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The traveling salesman problem for lines and rays in the plane∗
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Abstract

In the Euclidean TSP with neighborhoods (TSPN), we are given a collection of n regions
(neighborhoods) and we seek a shortest tour that visits each region. In the path variant, we
seek a shortest path that visits each region. We present several linear-time approximation
algorithms with improved ratios for these problems for two cases of neighborhoods that are
(infinite) lines, and respectively, (half-infinite) rays. Along the way we derive a tight bound on
the minimum perimeter of a rectangle enclosing an open curve of length L.

Keywords: Traveling salesman problem with neighborhoods, linear programming, minimum-
perimeter rectangle, approximation algorithm, lines, rays.

1 Introduction

In the Euclidean Traveling Salesman Problem (TSP), given a set of points in the plane, one seeks
a shortest tour (closed curve) that visits each point. In the path variant, one seeks a shortest path
(open curve) that visits each point. If now each point is replaced by a (possibly disconnected)
region, one obtains the so-called TSP with neighborhoods (TSPN), first studied by Arkin and
Hassin [1]. A tour for a set of neighborhoods is also referred to as a TSP tour. A path for a set of
neighborhoods is also referred to as a TSP path.

For the case of neighborhoods that are (infinite) straight lines, an optimal tour can be computed
in O(n5) time [2, 8, 9] (see also [5]), and a

√
2-approximation can be computed in O(n) time [5].

For the case of neighborhoods that are (half-infinite) rays, no polynomial time algorithm is known
for computing an optimal tour, and a

√
2-approximation can be computed in O(n) time [5]. In this

paper we present linear-time approximation algorithms with improved ratios for these problems.
The obvious motivation is to provide faster and conceptually simpler algorithmic solutions. As
mentioned above, while for the case of rays no polynomial time algorithm is known, for the case of
lines, the known algorithms reduce the problem of computing an optimal tour of the lines to that
of computing an optimal watchman tour in a simple polygon for which the existent algorithms are
quite involved and rather slow for large n [2, 8, 9].

In this paper we present four improved linear-time approximation algorithms for TSP, for two
cases of neighborhoods, that are straight lines, and respectively, straight rays in the plane. We
consider two variants of the problem: that of computing a shortest tour and that of computing
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Ratio Tour (old ratio) Tour (new ratio) Path (old ratio) Path (new ratio)

Lines
√
2 = 1.41 . . . 1.28 2

√
2 = 2.82 . . . 1.42

Rays
√
2 = 1.41 . . . 1.28 − 2.24

Table 1: Old and new approximation ratios. No approximation for paths on rays was reported in [5].

a shortest path visiting the input set. Our algorithms are all based on solving low-dimensional
linear programs. Our results are summarized in Table 1.

Theorem 1. Given a set of n lines in the plane: (i) A TSP tour that is at most 1.28 times longer

than the optimal can be computed in O(n) time. (ii) A TSP path that is at most 1.42 times longer

than the optimal can be computed in O(n) time.

For lines, the previous best approximations obtained in linear time were
√
2 ≈ 1.41 and 2

√
2 ≈

2.82, respectively [5].

Theorem 2. Given a set of n rays in the plane: (i) A TSP tour that is at most 1.28 times longer

than the optimal can be computed in O(n) time. (ii) A TSP path that is at most 2.24 times longer

than the optimal can be computed in O(n) time.

For rays, the previous best approximation for tours was
√
2 ≈ 1.41 [5] (obtained also in linear

time, however this was the only approximation known), while for paths there was no approximation
known.

Preliminaries. We use the following terms and notations. We denote by x(p) and y(p) the
x and y-coordinates of a point p. We say that point q dominates point p if x(p) ≤ x(q) and
y(p) ≤ y(q). For a segment s, ∆x(s) and ∆y(s) denote the lengths of its horizontal and vertical
projections. The convex hull of a planar set A is denoted by conv(A). The Euclidean length of a
curve γ is denoted by len(γ). For a polygon P , let per(P ) denote its perimeter. For a rectangle
Q, let long(Q) denote the length of a longest side of Q. For a ray ρ, let ℓ(ρ) denote its supporting
line.

The inputs to the two variants of TSP we consider are a set of lines or a set of rays. Let L
be a given set of n lines, and let T ∗(L) be an optimal tour (circuit) of the lines in L. Let R be a
given set of n rays, and let T ∗(R) be an optimal tour (circuit) of the rays in R.

