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Abstract

In this paper, we analyse the dual pivot Quicksort, a variant of the standard

Quicksort algorithm, in which two pivots are used for the partitioning of the

array. We are solving recurrences of the expected number of key comparisons

and exchanges performed by the algorithm, obtaining the exact and asymp-

totic total average values contributing to its time complexity. Further, we

compute the average number of partitioning stages and the variance of the

number of key comparisons. In terms of mean values, dual pivot Quicksort

does not appear to be faster than ordinary algorithm.

1 Introduction

Quicksort is a sorting algorithm with an extensive literature regarding its mathe-
matical analysis and its applications. Without loss of generality, suppose that we
want to quick sort a random permutation of distinct keys {1, 2, . . . , n} with all the
n! permutations equally likely. A key is randomly chosen as pivot and by pairwise
comparisons of the other elements with it, smaller keys are placed to left and greater
to right. Now, the pivot j is at its final position and the algorithm is recursively
invoked to sort independently the left and right subarrays of (j − 1) and (n − j)
elements, respectively. Letting Cn being the number of comparisons for sorting n
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keys, its average value is given by the following recursive relation

E(Cn) = n− 1 +
1

n

n
∑

j=1

(

E(Cj−1) + E(Cn−j)
)

= n− 1 +
2

n

n
∑

j=1

E(Cj−1),

with initial condition C0 := 0. Subtracting (n − 1)E(Cn−1) from nE(Cn) and tele-
scoping, the average number of comparisons is

E(Cn) = 2(n+ 1)Hn − 4n ∼ 2n ln(n). (1.1)

Similarly, it is a routine matter to compute that the average number of exchanges
performed is

2(n+ 1)Hn − 3n

6
∼

1

3
n ln(n), (1.2)

when at the first partitioning stage, the expected number of exchanges is

n

6
+

5

6n
, [2].

Recall that Hn is the nth harmonic number, defined by Hn :=

n
∑

j=1

1

j
and H0 := 0.

Further, the sign ∼ denotes asymptotic equivalence between two functions f(n) and

g(n). That is f(n) ∼ g(n) if and only if lim
n→∞

f(n)

g(n)
= 1. (In [2], [4], it is suggested

that small segments of size less than some parameter m be sorted by a simpler
algorithm, such as insertion sort, as this is in practice quicker: in order to simplify
the calculations for the solutions of the recurrences, we assume that m = 0).

2 Partitioning on two pivots

The idea for this variant is that we can randomly select two elements as pivots
for the partitioning of the array. The number of comparisons obeys the following
recursive rule;

Cn = “Number of comparisons during first partitioning stage”+ Ci−1 + Cj−i−1 + Cn−j,

since at the beginning, the pivots are compared each other and swapped if they
are not in order. If elements i < j are selected, the array is partitioned into three
subarrays: one with (i−1) keys smaller than i, a subarray of (j−i−1) keys between
two pivots and the part of (n− j) elements greater than j. The algorithm then is
recursively applied to each of these subarrays. The number of comparisons during
the first stage is

An = 1 +

(

(i− 1) + 2(j − i− 1) + 2(n− j)

)

, i = 1, . . . , n− 1 and j = i+ 1, . . . , n.
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because if an element is lower than i, then it is less than j automatically, so i − 1
elements beneath i only need to be compared with one of the pivots. However if an
element is greater than i then it needs to be compared with the other pivot as well,
to determine whether or not it is greater than j. We refer to Sedgewick [4] for code
for a version of this scheme. The average value of An is

1
(

n

2

)

n−1
∑

i=1

n
∑

j=i+1

(

1 + (i− 1) + 2(j − i− 1) + 2(n− j)

)

=
1
(

n

2

)

n−1
∑

i=1

n
∑

j=i+1

(

2n− i− 2

)

=
2

n(n− 1)

(

5

6
n3 − 2n2 +

7

6
n

)

=
5n− 7

3
.

Hence, the recurrence for the expected number of comparisons is

E(Cn) =
5n− 7

3
+

2

n(n− 1)

(

n−1
∑

i=1

n
∑

j=i+1

E(Ci−1) +

n−1
∑

i=1

n
∑

j=i+1

E(Cj−i−1) +

n−1
∑

i=1

n
∑

j=i+1

E(Cn−j)

)

.

