
ar
X

iv
:1

10
7.

01
18

v1
 [

cs
.D

M
]

 1
 J

ul
 2

01
1

Optimal Folding of Data Flow Graphs based on

Finite Projective Geometry using Lattice Embedding

Swadesh Choudhary Hrishikesh Sharma Sachin Patkar

Department of Electrical Engg., Indian Institute of Technology, Bombay, India

October 22, 2018

Abstract

A number of computations exist, especially in area of error-control coding
and matrix computations, whose underlying data flow graphs are based on finite
projective-geometry based balanced bipartite graphs. Many of these applica-
tions of projective geometry are actively being researched upon, especially in the
area of coding theory. Almost all these applications need bipartite graphs of the
order of tens of thousands in practice, whose nodes represent parallel computa-
tions. To reduce its implementation cost, reducing amount of system/hardware
resources during design is an important engineering objective. In this context, we
present a scheme to reduce resource utilization when performing computations
derived from projective geometry (PG) based graphs. In a fully parallel design
based on PG concepts, the number of processing units is equal to the number
of vertices, each performing an atomic computation. To reduce the number of
processing units used for implementation, we present an easy way of partitioning
the vertex set assigned to various atomic computations, into blocks. Each block
of partition is then assigned to a processing unit. A processing unit performs
the computations corresponding to the vertices in the block assigned to it in a
sequential fashion, thus creating the effect of folding the overall computation.
These blocks belong to certain subspaces of the projective space, thus inheriting
symmetric properties that enable us to develop a conflict-free schedule. More-
over, the partition is constructed using simple coset decomposition. The folding
scheme achieves the best possible throughput, in lack of any overhead of shuf-
fling data across memories while scheduling another computation on the same
processing unit. As such, we have developed multiple new folding schemes for
such graphs. This paper reports two folding schemes, which are based on same

lattice embedding approach, based on partitioning. We first provide a scheme,
based on lattice embedding, for a projective space of dimension five, and the
corresponding schedules. Both the folding schemes that we present have been
verified by both simulation and hardware prototyping for different applications.

1

http://arxiv.org/abs/1107.0118v1

For example, a semi-parallel decoder architecture for a new class of expander
codes was designed and implemented using this scheme, with potential deploy-
ment in CD-ROM/DVD-R drives. We later generalize this scheme to arbitrary

projective spaces.

Keywords : Projective Geometry, Parallel Scheduling and Semi-parallel Architecture

1 Introduction

A number of naturally parallel computations make use of balanced bipartite graphs
arising from finite projective geometry [5], [1], [10], [4], and related structures [8], [9], [7]
to represent their data flows. Many of them are in fact, recent research directions, e.g.
[5], [8], [4]. These bipartite graphs are generally based on point-hyperplane incidence
relationships of a certain projective space. As the dimension of the projective space is
increased, the corresponding graphs grow both in size and order. Each vertex of the
graph represents a processing unit, and all the vertices on one side of the graph can
compute in parallel, since there are no data dependencies/edges between vertices that
belong to one side of a bipartite graph. The number of such parallel processing units
is generally of the order of tens of thousands in practice for various reasons.
It is well-known in the area of error-control coding that higher the length of error
correction code, the closer it operates to Shannon limit of capacity of a transmission
channel [4]. The length of a code corresponds to size of a particular bipartite graph,
Tanner graph, which is also the data flow graph for the decoding system [13]. Similarly,
in matrix computations, especially LU/Cholesky decomposition for solving system of
linear equations, and iterative PDE solving (and the sparse matrix vector multiplication
sub-problem within) using conjugate gradient algorithm, the matrix sizes involved
can be of similar high order. A PG-based parallel data distribution can be imposed
using suitable interconnection of processors to provide optimal computation time [10],
which can result in quite big setup(as big as a petaflop supercomputer). This setup
is being targeted in Computational Research Labs, India, who are our collaboration
partners. Further, at times, scaling up the dimension of projective geometry used
in a computation has been found to improve application performance [1]. In such a
case, the number of processing units grows exponentially with the dimension again. For
practical system implementations with good application performance, it is not possible
to have a large number of processing units running in parallel, since that incurs high
manufacturing costs. We have therefore focused on designing semi-parallel, or folded
architectures, for such applications. In this paper, we present a scheme for folding
PG-based computations efficiently, which allows a practical implementation with the
following advantages.

1. The number of on-chip processing units reduces. Further, the scheduling of

2

computations is such that no processing unit is left idle during a computation
cycle.

2. Each processing unit can communicate with memories associated with the other
units using a conflict-free memory access schedule. That is, a schedule can be
generated which ensures that there are no memory access conflicts between pro-
cessing units.