Following the terminology from [3, 7], a polygon is an intersecting polygon of a set of regions
in the plane if every region in the set intersects the interior or the boundary of the polygon. The
problem of computing a minimum-perimeter intersecting polygon (MPIP) for the case when the
regions are line segments was first considered by Rappaport [7] in 1995. As of now, MPIP (for line
segments) is not known to be polynomial, nor it is known to be NP-hard.

Since both lines and rays are infinite (i.e., unbounded regions) finding optimal tours T ∗(L)
and T ∗(R) are equivalent to finding minimum-perimeter intersecting polygons (MPIPs) for L and
R respectively. We can assume without loss of generality that not all lines in L are concurrent
at a common point (this can be easily checked in linear time), thus per(T ∗(L)) > 0. The same
assumption can be made for the rays in R, thus per(T ∗(R)) > 0.

The following two facts are easy to prove; see also [3, 4, 7].

Observation 1. If P1 is an intersecting polygon of L, and P1 is contained in another polygon P2,

then P2 is also an intersecting polygon of L. The same statement holds for R.
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Observation 2. T ∗(L) is a convex polygon with at most n vertices. Similarly, T ∗(R) is a convex

polygon with at most n vertices.

A key fact in the analysis of the approximation algorithms for computing tours is the following
lemma. This inequality is implicit in [10]; a more direct proof can be found in [3].

Lemma 1. [3, 10]. Let P be a convex polygon. Then the minimum-perimeter rectangle Q con-

taining P satisfies per(Q) ≤ 4

π
per(P ).

2 TSP for lines

In this section we prove Theorem 1.

TSP tours. We present a 4

π
(1+ε)-approximation algorithm for computing a minimum-perimeter

intersecting polygon of a set L of n lines, running in O(n) time. If we set ε = 1/200, we get the
approximation ratio 1.28. For technical reasons (see below) we choose ε ∈ [1/300, 1/200] uniformly
at random, and the approximation ratio remains 1.28. The algorithm combines ideas from [3, 4, 5].
As in [3], we first use the fact (guaranteed by Lemma 1) that every convex polygon P is contained in
some rectangle Q = Q(P ) that satisfies per(Q) ≤ 4

π
per(P ). In particular, this holds for the optimal

tours T ∗(L) and T ∗(R). Then we use linear programming to compute a (1+ ε)-approximation for
the minimum-perimeter intersecting rectangle of L (as in [3]; see also [5]).

Algorithm A1.

Let m = ⌈ π

4ε
⌉. For each direction αi = i · 2ε, i = 0, 1, . . . ,m − 1, compute a minimum-

perimeter intersecting rectangle Qi of L with orientation αi. Return the rectangle with the
minimum perimeter over all m directions.

We now show how to compute the rectangle Qi by linear programming. By a suitable rotation
(by angle αi) of the set L of lines in each iteration i ≥ 1, we can assume that the rectangle Qi

is axis-parallel. This can be obtained in O(n) time (per iteration). Let {q1, q2, q3, q4} be the four
vertices of Qi in counterclockwise order, starting with the lower leftmost corner as in Figure 2.
As in [5], let L = L− ∪ L+ be the partition of L into lines of negative slope and lines of positive
slope. By setting ε ∈ [1/300, 1/200] uniformly at random, in each iteration i, with probability 1
there are no vertical lines in (the rotated set) L.

Observe (as in [5]), that a line in ℓ ∈ L+ intersects Qi if and only if q2 and q4 are separated
by ℓ (points on ℓ belong to both sides of ℓ). Similarly, a line in ℓ ∈ L− intersects Qi if and
only if q1 and q3 are separated by ℓ. The objective of minimum perimeter is naturally expressed
as a linear function. The resulting linear program has 4 variables x1, x2, y1, y2 for the rectangle
Qi = [x1, x2]× [y1, y2], and 2n + 2 constraints.

minimize 2(x2 − x1) + 2(y2 − y1) (LP1)

subject to































y2 ≥ ax1 + b, ℓ : y = ax+ b ∈ L+

y1 ≤ ax2 + b, ℓ : y = ax+ b ∈ L+

y1 ≤ ax1 + b, ℓ : y = ax+ b ∈ L−

y2 ≥ ax2 + b, ℓ : y = ax+ b ∈ L−

x1 ≤ x2
y1 ≤ y2
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Let Q∗ be a minimum-perimeter intersecting rectangle of L. To account for the error made by
discretization, we need the following easy fact; see [3, Lemma 2].