Note that the three double sums above are equal. Therefore, the recurrence becomes

E(Cn) =
5n− 7

3
+

6

n(n− 1)

n−1
∑

i=1

(n− i)E(Ci−1).

Letting an = E(Cn), we have

an =
5n− 7

3
+

6

n(n− 1)

n−1
∑

i=1

(n− i)ai−1, n ≥ 2.

Trivially, it holds that a0 = a1 = 0. Multiplying both sides by

(

n

2

)

, we obtain

(

n

2

)

an =

(

n

2

)

(

5n− 7

3
+

6

n(n− 1)

n−1
∑

i=1

(n− i)ai−1

)

=
n(n− 1)(5n− 7)

6
+ 3

n−1
∑

i=1

(n− i)ai−1.

We introduce the difference operator ∆ for the solution of this recurrence. The
operator is defined by

∆F (n) := F (n+ 1)− F (n) and for higher orders

∆kF (n) := ∆k−1F (n+ 1)−∆k−1F (n).

Thus, we have

∆

(

n

2

)

an =

(

n+ 1

2

)

an+1 −

(

n

2

)

an =
5n2 − 3n

2
+ 3

n−1
∑

i=0

ai

∆2

(

n

2

)

an = ∆

(

n+ 1

2

)

an+1 −∆

(

n

2

)

an = 5n+ 1 + 3an.

3



By definition,

∆2

(

n

2

)

an = ∆

(

n + 1

2

)

an+1 −∆

(

n

2

)

an

=

(

n+ 2

2

)

an+2 − 2

(

n+ 1

2

)

an+1 +

(

n

2

)

an

and the recurrence becomes

(n+ 1)(n+ 2)an+2 − 2n(n + 1)an+1 + n(n− 1)an = 2(5n+ 1 + 3an)

⇒ (n + 1)
(

(n+ 2)an+2 − (n− 2)an+1

)

− (n+ 2)
(

(n + 1)an+1 − (n− 3)an
)

= 2(5n+ 1).

Dividing by (n + 1)(n+ 2), we obtain the telescoping recurrence

(n+ 2)an+2 − (n− 2)an+1

n+ 2
=

(n + 1)an+1 − (n− 3)an
n+ 1

+
2(5n+ 1)

(n + 1)(n+ 2)
,

which yields

(n+ 2)an+2 − (n− 2)an+1

n + 2
= 2

n
∑

j=0

5j + 1

(j + 1)(j + 2)
=

18

n+ 2
+ 10Hn+1 − 18.

The recurrence is equivalent to

nan − (n− 4)an−1 = 18 + 10nHn−1 − 18n.

Multiplying by
(n− 1)(n− 2)(n− 3)

24
, this recurrence is transformed to a telescop-

ing one [4],

(

n

4

)

an =

(

n− 1

4

)

an−1 +
18(n− 1)(n− 2)(n− 3)

24
+ 10

(

n

4

)

Hn−1 − 18

(

n

4

)

.

Unwinding, we have

(

n

4

)

an = 18

n
∑

j=1

(j − 1)(j − 2)(j − 3)

24
+ 10

n
∑

j=1

(

j

4

)

Hj−1 − 18

n
∑

j=1

(

j

4

)

. (2.1)

Using Maple, we found that

n
∑

j=1

(j − 1)(j − 2)(j − 3) = 6

(

n

4

)

and for the other sums in Eq. (2.1),

n
∑

j=1

(

j

4

)

=

(

n+ 1

5

)

and

n
∑

j=1

(

j

4

)

Hj =

(

n+ 1

5

)(

Hn+1 −
1

5

)

.
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Therefore

n
∑

j=1

(

j

4

)

Hj−1 =

n
∑

j=1

(

(

j

4

)(

Hj −
1

j

)

)

=

n
∑

j=1

(

j

4

)

Hj −

n
∑

j=1

(

j

4

)

1

j

=

(

n+ 1

5

)(

Hn+1 −
1

5

)

−
1

24

n
∑

j=1

(j − 1)(j − 2)(j − 3)

=

(

n+ 1

5

)(

Hn+1 −
1

5

)

−

(

n

4

)

1

4
.