3. Data distribution among the memories is such that the address generation circuits
are simplified to counters/look-up tables. Moreover, the distribution ensures that
during the entire computation cycle, a word (smallest unit of data read from a
memory) is read from and written to the same location in the same memory that
it is assigned to.

The last advantage is important because it ensures that the input and write-back phases
of the processing unit is exactly the same as far the memory accesses are concerned.
Thus the address generation circuits for both the phases are identical. Also, the original
computation being inherently parallel, we can overlap the input and write-back phases
by using simple dual port memories. The core of aforementioned scheme is based on
adapting the method of vector space partitioning [2] to projective spaces, and hence
involves fair amount of mathematical rigor.
A restricted scheme of partitioning a PG-based bipartite graph, which solves the same
problem, was worked out earlier using different methods [3]. An engineering-orinented
dual scheme of partitioning has also been worked out. It specifies a complete synthesis-
oriented design methodology for folded architecture design [13]. All this work was done
as part of a research theme of evolving optimal folding architecture design methods, and
also applying such methods in real system design. As part of second goal, such folding
schemes have been used for design of specific decoder systems having applications in
secondary storage [11], [1].
In this paper, we begin by giving a brief introduction to Projective Spaces in section
2. A reader familiar with Projective Spaces may skip this section. It is followed
by a model of the nature of computations covered, and how they can be mapped
to PG based graphs, in section 3. Section 4 introduces the concept of folding for
this model of computation. We then present two folding schemes, based on lattice
embedding techniques, and the corresponding schedules for graphs derived from point-
hyperplane incidence relations of a projective space of dimension five, in section 5. We
then generalize these results for graphs derived from arbitrary projective geometry, in
section 6. We provide specifications of some real applications that were built using
these schemes, in the results section(section 7).

3

2 Projective Spaces

2.1 Projective Spaces as Finite Field Extension

We first provide an overview of how the projective spaces are generated from finite
fields. Projective spaces and their lattices are built using vector subspaces of the
bijectively corresponding vector space, one dimension high, and their subsumption
relations. Vector spaces being extension fields, Galois fields are used to practically
construct projective spaces [1].
Consider a finite field F = GF(s) with s elements, where s = pk, p being a prime
number and k being a positive integer. A projective space of dimension d is denoted
by P(d,F) and consists of one-dimensional vector subspaces of the (d+ 1)-dimensional
vector space over F (an extension field over F), denoted by Fd+1. Elements of this
vector space are denoted by the sequence (x1, . . . ,xd+1), where each xi ∈ F. The total
number of such elements are s(d+1) = pk(d+1). An equivalence relation between these
elements is defined as follows. Two non-zero elements x, y are equivalent if there exists
an element λ ∈ GF(s) such that x = λy. Clearly, each equivalence class consists of s
elements of the field ((s− 1) non-zero elements and 0), and forms a one-dimensional
vector subspace. Such 1-dimensional vector subspace corresponds to a point in the
projective space. Points are the zero-dimensional subspaces of the projective space.
Therefore, the total number of points in P(d,F) are

P (d) =
sd+1 − 1

s− 1
(1)

An m-dimensional projective subspace of P(d,F) consists of all the one-dimensional
vector subspaces contained in an (m+ 1)-dimensional subspace of the vector space.
The basis of this vector subspace will have (m+ 1) linearly independent elements,
say b0, . . . ,bm. Every element of this vector subspace can be represented as a linear
combination of these basis vectors.

x =

m
∑

i=0

αibi, where αi ∈ F(s) (2)

Clearly, the number of elements in the vector subspace are s(m+1). The number of
points contained in the m-dimensional projective subspace is given by P (m) defined
in equation (1). This (m+ 1)-dimensional vector subspace and the corresponding
projective subspace are said to have a co-dimension of r = (d−m) (the rank of
the null space of this vector subspace). Various properties such as degree etc. of a m-
dimensional projective subspace remain same, when this subspace is bijectively mapped
to (d−m− 1)-dimensional projective subspace, and vice-versa. This is known as the
duality principle of projective spaces.

4

An example Finite Field and the corresponding Projective Geometry can be generated
as follows. For a particular value of s in GF(s), one needs to first find a primitive
polynomial for the field. Such polynomials are well-tabulated in various literature. For
example, for the (smallest) projective geometry, GF(23) is used for generation. One
primitive polynomial for this Finite Field is (x3 + x + 1). Powers of the root of this
polynomial, x, are then successively taken, (23 − 1) times, modulo this polynomial,
modulo-2. This means, x3 is substituted with (x+ 1), wherever required, since over
base field GF(2), -1 = 1. A sequence of such evaluations lead to generation of the
sequence of (s− 1) Finite field elements, other than 0. Thus, the sequence of 23

elements for GF(23) is 0(by default), α0 = 1, α1 = α, α2 = α2, α3 = α + 1, α4 =
α2 + α, α5 = α2 + α + 1, α6 = α2 + 1.