Lemma 2. [3]. There exists an i ∈ {0, 1, . . . ,m− 1} such that per(Qi) ≤ (1 + ε) per(Q∗).

By Observations 1 and 2, and by Lemmas 1 and 2, the algorithm A1 computes a tour that is
at most 1.28 longer than the optimal. The algorithm solves a constant number of 4-dimensional
linear programs, each in O(n) time [6]. The overall time is O(n).

TSP paths. The key to the improvement is offered by the following.

Observation 3. Let Q be a rectangle. Then Q intersects a set of lines L if and only if any three

sides of Q intersect L.

Proof. Fix any three sides of Q: {s1, s2, s3} (each si is a closed segment). Now if ℓ is a line
intersecting Q, then ℓ intersects at least two sides of Q, hence it intersects at least one element of
{s1, s2, s3}, as required.

The next lemma gives a quantitative upper bound on the total length of three shorter sides of
a rectangle enclosing a curve.

Lemma 3. Any open curve of length L can be included in a rectangle Q, so that per(Q)−long(Q) ≤√
2L. This inequality is the best possible.

Proof. Let γ be an open curve of length L = len(γ), and let a, b ∈ γ be the two endpoints of γ. We
can assume w.l.o.g. that ab is a horizontal segment, and let Q = Q(γ) be a minimal axis-aligned
rectangle containing γ. Write z = |ab|. Let w and h the lengths of the horizontal and vertical
sides of Q, respectively (i.e., the width and height of Q). It suffices to show that w + 2h ≤

√
2L.

By construction γ meets each side of Q. We trace γ from a to b and subdivide it into a finite
number of open sub-curves γi; the endpoints of each sub-curve γi belong to two distinct sides of
Q. We denote by si the segment connecting the two endpoints of γi. By concatenating these
segments (in the same traversal order) we get a polygonal curve connecting a and b. We call this
(not necessarily unique) curve, a polygonal curve induced by γ; see Figure 1.

b

a b

a

Figure 1: Polygonal curves induced by γ (two examples, in bold). The corresponding rectangles Q are
drawn in dashed lines.

For any segment s, we have ∆x(s) + ∆y(s) ≤ |s|
√
2: indeed, ∆x(s) + ∆y(s) = |s|(sinα +

cosα) ≤ |s|
√
2, by a well-known trigonometric inequality (here α ∈ [0, π/2]). By adding the above

inequalities for all segments si (and sub-curves γi) we obtain

∑

(∆x(si) + ∆y(si)) ≤
(

∑

|si|
)√

2 ≤ len(γ)
√
2 = L

√
2. (1)
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On the other hand we have
∑

∆x(si) ≥ w: indeed, γ starts at a and meets the left and right
sides of Q before returning to b, hence the horizontal projections of the segments si sum up to at
least 2w − |ab| = 2w − z ≥ w. Similarly, we have

∑

∆y(si) ≥ 2h: indeed, γ starts at a and meets
the top and bottom sides of Q before returning to b. Since a and b have the same y-coordinate,
the vertical projections of the segments si cover twice the height of Q. Consequently, we have

∑

(∆x(si) + ∆y(si)) ≥ w + 2h. (2)

Putting (1) and (2) together yields

w + 2h ≤
∑

(∆x(si) + ∆y(si)) ≤ L
√
2, (3)

as required.
To see that this inequality is tight, let γ be a two-segment polygonal path made from the two

unit sides of an isosceles right triangle. Then L = len(γ) = 2, while the rectangle Q enclosing γ has
sides

√
2 and

√
2/2 respectively. The lengths of its three shorter sides sum up to

√
2 + 2

√
2/2 =

2
√
2 = L

√
2. It can be verified that the sum of the three smallest sides of any other enclosing

rectangle is larger (details in the Appendix), hence the rectangle Q constructed in our proof is
optimal for γ. The proof of Lemma 3 is now complete.