Now Eq. (2.1) becomes

(

n

4

)

an =
9

2

(

n

4

)

+ 10

(

(

n+ 1

5

)(

Hn+1 −
1

5

)

−
1

4

(

n

4

)

)

− 18

(

n+ 1

5

)

.

⇒ an =
9

2
+ 10

(

n+ 1

5

(

Hn+1 −
1

5

)

−
1

4

)

−
18(n+ 1)

5
.

Finally, the expected number of comparisons, when two pivots are chosen is

an = 2(n+ 1)Hn − 4n ∼ 2n ln(n). (2.2)

This is exactly the same as the expected number of comparisons in Eq. (1.1)
computed earlier for ordinary Quicksort. The dual pivot variant is claimed to be
faster in experimental measurements than the standard algorithm in [6]. A referee
of this article commented to us that the variant gives a 30% performance boost on
randomly permuted data.

We proceed to compute the average number of exchanges. Letting Sn denote
the total number of exchanges we carry out when sorting n objects, we have that

Sn = “Number of exchanges during first partitioning stage”+Si−1+Sj−i−1+Sn−j.

Now it is fairly clear that, again using that the pivots are chosen uniformly at
random, that the average values of last three quantities are equal. So our main
objective now is to determine the average number of exchanges during the first
partitioning stage. At the end of the partition routine, (i − 1) elements are less
than pivot i. Thus, the contribution to the number of exchanges is [4],

1
(

n

2

)

n−1
∑

i=1

n
∑

j=i+1

(i− 1) =
1
(

n

2

)

n−1
∑

i=1

(n− i)(i− 1) =
1
(

n

2

)

(

n−1
∑

i=1

(n− i)i−

n−1
∑

i=1

(n− i)

)

.

The first sum being evaluated gives

n−1
∑

i=1

(n− i)i =
n3 − n

6

5



and the second is just n(n− 1)/2. The average contribution is

2

n(n− 1)

(

n3 − n

6
−

n(n− 1)

2

)

=
n− 2

3
.

Similarly, the average number of exchanges for the (n−j) elements greater than

the second pivot is

(

n− 2

3

)

, since the double sums are equal. Adding the two final

“exchanges” to get the pivots in place, the average number of exchanges during the

partitioning routine is

(

2(n+ 1)

3

)

. Therefore, the recurrence for the mean number

of exchanges in course of the algorithm is

E(Sn) =
2(n + 1)

3
+

2

n(n− 1)

(

n−1
∑

i=1

n
∑

j=i+1

E(Si−1) +
n−1
∑

i=1

n
∑

j=i+1

E(Sj−i−1) +
n−1
∑

i=1

n
∑

j=i+1

E(Sn−j)

)

=
2(n + 1)

3
+

6

n(n− 1)

n−1
∑

i=1

n
∑

j=i+1

E(Si−1)

=
2(n + 1)

3
+

6

n(n− 1)

n−1
∑

i=1

(n− i)E(Si−1).

This recurrence is solved in [4]: here we present a solution using generating func-
tions. Letting bn = E(Sn), we have

bn =
2(n + 1)

3
+

6

n(n− 1)

n
∑

i=1

(n− i)bi−1.

Multiplying by

(

n

2

)

to clear fractions, we have

(

n

2

)

bn =

(

n

2

)

(

2(n+ 1)

3
+

6

n(n− 1)

n
∑

i=1

(n− i)bi−1

)

=
n(n− 1)(n+ 1)

3
+ 3

n
∑

i=1

(n− i)bi−1.

Multiplying by zn and summing over n, in order to obtain the generating function

g(z) =
∞
∑

n=0

bnz
n of the coefficients bn,

∞
∑

n=0

(

n

2

)

bnz
n =

1

3

∞
∑

n=0

n(n− 1)(n+ 1)zn + 3
∞
∑

n=1

n
∑

i=1

(n− i)bi−1z
n

⇒
z2

2

∞
∑

n=0

n(n− 1)bnz
n−2 =

z2

3

∞
∑

n=0

n(n− 1)(n+ 1)zn−2 + 3

∞
∑

n=1

n
∑

i=1

(n− i)bi−1z
n

⇒
z2

2

d2 g(z)

d z2
=

z2

3

d3

d z3

(

∞
∑

n=0

zn+1

)

+ 3
∞
∑

n=1

n
∑

i=1

(n− i)bi−1z
n.