(a) Line-point Associ-
ation

p5 p6 p0 p1 p2 p3 p4

l0 l1 l2 l3 l4 l5 l6

(b) Bipartite Representation

Figure 1: 2-dimensional Projective Geometry

To generate Projective Geometry corresponding to above Galois Field example(GF(23)),
the 2-dimensional projective plane, we treat each of the above non-zero element, the
lone non-zero element of various 1-dimensional vector subspaces, as points of the ge-
ometry. Further, we pick various subfields(vector subspaces) of GF(23), and label them
as various lines. Thus, the seven lines of the projective plane are {1, α, α3 = 1 + α},
{1, α2, α6 = 1+ α2}, {α, α2, α4 = α2 +α}, {1,α4 = α2 + α, α5 = α2 + α+ 1}, {α, α5

= α2 + α + 1, α6 = α2 + 1}, {α2, α3 = α + 1, α5 = α2 + α + 1} and {α3 = 1 + α, α4

= α + α2, α6 = 1 + α2}. The corresponding geometry can be seen as figures 1.
Let us denote the collection of all the l-dimensional projective subspaces by Ωl. Now,
Ω0 represents the set of all the points of the projective space, Ω1 is the set of all lines,
Ω2 is the set of all planes and so on. To count the number of elements in each of these
sets, we define the function

φ(n, l, s) =
(sn+1 − 1)(sn − 1) . . . (sn−l+1 − 1)

(s− 1)(s2 − 1) . . . (sl+1 − 1)
(3)

5

Now, the number of m-dimensional projective subspaces of P(d,F) is φ(d,m, s). For
example, the number of points contained in P(d, F) is φ(d, 0, s). Also, the number of
l-dimensional projective subspaces contained in an m-dimensional projective subspace
(where 0 ≤ l < m ≤ d) is φ(m, l, s), while the number of m-dimensional projective
subspaces containing a particular l-dimensional projective subspace is φ(d− l− 1, m−
l − 1, s).

Projective Subspaces of dimension 0

Projective Subspaces of dimension 1

Supremum

Infimum

Figure 2: A Lattice Representation for 2-dimensional Projective Space

2.2 Projective Spaces as Lattices

It is a well-known fact that the lattice of subspaces in any projective space is a mod-
ular, geometric lattice [13]. A projective space of dimension 2 is shown in figure
2. In the figure, the top-most node represents the supremum, which is a projective
space of dimension m in a lattice for P(m,GF(q)). The bottom-most node represents
the infimum, which is a projective space of (notational) dimension -1. Each node in
the lattice as such is a projective subspace, called a flat. Each horizontal level of flats

6

represents a collection of all projective subspaces of P(m,GF(q)) of a particular di-
mension. For example, the first level of flats above infimum are flats of dimension 0,
the next level are flats of dimension 1, and so on. Some levels have special names.
The flats of dimension 0 are called points, flats of dimension 1 are called lines, flats
of dimension 2 are called planes, and flats of dimension (m-1) in an overall projective
space P(m,GF(q)) are called hyperplanes.

2.3 Relationship between Projective Subspaces

Throughout the remaining paper, we will be trying to relate projective subspaces of
various types. We define the following terms for relating projective subspaces.

Contained in If a projective subspace X is said to be contained in another projective
subspace Y, then the vector subspace corresponding to X is a vector subspace
itself, of the vector subspace corresponding to Y. This means, the vectors con-
tained in subspace of X are also contained in subspace of Y. In terms of projective
spaces, the points that are part of X, are also part of Y. The inverse relationship
is termed ‘contains’, e.g. “Y contains X”.

Reachable from If a projective subspace X is said to be reachable from another
projective subspaceY, then there exists a chain(path) in the corresponding lattice
diagram of the projective space, such that both the flats, X and Y lie on that
particular chain. There is no directional sense in this relationship.

2.4 Union of Projective Subspaces

Projective Spaces are point lattices. Hence the union of two projective subspaces is
defined not only as set-theoretic union of all points(1-dimensional vector subspaces)
which are part of individual projective subspaces, but also all the linear combinations of
vectors in all such 1-dimensional vector subspaces. This is to ensure the closure of the
newly-formed, higher-dimensional projective subspace. In the lattice representation,
the flat corresponding to union is reachable from few more points, than those contained
in the flats whose union is taken.