To compute a TSP path for a set of n lines, we use the algorithm A2 we describe next. This
algorithm is similar to algorithm A1, described earlier. A2 computes a rectangle in each direction
from a given sequence. The only difference in the linear program is that instead of minimizing the
perimeter of an intersecting rectangle, 2(x2 −x1)+ 2(y2 − y1), it minimizes the sum of the lengths
of three sides, namely (x2−x1)+2(y2− y1). The objective function is not symmetric with respect
to the two coordinates axes, and so the number of directions m, from algorithm A1, is m = ⌈ π

2ε
⌉

in algorithm A2. Let now Q∗ be an intersecting rectangle of L with minimum sum of the lengths
of three sides. Analogous to Lemma 2 we have

Lemma 4. There exists an i ∈ {0, 1, . . . ,m− 1} such that

per(Qi)− long(Qi) ≤ (1 + ε) (per(Q∗)− long(Q∗)).

By Lemma 3 and Lemma 4 the approximation ratio is
√
2(1 + ε), and we set ε = 1/250 (or

slightly smaller, as before), to obtain the approximation ratio 1.42. This completes the proof of
Theorem 1.

3 TSP for rays

As noted in [5]: If the lines are replaced by line segments the problem of finding an optimal tour
becomes NP-hard. Should the lines be replaced by rays, we get a variant of the problem that lies
somewhere in between the variant for lines and that for line segments, and whose complexity is
open. In this section we prove Theorem 2.

TSP tours. The algorithm A1 from Section 2 can be adapted to compute a 4

π
(1+ε)-approximate

tour for a setR of n rays. Letm = ⌈ π

4ε
⌉. The resulting algorithm A3 for computing an approximate

tour for n given rays computes a minimum-perimeter rectangle intersecting all rays over all m

5



q3q4

q1 q2

Figure 2: The rectangle Qi, and two rays, one in R1 and one in R4 that intersect it.

directions. As before, assume that in the ith iteration, the rectangle Qi = {q1, q2, q3, q4} is axis-
parallel. A ray in R is said to belong to the ith quadrant, i = 1, 2, 3, 4, if its head belongs to the
ith quadrant when placed with its apex at the origin. Let R = R1∪R2∪R3∪R4 be the partition
of the rays in R (after rotation) as dictated by the four quadrants. See Figure 2.

Observe that:

• A ray ρ ∈ R1 intersects Qi if and only if q2 and q4 are separated by ℓ(ρ), and the apex
(endpoint) of ρ is dominated by q3.

• A ray ρ ∈ R2 intersects Qi if and only if q1 and q3 are separated by ℓ(ρ), and the apex of ρ
lies right and below q4.

• A ray ρ ∈ R3 intersects Qi if and only if q2 and q4 are separated by ℓ(ρ), and the apex of ρ
dominates q1.

• A ray ρ ∈ R4 intersects Qi if and only if q1 and q3 are separated by ℓ(ρ), and the apex of ρ
lies left and above q2.

The constraints listed above correct an error in the old
√
2-approximation algorithm from [5],

where it was incorrectly demanded that the apexes of the rays must lie in the rectangle Qi. Indeed,
this condition is not necessary, and moreover, may prohibit finding an approximate solution with
the claimed guarantee of

√
2.

Observe that these intersection conditions can be expressed as linear constraints in the four
variables, x1, x2, y1, y2. The algorithm A3 computes a minimum-perimeter rectangle intersecting
all rays over all m directions. For each of these directions, the algorithm solves a linear program
with four variables and O(n) constraints, as described above. As such, the algorithm takes O(n)
time [6]. The approximation ratio is 4

π
(1+ε), and we set ε = 1/200 (or slightly smaller, as before),

to obtain the approximation ratio 1.28.

TSP paths. We need an analogue of Lemma 2 for open curves. This is Lemma 5 below which
is obviously also of independent interest.

Lemma 5. Any open curve of length L can be included in a rectangle Q, so that per(Q) ≤
√
5L.

This inequality is the best possible.

Proof. Let γ be an open curve of length L = len(γ), and let a, b ∈ γ be the two endpoints of γ. We
can assume w.l.o.g. that ab is a horizontal segment, and let Q = Q(γ) be a minimal axis-aligned
rectangle containing γ. Let w and h be the lengths of the horizontal and vertical sides of Q,
respectively (i.e., the width and height of Q).