6



The first term on the right-hand side of the previous equation is the third order
derivative of the following geometric series

∞
∑

n=0

zn+1 =
z

1− z
and

d3

d z3

(

z

1− z

)

=
6

(1− z)4
, |z| < 1.

The double sum is equal to

∞
∑

n=1

n
∑

i=1

(n− i)bi−1z
n = b0z

2 + (2b0 + b1)z
3 + (3b0 + 2b1 + b2)z

4 + . . .

= z2(b0 + b1z + b2z
2 + . . .) + 2z3(b0 + b1z + b2z

2 + . . .) + . . .

= (z2 + 2z3 + 3z4 + . . .)g(z)

=

( ∞
∑

n=0

nzn+1

)

g(z).

The sum which multiplies g(z) on the last line is

∞
∑

n=0

nzn+1 =

(

z

1− z

)2

.

Therefore, our recurrence is transformed to the following differential equation

z2

2

d2 g(z)

d z2
=

2z2

(1− z)4
+ 3g(z)

(

z

1− z

)2

.

Changing variables v = 1− z, we have that f(v) = g(1− v). Thus, it holds

dk f(v)

d vk
= (−1)k

dk g(1− v)

d vk
.

The differential equation becomes

(1− v)2

2

d2 f(v)

d v2
=

2(1− v)2

v4
+ 3f(v)

(

1− v

v

)2

.

Using Maple, the general solution is

f(v) = c1v
3 +

c2
v2

−
20 ln(v) + 4

25v2
, c1, c2 ∈ R.

For the computation of constants, we consider the fact that f(1) = g(0) = 0 and
f ′(1) = −g′(0) = 0 (as b0 = b1 = 0). The resulting system of linear equations in

c1 and c2 has solution (c1, c2) =

(

4

25
, 0

)

. Therefore, the function is

f(v) =
4

25
v3 −

20 ln(v) + 4

25v2
.

7



But, since

(1− z)−2 =

∞
∑

n=0

(n+ 1)zn and
ln(v)

v2
= −

1

(1− z)2
ln

(

1

1− z

)

,

this can be written as a product of the following two series;

1

(1− z)2
ln

(

1

1− z

)

=

(

∞
∑

n=1

nzn−1

)(

∞
∑

n=1

1

n
zn

)

=

(

1 + 2z + 3z2 + 4z3 + . . .

)(

z +
z2

2
+

z3

3
+

z4

4
+ . . .

)

= z +

(

2 +
1

2

)

z2 +

(

3 +
2

2
+

1

3

)

z3 +

(

4 +
3

2
+

2

3
+

1

4

)

z4 + . . .

= z +
(

H1 +H2

)

z2 +
(

H1 +H2 +H3

)

z3 + . . .

=
∞
∑

n=0

(

(n + 1)Hn − n

)

zn.

Extracting the coefficients and discarding terms for n ≤ 3, the exact mean number
of exchanges of dual pivot Quicksort is equal to,

bn =
4

5

(

(n+ 1)Hn − n

)

−
4

25
(n+ 1)

=
4

5
(n + 1)Hn −

24n+ 4

25
∼

4

5
n ln(n). (2.3)

Comparing the expected number of comparisons of this variant with the standard
algorithm, we see that they are identical. However, the mean number of exchanges
is 2.4 times greater than the figure of normal Quicksort.

In the lines that follow, we compute the average number of partitioning stages
E(Pn) of dual pivot Quicksort. The recurrence is much simpler;

Pn = 1 + Pi−1 + Pj−i−1 + Pn−j.

Averaging over all

(

n

2

)

pairs of pivots i and j we have

E(Pn) = 1 +
6

n(n− 1)

n−1
∑

i=1

n
∑

j=i+1

E(Pi−1)

= 1 +
6

n(n− 1)

n−1
∑

i=1

(n− i)E(Pi−1),

since the sums are equal. Again, we use generating functions for the solution of

the recurrence. Letting f(z) =

∞
∑

n=0

E(Pn)z
n our recurrence is transformed to the

following differential equation

f ′′(z)
z2

2
=

z2

(1− z)3
+ 3f(z)

(

z

1− z

)2

.

8



Changing variables x = 1− z we have h(x) = f(1− x) and the general solution is

h(x) =
c2
x2

+ x3c1 −
1

2x
.