3 A Model for Computations Involved

3.1 The Computation Graph

The 0-dimensional subspaces of a d-dimensional projective space (P(d,F)) projective
space are called the points, and the (d− 1)-dimensional subspaces are called the hyper-
planes. Let V be the (d+ 1)-dimensional vector space corresponding to the projective

7

space P(d,F). Then, as stated in the previous section, points will correspond to 1-
dimensional vector subspaces of V, and hyperplanes will correspond to d-dimensional
vector subspaces of V. A bipartite graph is constructed from the point-hyperplane
incidence relations as follows.

• Each point is mapped to a unique vertex in the graph. Each hyperplane is also
mapped to a unique vertex of the graph.

• An edge exists between two vertices iff one of those vertices represents a point, the
other represents a hyperplane and the 1-dimensional vector space corresponding
to the point is contained in the d-dimensional vector space corresponding to the
hyperplane.

From the above construction, it is clear that the graph obtained will be bipartite; the
vertices corresponding to points will form one partition and the vertices corresponding
to the hyperplanes will form the other. Edges only exist between the two partitions.
A point and hyperplane are said to be incident on each other if there exists an edge
in between the corresponding vertices.
Points and hyperplanes form dual projective subspaces; the number of points contained
in a particular hyperplane is given by φ(d − 1, 0, s) and the number of hyperplanes
containing a particular point is given by φ(d−0−1, d−1−0−1, s) = φ(d−1, d−2, s).
After substitution into equation (3), it can easily be verified that φ(d − 1, 0, s) =
φ(d − 1, d − 2, s). Thus, the graph constructed is a regular balanced bipartite graph,
with each vertex having a degree of φ(d− 1, 0, s).
In fact, many possible pairs of dual projective subspaces could be chosen to construct
the graph, on which our folding scheme can be applied. Points and hyperplanes are
the preferred choice because usually the applications require the graph to have a high
degree. Choosing points and hyperplanes gives the maximum possible degree for a
given dimension of projective space.

3.2 Description of Computations

The computations that can be covered using this design scheme are mostly applicable
to the popular class of iterative decoding algorithms for error correcting codes, like
LDPC or expander codes. A representation of such computation is generally available
in the model described above, though it may go by some other domain-specific name
such as Tanner Graph. The edges of such representative graph are considered as
variables/datum of the system. A vertex of the graph represents computation of a
constraint that needs to be satisfied by the variables corresponding to the edges(data)
incident on the vertex. A edge-vertex incidence graph (EV-graph) is derived from
the above graph. The EV-graph is bipartite, with one set of vertices representing
variables and the other set of vertices representing the constraints. The decoding

8

algorithm involves evaluation of all the constraints in parallel, and an update of the
variables based on the evaluation. The vertices corresponding to constraints represent
computations that are to be assigned to, and scheduled on certain processing units.

4 The Concept of Folding

Semi-parallel, or folded architectures are hardware-sharing architectures, in which
hardware components are shared/overlaid for performing different parts of computation
within a (single) computation. In its basic form, folding is a technique in which more
than one algorithmic operations of the same type are mapped to the same hardware
operator. This is achieved by time-multiplexing these multiple algorithm operations
of the same type, onto single functional unit at system runtime.
The balanced bipartite PG graphs of various target applications perform parallel com-
putation, as described in section 3.2. In its classical sense, a folded architecture rep-
resents a partition, or a fold, of such a (balanced) bipartite graph(see figure 3). The
blocks of the partition, or folds can themselves be balanced or unbalanced ; unbalanced
folding entails no obvious advantage. The computational folding can be implemented
after (balanced) graph partitioning in two ways. In the first way, that we cover in this
paper, the within-fold computation is done sequentially, and across-fold computation
is done parallely. This implies that many such sequentially operating folds are sched-
uled parallely. Such a more-popular scheme is generally called a supernode-based folded
design, since a logical supernode is held responsible for operating over a fold. Dually,
the across-fold computation can be made sequential by scheduling first node of first
fold, first node of second fold, . . . sequentially on a single module. The within-fold com-
putations, held by various nodes in the fold, can hence be made parallel by scheduling
them over different hardware modules. Either way, such a folding is represented by a
time-schedule, called the folding schedule. The schedule tells that in each machine
cycle, which all computations are parallely scheduled on various functional units, and
also the sequence of clusters of such parallel computations across machine cycles.

Figure 3: (Unevenly) Partitioned Bipartite DFG

9

4.1 Lattice Embedding

Projective Space lattices being modular lattices, it is also possible to exploit sym-
metry of (lattice) property reflection from a mid-way embedded level of flats from
any two dual levels of flats which form a balanced bipartite graph based on their
inter-reachability. For point-hyperplane bipartite graphs, this specialized scheme of
folding is what we discuss here as one of the schemes. The other scheme involves usage
of two dual mid-way embedded levels. Both these schemes are an example of the first
type of folding: sequential within, and parallel across folds. We term such schemes as
lattice embedding schemes , since the actual functional units(supernodes) are embed-
ded at proper places(mid-way flats) in the corresponding PG lattice. An illustration
of such folding is provided in figure 4.