6



It suffices to show that 2w + 2h ≤
√
5L. Write w = L/λ, where λ ≥ 1. The case λ = 1

corresponds to a degenerate enclosing rectangle, when γ is a line segment, and for which 2w+2h =
2w = 2L ≤

√
5L. We can therefore assume in the following that λ > 1. By construction γ meets

each side of Q. Arbitrarily select a point of γ on each of these sides to obtain a polygonal open
curve γ1 connecting a and b and passing through these intermediate points (and still enclosed in
Q). By construction, the intermediate points are visited in the same order by γ and γ1. By the
triangle inequality, len(γ1) ≤ len(γ).

Successively reflect the rectangle Q with respect to the sides containing the intermediate points
in the order of traversal. See Figure 3 for an illustration. Let b′ be the final reflection of the end-
point b of γ. The segments composing γ1 can be retrieved in the reflected rectangles; they make
up a polygonal path γ2 connecting a and b′. By construction we have len(γ1) = len(γ2).

b

ba

a

b
′

b
′

Figure 3: The reflection argument (two examples, in bold). The small shaded triangles indicate the lower
left corner of Q in all subsequent reflections.

It is easily seen that ∆x(ab′) = 2w − |ab| and ∆x(ab′) = 2h. By Pythagoras’ Theorem,

∆x2(ab′) + ∆y2(ab′) = |ab′|2.

Since the shortest distance between two points is a straight line, len(γ2) ≥ |ab′|. It follows that

L2 = len2(γ) ≥ len2(γ1) = len2(γ2) ≥ |ab′|2 = (2w − |ab|)2 + 4h2. (4)

Obviously, |ab| ≤ w, thus from (4) we deduce that

w2 + 4h2 ≤ L2. (5)

Substituting w = L/λ in (5) yields L2/λ2 + 4h2 ≤ L2, hence

2h ≤
√
λ2 − 1

λ
L.

It follows that

per(Q) = 2w + 2h ≤
(

2

λ
+

√
λ2 − 1

λ

)

L =

(

2 +
√
λ2 − 1

λ

)

L. (6)

Consider the function

f(λ) =
2 +

√
λ2 − 1

λ
.
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Its derivative is

f ′(λ) =

λ2

√
λ2−1

− 2−
√
λ2 − 1

λ2
=

λ2 − 2
√
λ2 − 1− (λ2 − 1)

λ2
√
λ2 − 1

=
1− 2

√
λ2 − 1

λ2
√
λ2 − 1

.

It can be easily verified that f ′(λ) vanishes at λ =
√
5/2, and that f(λ) is increasing on the

interval (1,
√
5/2] and decreasing on the interval [

√
5/2,∞). Hence f(λ) attains its maximum at

λ =
√
5/2, that is, f(λ) ≤ f(

√
5/2) =

√
5. According to (6), we have per(Q) ≤ L

√
5, as desired.

To see that this inequality is tight, let γ be a two-segment polygonal path made from the two
equal sides of an isosceles triangle with sides 1, 1, and 4/

√
5. In this case, L = 2 and per(Q) =

2(4/
√
5 + 1/

√
5) = 2

√
5 = L

√
5. It can be verified that the perimeter of any other enclosing

rectangle is larger (details in the Appendix), hence the rectangle Q enclosing γ constructed in our
proof has minimum perimeter. The proof of Lemma 5 is now complete.

Given R, we compute an approximation of the optimal TSP path by using algorithm A3. Let
now γ be an optimal TSP path for the rays in R, where L = len(γ). Since every ray in R intersects
γ, every ray in R intersects the rectangle Q = Q(γ), as defined in the proof of Lemma 5. For
each of the m directions, the algorithm A3 computes a minimum-perimeter rectangle (of that
orientation) intersecting each ray in R. Thus A3 computes a rectangle (i.e., a closed path) that
is a (1 + ε)-approximation of the minimum-perimeter rectangle intersecting each ray in R. For
ε = 1/1000, its perimeter is at most (1 + ε)

√
5L ≤ 2.24L, as claimed. This completes the proof of

Theorem 2.

4 Final remarks

Interesting questions remain open regarding the structure of optimal TSP tours for lines and rays,
and the degree of approximation achievable for these problems. For instance, the following two
problems (one new and one old) deserve attention.

(1) Is there a polynomial-time algorithm for computing a shortest tour (or path) for a given set
of rays in the plane?