Since h(1) = h′(1) = 0 the constants are c1 =
1

10
and c2 =

2

5
. Consequently, the

mean number of partitioning stages is found to be equal to

E(Pn) =
2

5
(n+ 1)−

1

2
. (2.4)

This is smaller than the expected number of stages of ordinary Quicksort, which is
n, when there is no switch to straight insertion for the sorting of small subfiles, [4].

3 Variance

Finally, we set up a recurrence for the computation of the variance of the number
of comparisons of dual pivot Quicksort. Recall that

An = 2n− i− 2 and E(An) =
5n− 7

3
.

By the recurrence relation for the number of comparisons, we have

P (Cn = t) =
1
(

n

2

)

n−1
∑

i=1

n
∑

j=i+1

P (Cn = t) =
1
(

n

2

)

n−1
∑

i=1

n
∑

j=i+1

P (An + Ci−1 + Cj−i−1 + Cn−j = t),

noting that the resulting subarrays are independently sorted, the above is

1
(

n

2

)

n−1
∑

i=1

n
∑

j=i+1

∑

l,m

(

P (Ci−1 = l)P (Cj−i−1 = m)P (Cn−j = t−m− l − 2n+ i+ 2)

)

.

Letting fn(z) =

∞
∑

t=0

P (Cn = t)zt be the ordinary probability generating function

for the number of comparisons needed to sort n keys, we obtain

fn(z) =
1

(

n

2

)

n−1
∑

i=1

n
∑

j=i+1

z2n−i−2fi−1(z)fj−i−1(z)fn−j(z). (3.1)

9



It holds that fn(1) = 1 and f ′

n(1) = 2(n + 1)Hn − 4n. Moreover, the second order
derivative of Eq. (3.1) evaluated at z = 1 is recursively given by

f ′′

n(1) =
2

n(n− 1)

(n−1
∑

i=1

n
∑

j=i+1

(2n− i− 2)2 −
n−1
∑

i=1

n
∑

j=i+1

(2n− i− 2)

+ 2

n−1
∑

i=1

n
∑

j=i+1

(2n− i− 2)E(Ci−1) + 2

n−1
∑

i=1

n
∑

j=i+1

(2n− i− 2)E(Cj−i−1)

+ 2

n−1
∑

i=1

n
∑

j=i+1

(2n− i− 2)E(Cn−j) + 2

n−1
∑

i=1

n
∑

j=i+1

E(Ci−1)E(Cj−i−1)

+ 2
n−1
∑

i=1

n
∑

j=i+1

E(Ci−1)E(Cn−j) + 2
n−1
∑

i=1

n
∑

j=i+1

E(Cj−i−1)E(Cn−j)

+

n−1
∑

i=1

n
∑

j=i+1

f ′′

i−1(1) +

n−1
∑

i=1

n
∑

j=i+1

f ′′

j−i−1(1) +

n−1
∑

i=1

n
∑

j=i+1

f ′′

n−j(1)

)

.

The reader should not be discouraged by this long expression, since many of the
sums are equal. Specifically, the fourth and fifth turn out to be equal and by simple
manipulation of indices, the sums of the products of expected values are equal. The
double sum of the product of the mean number of comparisons can be simplified as
follows:

n−1
∑

i=1

n
∑

j=i+1

E(Ci−1)E(Cn−j) =
n−1
∑

i=1

(

E(Ci−1)

(n−i−1
∑

j=0

E(Cj)

)

)

=

n−1
∑

i=1

(

(

(2iHi−1 − 4(i− 1)

)(

2

(

n− i+ 1

2

)

Hn−i +
n− i− 5(n− i)2

2

)

)

.

The next sum was computed using results from a paper [5], which contains inter-
esting identities and properties of sums involving harmonic numbers.

n−1
∑

i=1

i

(

n− i+ 1

2

)

Hi−1Hn−i =

n−1
∑

i=1

(

(i− 1) + 1

)(

n− i+ 1

2

)

Hi−1Hn−i

=
n−1
∑

i=1

(i− 1)

(

n− i

2

)

Hi−1Hn−i +
n−1
∑

i=1

(

n− i

2

)

Hi−1Hn−i

+
n−1
∑

i=1

(i− 1)(n− i)Hi−1Hn−i +
n−1
∑

i=1

(n− i)Hi−1Hn−i.