0

2

4

Figure 4: Folding PG Graph via Lattice Embedding

5 A Folding Scheme for P(5,GF(2))

In this section, we provide two schemes to demonstrate the possibilities of folding
computations related to point hyperplane incidence graphs derived from 5-dimensional
PG over GF(2), P(5,GF(2)). The schemes are summarized by following two proposi-
tions.

Proposition 1. When considering computations based on the point-hyperplane in-
cidence graph of P(5,GF(2)), it is possible to fold the computations and arrange a
scheduling, that can be executed using 9 processing units and 9 dual port memories.

Proposition 2. When considering computations based on the point-hyperplane in-
cidence graph of P(5,GF(2)), it is possible to fold the computations and arrange a
scheduling, that can be executed using 21 processing units and 21 dual port memories.

10

5.1 Proof of Propositions

5.1.1 Some Cardinalities of P(5,GF(2)) Lattice

We first present some important combinatorial figures associated with P(5,GF(2)). We
will use these numbers in proving the functional correctness of the folded computations.
For definition of φ(·), refer equation 3.

• No. of points = No. of hyperplanes (4-dimensional projective subspace) =
φ(5, 0, 2) = 63.

• No. of points contained in a particular hyperplane = φ(4, 0, 2) = 31

• No. of points contained in a line(1-dimensional projective subspace) = φ(1, 0, 2) =
3

• No. of points contained in a plane(2-dimensional projective subspace) = φ(2, 0, 2) =
7

• No. of points contained in a 3-dimensional projective subspace = φ(3, 0, 2) = 15

• No. of hyperplanes containing a particular plane = φ(5− 2− 1, 4− 2− 1, 2) = 7

• No. of hyperplanes containing a particular line = φ(5− 1− 1, 4− 1− 1, 2) = 15

• No. of hyperplanes containing a particular 3-dimensional projective subspace =
φ(5− 3− 1, 4− 3− 1, 2) = 3

• No. of lines contained in a 3-dimensional projective subspace = φ(3, 1, 2) = 35

5.1.2 Lemmas for Proving Proposition 1

We prove the following lemmas, required to establish the feasibility of folding and
scheduling using proposition 1.

Lemma 1. The point set of a projective space of dimension 5 over GF(2) (represented
by the non-zero elements of a vector space V over GF(2)) can be partitioned into disjoint
subsets such that each subset contains all the non-zero elements of a 3-dimensional
vector subspace of V. Thus, each such block of partition/subset represents a unique
plane (2-dimensional projective subspace).

Proof. The vector space V is represented by the field GF(26) and has an order of 63.
Since 3 is a divisor of 6, GF(23) is a subfield of GF(26). The multiplicative cyclic
group of GF(23) (of order 7) is isomorphic to a subgroup of the multiplicative cyclic
group of GF(26). Hence, we can perform a coset decomposition to generate 9 disjoint

11

partitions of V into subsets such that each subset is a 3-dimensional vector space (-{0}),
representing a 2-dimensional projective space i.e. a plane [2].
For details, assume that α is a generator for the multiplicative group of GF(26). Then,
(1, α9, α18, α27, α36, α45,
α54) is the 7-element sub-group that we are looking for. The distinct cosets of this sub-
group provide the partition that we need to generate disjoint projective subspaces.

Corollary 2. The above partitioning leads to partitioning of the set of hyperplanes
(4-dimensional projective subspaces) as well. A (projective) plane can always be found
that contains the intersection of all projective subspaces of the hyperplanes which belong
to the same subset of hyperplanes belonging to a block of the partition, but itself is not
contained in any hyperplane outside the subset. Here, intersection of projective subspace
implies the intersection of their corresponding point sets.

Proof. In P(5,GF(2)), each (projective) plane is contained in 7 hyperplanes. These
hyperplanes are unique to the plane, since they represent the 7 hyperplanes that are
common to the set of 7 points that form the plane. More explicitly, if two planes do
not have any point contained in common, they will not be contained in any common
hyperplane, and vice-versa. Thus, the 9 disjoint planes partition the hyperplane set
into 9 disjoint subsets.

Lemma 3. In projective spaces over GF(2), any subset of points(hyperplanes) having
cardinality of 4 or more has 3 non-collinear(independent) points(hyperplanes).

Proof. The underlying vector space is constructed overGF(2). Hence, any 2-dimensional
vector subspace contains the zero vector, and non-zero vectors of the form αa + βb.
Here, a and b are linearly independent one-dimensional non-zero vectors, and α and β
can be either 0 or 1, but not simultaneously zero:
α, β ∈ GF(2) : (α = β) 6= 0.