(2) Can one compute a good approximation of a shortest TSP tour (or path) for a given set
of lines in 3-space? Note that this variant with parallel lines reduces to the Euclidean TSP
for points in the plane (namely the points of intersection between the given lines and an
orthogonal plane), so it is NP-hard. See also [4].
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Appendix

A tight bound for Lemma 3. Let Q be a minimal rectangle containing γ = acb, whose width
and height are w and h, respectively. Let ∆ = conv(γ) = conv(acb), where ∠acb = π/2. It suffices
to show that w + 2h ≥ L

√
2L = 2

√
2. By the minimality of Q, at least one vertex of ∆ must

coincide with a corner of Q, say the lower left corner q1. If c = q1, then Q is a unit square, thus
w + 2h = 3 > 2

√
2. Assume now that a = q1, as in Figure 4.

α
b

a

c

Figure 4: A rectangle containing γ.

We have w = sinα+cosα and h = cosα, where α ∈ [0, π/4]. Hence w+2h = (sinα+cosα)+
2 cosα = 3cosα + sinα. Consider the function f(α) = 3 cosα + sinα, where α ∈ [0, π/4]. Its
derivative, f ′(α) = −3 sinα+cosα vanishes at α = arctan(1/3), and is positive on (0, arctan(1/3))
and negative on (arctan(1/3), π/4). Hence f(α) attains its minimum at one of the endpoints of
the interval [0, π/4]. We have f(0) = 3 and f(π/4) = 4

√
2/2 = 2

√
2, therefore f(α) ≥ 2

√
2 for

α ∈ [0, π/4].

A tight bound for Lemma 5. Again, let Q be a minimal rectangle containing γ = acb, whose
width and height are w and h, respectively. Let ∆ = conv(γ) = conv(acb), where∠acb = 2arctan 2.
It suffices to show that 2(w + h) ≥ L

√
5L = 2

√
5. By the minimality of Q, at least one of the

9



β

c β c
b

b

aa

α α

Figure 5: Two type of rectangles containing γ: Case 1 and Case 2.

two vertices a and b of ∆ must coincide with a corner of Q, say the lower left corner q1. We have
a = q1, as in Figure 5. We distinguish two cases:

Case 1. The vertex b lies on the right side of Q, and c lies on the top side of Q, as in
Figure 5(left). We have w = 4√

5
cosα and h = 4√

5
sinα + sinβ, where α ∈ [0, arctan(1/2)], and

β = π/2 − (π − (π/2 − α)− arctan(1/2)) = arctan(1/2) − α. This yields

sinβ = sin(arctan(1/2) − α) = sin arctan(1/2) cos α− cos arctan(1/2) sin α

=
1√
5
cosα− 2√

5
sinα.

It follows that

2(w + h) = 2

(

4√
5
cosα+

4√
5
sinα+

1√
5
cosα− 2√

5
sinα

)

= 2

(√
5 cosα+

2√
5
sinα

)

.

Consider the function f(α) =
√
5 cosα + (2/

√
5) sinα, where α ∈ [0, arctan(1/2)]. Its derivative,

f ′(α) = −
√
5 sinα+ (2/

√
5) cosα vanishes at α = arctan(2/5), and is positive on (0, arctan(2/5))

and negative on (arctan(2/5), arctan(1/2)). Hence f(α) attains its minimum at one of the end-
points of the interval [0, arctan(1/2)]. We have f(0) =

√
5 and f(arctan(1/2)) = 2+2/5 = 12/5 >√

5, therefore f(α) ≥
√
5 for α ∈ [0, arctan(1/2)]. Equivalently, per(Q) = 2(w + h) ≥ 2

√
5 in

this case. (It may be noted that the rectangle with perimeter 2 · 12/5 = 24/5 corresponding to
α = arctan(1/2) is flush with the unit side cb.)

Case 2. The vertex b coincides with the upper right corner of Q, and c lies in the interior of
Q, as in Figure 5(right). By symmetry, we can assume that w ≥ h. We have w = (4/

√
5) cosα)

and h = (4/
√
5) sinα, where α = β + arctan(1/2), and β ∈ [0, π/4 − arctan(1/2)]. This yields

w + h =
4√
5
(cos(β + arctan(1/2)) + sin(β + arctan(1/2))).

The above expression attains its minimum at β = 0, thus

per(Q) = 2(w + h) ≥ 8√
5
(cos arctan(1/2) + sin arctan(1/2))

=
8√
5

(

2√
5
+

1√
5

)

=
8√
5
· 3√

5
=

24

5
> 2

√
5,

in this second case.

We therefore always have per(Q) ≥ 2
√
5, as claimed.
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