 3825101 5131 1479 3652 1450 3681 1.0079

307200 21 4538734 6912 1929 4983 1879 5033 1.0100

358400 21 5235821 8802 2385 6417 2329 6473 1.0087

409600 21 5917489 10934 2876 8058 2814 8120 1.0077

102400 25 1202962 588 152 436 147 441 1.0115

153600 25 1788533 1139 281 858 274 865 1.0082

204800 25 2362981 1788 438 1350 429 1359 1.0067

256000 25 2927656 2592 619 1973 601 1991 1.0091

307200 25 3484849 3517 809 2708 783 2734 1.0096

358400 25 4032490 4485 995 3490 966 3519 1.0083

409600 25 4571554 5613 1220 4393 1175 4438 1.0102

[

x̄− zα
2

S√
n
, x̄+ z−α

2

S√
n

]

: 95% C.I for average APX−COST
OPT−COST

is [1.0083%, 1.0106%]

Table 2. Approximation ratio of the GDY heuristic

16 Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

Appendix

iteration:1 , min ≡ dist−[2] = 1

dist+[2] = ∞ dist+[3] = ∞ dist+[4] = ∞ dist+[5] = ∞ dist+[6] = ∞

dist−[2] = 1 dist−[3] = ∞ dist−[4] = ∞ dist−[5] = ∞ dist−[6] = ∞

iteration:2 , min ≡ dist−[5] = 2

dist+[2] = ∞ dist+[3] = ∞ dist+[4] = ∞ dist+[5] = ∞ dist+[6] = ∞

dist−[2] = 1 dist−[3] = 2 dist−[4] = ∞ dist−[5] = 2 dist−[6] = ∞

iteration:3 , min ≡ dist−[3] = 2

dist+[2] = ∞ dist+[3] = 3 dist+[4] = ∞ dist+[5] = ∞ dist+[6] = ∞

dist−[2] = 1 dist−[3] = 2 dist−[4] = ∞ dist−[5] = 2 dist−[6] = ∞

iteration:4 , min ≡ dist−[6] = 3

dist+[2] = ∞ dist+[3] = 3 dist+[4] = ∞ dist+[5] = 3 dist+[6] = ∞

dist−[2] = 1 dist−[3] = 2 dist−[4] = ∞ dist−[5] = 2 dist−[6] = 3

iteration:5 , min ≡ dist−[5] = 3

dist+[2] = ∞ dist+[3] = 3 dist+[4] = ∞ dist+[5] = 3 dist+[6] = ∞

dist−[2] = 1 dist−[3] = 2 dist−[4] = 4 dist−[5] = 2 dist−[6] = 3

iteration:6 , min ≡ dist−[3] = 3

dist+[2] = 4 dist+[3] = 3 dist+[4] = ∞ dist+[5] = 3 dist+[6] = ∞

dist−[2] = 1 dist−[3] = 2 dist−[4] = 4 dist−[5] = 2 dist−[6] = 3

iteration:7 , min ≡ dist−[4] = 4

dist+[2] = 4 dist+[3] = 3 dist+[4] = ∞ dist+[5] = 3 dist+[6] = ∞

dist−[2] = 1 dist−[3] = 2 dist−[4] = 4 dist−[5] = 2 dist−[6] = 3

The shortest path from node 1 to node 4 is of length 4

Table 3. Changes in the dist+ and dist− labels in every iteration of Algorithm 1 on
the bi-directed graph in Figure 4

References

1. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C.e.a.: Initial se-
quencing and analysis of the human genome. Nature 409 (2001) 860–921

2. Craig Venter, J., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J.e.: The sequence
of the human genome. Science 291 (2001) 1304–1351

3. Zerbino, D.R., Birney, E.: Velvet: Algorithms for de novo short read assembly using
de bruijn graphs. Genome research 18 (2008) 821–829

4. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to dna frag-
ment assembly. Proceedings of the National Academy of Sciences of the United
States of America 98 (2001) 9748–9753

5. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21 (2005) ii79–
ii85

6. Medvedev, P., Georgiou, K., Myers, G., Brudno, M.: Computability of models for
sequence assembly. Volume 4645 LNBI. (2007)