Thus, any such 2-dimensional vector subspace contains exactly 3 non-zero vectors.
Therefore, in any subset of 4 or more points of a projective space over GF(2) (which
represent one-dimensional non-zero vectors in the corresponding vector space), at least
one point is not contained in the 2-dimensional vector subspace formed by 2 randomly
picked points from the subset. Thus in such subset, a further subset of 3 independent
points(hyperplanes) i.e. 3 non-collinear vectors can always be found.

Lemma 4. In P(5,GF(2)), any point that does not lie on a plane P1, but lies on some
disjoint plane P2, is contained in exactly 3 hyperplanes reachable from P1. The
vice-versa is also true. This lemma is used in section 5.1.3.

Proof. If a point on plane P2, which is not reachable from plane P1, is contained in 4 or
more hyperplanes(out of 7) reachable from plane P1, then by lemma 3, we can always
find a subset of 3 independent hyperplanes in this set of 4. In which case, the point
will also be reachable from linear combination of these 3 independent hyperplanes, and

12

hence to all the 7 hyperplanes which lie on plane 1. This contradicts the assumption
that the point under consideration is not contained in plane P1. The role of planes P1

and P2 can be interchanged, as well as roles of points and hyperplanes, to prove the
remaining alternate propositions.
Hence if the point considered above is contained in exactly 3 hyperplanes reachable
from P1, then these 3 hyperplanes cannot be independent, following the same argu-
ment as above. If the 3 hyperplanes are not independent of one another, then it is
indeed possible for such a point to be contained in 3 hyperplanes as follows. Let there
be 2 disjoint planes P1 and P2 in P(5,GF(2)), whose set of independent points are
represented by (a,b, c) and (d, e, f). Then, a point(e.g. d) on P2 is reachable from
exactly 3 hyperplanes (a,b, c,d, e), (a,b, c,d, f) and (a,b, c,d, (e+ f)), which lie on
P1.

From the above three lemmas, it is easy to deduce that a point reachable from a plane
P1 is further reachable from 7 hyperplanes through P1, and 3 hyperplanes from each of
the remaining 8 disjoint planes. The 9 disjoint planes can be found via construction in
lemma 1. Thus, in a point-hyperplane graph made from P(5,GF(2)), the total degree
of each point, 31, can be partitioned into 8*3 + 7 = 31 by using embedded disjoint
projective planes, a result of paramount importance in our scheme. This is true for
all points with respect to the planes that they are reachable from, and all hyperplanes
with respect to the plane they contain. This symmetry is used to derive a conflict free
memory access schedule and its corresponding data distribution scheme.

5.1.3 Proof of Proposition 1

We prove now, the existence of folding mentioned in proposition 1 constructively, by
providing an algorithm below for folding the graph, as well as scheduling computations
over such folded graph.
We have shown above in lemma 1 that we can partition the set of points into 9 disjoint
subsets (each corresponding to a plane). The algorithm for partitioning is based on
[2]. Also, there is a corresponding partitioning of the hyperplane set. Let the planes
assigned to the partitions be P1, P2 . . . , P9.We will assign a processing unit (system
resource) to each of the planes. Let us abuse notation and call the processing units by
the name corresponding to the plane assigned to them. We add a commercially-off-the-
shelf available dual port memory Mi to each processing unit Pi, to store computational
data. We then provide a proven schedule that avoids memory conflicts. The
distribution of data among the memories follows from the schedule. Both these issues
are addressed below.
For the computations we are considering, the processing units perform computations on
behalf of the points as well as the hyperplanes. The data symbols are represented by the
edges of the bipartite graph. The overall computation is broken into two phases. Phase

13

1 corresponds to the point vertices performing the computations, using the edges,
and updating the necessary data symbols. Phase 2 corresponds to the hyperplanes
performing the computations, and updating the necessary data symbols.
The data distribution among the memories local to the 9 processing units (M0,M1 . . . ,M8),
and subsequent scheduling, is done as follows.

• In Phase 1, processing unit Pi performs the computations corresponding to the
points that are contained in the plane Pi, in a sequential fashion. For each of the
7 points contained in the plane Pi, there will be 7 units of data corresponding
to 7 hyperplanes containing plane Pi. Thus, 49 units of data corresponding to
them will be stored in Mi. In addition to this, Mi will further store 3 units of
data for each of the 56 remaining points not contained in Pi. These 3 units of
data correspond to the incidence of each of the points not contained in Pi with
some 3 hyperplanes containing the plane Pi; see lemma 4.

Lemma 5. The distribution of data as described above leads to a conflict-free
memory-access pattern, when all the processing units are made to compute in
parallel same computation but on different data.