The four sums can be evaluated using Corollary 3 in [5].
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After some computations in our Maple worksheet, the recurrence is

f ′′

n(1) = 2(n+ 1)(n+ 2)(H2
n −H(2)

n )−Hn

(

17

3
n2 +

47

3
n+ 6

)

+
209

36
n2 +

731

36
n+

13

6

+
6

n(n− 1)

n−1
∑

i=1

(n− i)f ′′

i−1(1),

where H
(2)
n is the second order harmonic number defined by H

(2)
n :=

n
∑

k=1

1

k2
. Letting

dn = f ′′

n(1) and subtracting

(

n

2

)

dn from

(

n+ 1

2

)

dn+1, we have

∆

(

n

2

)

dn = 4n(n+ 1)(n+ 2)(H2
n −H(2)

n )−
nHn

9
(84n2 + 198n+ 42) + 3

n
∑

i=1

di−1

+
n

9
(79n2 + 231n+ 14),

using the identity [4]

H2
n+1 −H

(2)
n+1 = H2

n −H(2)
n +

2Hn

n+ 1
.

Further, it holds that

∆2

(

n

2

)

dn = 12(n+ 1)(n+ 2)(H2
n −H(2)

n )−Hn(20n
2 + 32n− 12) + 17n2 + 37n+ 3dn.

The previous equation is the same as
(

n + 2

2

)

dn+2 − 2

(

n+ 1

2

)

dn+1 +

(

n

2

)

dn

and our recurrence becomes

(n+ 1)(n+ 2)dn+2 − 2n(n+ 1)dn+1 + n(n− 1)dn

= 2

(

12(n+ 1)(n+ 2)(H2
n −H(2)

n )−Hn(20n
2 + 32n− 12) + 17n2 + 37n+ 3dn

)

.

Dividing by (n + 1)(n+ 2), we obtain the telescoping recurrence

(n+ 2)dn+2 − (n− 2)dn+1

n+ 2
=

(n + 1)dn+1 − (n− 3)dn
n+ 1

+2

(

12(H2
n −H(2)

n )−
Hn(20n

2 + 32n− 12)

(n + 1)(n+ 2)
+

17n2 + 37n

(n+ 1)(n+ 2)

)

The Maple worksheet containing the computations for the variance can be found at the web

page: http://www.essex.ac.uk/maths/staff/profile.aspx?ID=1326
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with solution

(n + 2)dn+2 − (n− 2)dn+1 = (24n2 + 100n+ 104)(H2
n+1 −H

(2)
n+1)

−Hn+1(88n
2 + 292n+ 224) + 122n2 + 346n+ 224,

which is equivalent to

ndn − (n− 4)dn−1 = (24n2 + 4n)(H2
n−1 −H

(2)
n−1)

−Hn−1(88n
2 − 60n− 8) + 122n2 − 142n+ 20.

Again as before, multiplying both sides by
(n− 1)(n− 2)(n− 3)

24
, the recurrence

telescopes with solution

f ′′

n(1) = 4(n+ 1)2(H2
n+1 −H

(2)
n+1)− 4Hn+1(n+ 1)(4n+ 3) + 23n2 + 33n+ 12.

Using the well known fact that

Var(Cn) = f ′′

n(1) + f ′

n(1)−
(

f ′

n(1)
)2
,

the variance of the number of key comparisons of dual pivot Quicksort is

7n2 − 4(n+ 1)2H(2)
n − 2(n+ 1)Hn + 13n. (3.2)

The asymptotic figure is
(

7−
2

3
π2

)

n2 − 2n ln(n) +O(n). (3.3)

Note that the variance of dual pivot Quicksort is identical with the variance of
the ordinary algorithm - see Eq. (32) in [3]. Also, in this paper we showed that
the dual pivot Quicksort variant has the same expected number of key comparisons
as the standard algorithm and as one might expect, the mean number of stages
is smaller than the respective figure of the ordinary algorithm. However, the ex-
pected number of exchanges is notably large. An efficient partitioning procedure
is described in a paper written by Frazer and McKellar [1], where they present
and analyse the Samplesort algorithm. It is shown [1] that the expected number
of comparisons of Samplesort slowly approaches the Information - theoretic lower
bound.
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