Proof. Suppose processing unit P1 is beginning the computation cycle corre-
sponding to some point a. It needs to fetch data from the memories, perform
some computation and write back the output of the computation. First, it col-
lects the 7 units of data corresponding to a in M1. This corresponds to the edges
that exist between point a and the hyperplanes that contain plane P1. Next, it
fetches 3 units of data from each of the remaining 8 memories. This consists of
the edges between a and the 3 hyperplanes from each of the planes not containing
a. Thus, 7 + 3 ∗ 8 = 31 units of data will be fetched for a. We have all the 9
processing units working in parallel, and each of them follows the same schedule.

For processing unit Pi, first, 7 units of data from Mi are fetched locally. Further,
3 units of data are fetched from each M(i+j)mod9, j going from 1 to 8. Thus,
during the time when P0 is accessing M1, P1 will be accessing M2, and so on till
we reach P8 which will be accessing M0. In this fashion, no two processing units
will be trying to access the same memory at the same time i.e. no memory access
conflicts will occur.

The writing of the output is done with the same schedule. If dual port memories
are used, we can overlap the writing of the output of one point using one port,
with the reading of the input of the next point using the other port.

• In Phase 2, processing unit Pi performs the computation corresponding to the
hyperplanes that contain plane Pi. If the data is distributed as explained in the
previous point, then Mi already contains all the data required for the hyperplanes

14

containing plane Pi. In this case, the processing unit communicates only with its
own memory and performs the computation.

For above data distribution, the address generator circuit in Phase 1 is just a counter,
while in Phase 2 it becomes a look up table. The address generation circuits are
incorporated within the processing unit itself. As can be observed from the above
discussion, while scheduling different computations on the same physical processing
unit, data does not need any internal or external shuffling across memories associated
with other processing units. This, along with complete conflict freedom in memory
accesses, saves the entire significant overhead of general folding schemes, which in-
cludes shuffling of data in between scheduling of two folds. Thus one achieves the best
theoretically possible throughput in such designs.

5.1.4 Lemmas for Proving Proposition 2

We now move on to proving Proposition 2. Proposition 2 represents moving away from
chosing the exact mid-way level of flats in PG lattice, to multiple choices of two dual
levels of flats, for folding purposes. Thus it is a generalization of Proposition 1.

Lemma 6. The point set of a projective space of dimension 5 over GF(2) (represented
by the non-zero elements of a vector space V of dimension 6 over GF(2)) can be par-
titioned into disjoint subsets such that each subset contains the non-zero elements of
a 2-dimensional vector subspace of V. Each subset/block of the partition represents a
unique line (1-dimensional projective subspace).

Proof. The proof is very similar to lemma 1. As before, V is represented by GF(26) and
since 2 divides 6, GF(22) is a subfield. Thus V can be partitioned into disjoint vector
subspaces(-{0}) of dimension 2 each (using coset decomposition [2]). Each of these
vector subspaces represents a 1-dimensional projective subspace (line), and contains 3
points.

Corollary 7. The dual of above partitioning partitions the set of hyperplanes (4-
dimensional projective subspaces) into disjoint subsets of 3 hyperplanes each. A unique
3-dimensional projective subspace can always be found that is contained in all the 3
hyperplanes of one such subset, and none from any other subset.

Proof. By duality of projective geometry, it follows that we can partition the set of
hyperplanes into disjoint subsets of 3 each, such that each subset represents a unique
3-dimensional projective subspace. This can be achieved by performing a suitable coset
decomposition of the dual vector space.

Thus, we can partition the set of 63 points into 21 sets of 3 points each. In this way,
we have a one-to-one correspondence between a point and the line that contains it.
We now provide certain lemmas, that will be needed to prove theorem 11 later, which
establishes the existence of a conflict-free schedule.

15

Lemma 8. The union of two disjoint lines(1-dimensional projective subspaces) in
P(5,GF(2)) leads to a 3-dimensional projective subspace.

Proof. Let the two disjoint lines be L1 and L2. Being disjoint, they have no points
contained in common.
Each line, being a 2-dimensional vector space contains exactly two independent points.
Thus, two disjoint lines will contain 4 independent points. Taking a union, we get all
possible linear combinations of the 4 independent points which corresponds to a 4-
dimensional vector space(lets call it T12). The 4 independent points have been taken
from the points of the 6-dimensional vector space V, used to describe the projective
space. Thus, the 4-dimensional vector space, made up of all the linear combinations
of the 4 points, is a vector subspace of V.
Being a 4-dimensional vector subspace of V, T12 represents a 3-dimensional projective
subspace.

Lemma 9. For P(5), let L = {L0, L1, . . . , L20} be the set of 21 disjoint lines obtained
after coset decomposition of V. Let Tij be the 3-dimensional projective space obtained
after taking the union of the lines Li, Lj, both taken from the set L. Then, any line
Lk from the set L, is either contained in Tij or does not share any point with Tij.
Specifically, if it shares one point with Tij, then it shares all its points with Tij.

Proof. Let α be the generator of the cyclic multiplicative group of GF(26). Then the
points of the projective space will be given by {α0, α1, . . . , α62} and for any integer i,
αi = α(i mod 63).
The lines of a projective space are equivalent to 2-dimensional vector subspaces. After
the relevant coset decomposition of GF(26), as per lemma 6, without loss of generality,
we can generate a correspondence between lines of L and the cosets as follows.

L0 ≡ {α0, α21, α42}

L1 ≡ {α1, α22, α43}

L2 ≡ {α2, α23, α44}

...

L19 ≡ {α19, α40, α61}

L20 ≡ {α20, α41, α62}

Now, Li ≡ {αi, αi+21, αi+42}, where, i + 21 ∼= ((i + 21) mod 63) and i + 42 ∼= ((i +
42) mod 63).
Similarly, Lj ≡ {αj, αj+21, αj+42}

16

Now, Tij is given by the union of Li, Lj. Thus, Tij contains all possible linear combi-
nations of the points of Li and Lj . Let us divide the points of Tij into two parts:

1. The first part X1 is given by the 6 points contained in Li and Lj .

2. The second part X2 contains 9 points obtained by the linear combinations of the
form aαu + bαv, where αu ∈ Li and αv ∈ Lj and a,b take the non-zero values
of GF(2), i.e. a = b = 1.

Consider any line Lk ∈ L.

• Case 1:
If k = i or k = j, then by the given construction, it is obvious that Lk ⊂ Tij and
the lemma holds.

• Case 2:
Here, k 6= i, j
We have, Lk ≡ {αk, αk+21, αk+42}. Also, Lk ∈ L and k 6= i, j implies that Lk is
disjoint from Li and Lj . Thus, it has no points contained in common with Li

and Lj.

Since Lk has no points contained in common with Li and Lj , it cannot have any
points in common with the set of points X1 of Tij defined above.

Now, we will prove that if Lk has even a single point in common with the set of
points X2 defined in point 2 above, then it has all its points in common with the
set X2 which implies that Lk ⊂ Tij. If no points are in common, then Lk is not
contained Ti,j as required by the lemma.

Without loss of generality, let αk = αu + αv for some αu ∈ Li and αv ∈ Lj .

From the coset decomposition given above, it is clear that if αk ∈ Lk, then
αk+21 ∈ Lk, and αk+42 ∈ Lk. Here again, k + 21 ∼= ((k + 21) mod 63) and
k+ 42 ∼= ((k+ 42) mod 63).

Since α is a generator of a multiplicative group, αk+21 = αk.α21, and αk+42 =
αk.α42.

Also, one of the fundamental properties of finite fields states that the elements
are abelian with respect to multiplication and addition and the multiplication
operator distributes over addition, i.e.

a.(b+ c) = (b+ c).a = a.b+ a.c = b.a+ c.a (4)

where a,b, c are elements of the field.

17

Consider, αk+21, We have,

αk+21 = αk.α21 (5)

=⇒ αk+21 = (αu + αv).α21 (6)

=⇒ αk+21 = αu.α21 + αv.α21 (7)

=⇒ αk+21 = αu+21 + αv+21 (8)

Here, (7) follows because of (4) and, as usual, the addition in the indices is taken
modulo 63.

Since, αu ∈ Li and αv ∈ Lj , from the coset decomposition scheme, we have,
αu+21 ∈ Li and αv+21 ∈ Lj . Thus, αu+21 ∈ Tij and αv+21 ∈ Tij. And finally,
(αu+21+αv+21) ∈ Ti,j which has the straightforward implication that αk+21 ∈ Tij .

Analogous arguments for αk+42 prove that αk+42 ∈ Tij . Thus, all three points of
Lk are contained in Ti.j and Lk ⊂ Ti,j.

The arguments above show that any line Lk ∈ L either is completely contained
in Tij or has no intersecting points with it. For the sake of completeness, we
present the points in Tij so that is easy to “see” the lemma:

Tij =













αi αi+21 αi+42

αj αj+21 αj+42

αj + αi αj+21 + αi αj+42 + αi

αj + αi+21 αj+21 + αi+21 αj+42 + αi+21

αj + αi+42 αj+21 + αi+42 αj+42 + αi+42













Lemma 10. Given the set L of 21 disjoint lines that cover all the points of P(5,GF(2)),
pick any Li ∈ L and take its union with the remaining 20 lines in L to generate 20 3-
dimensional projective subspaces. Of these 20, only 5 distinct 3-dimensional projective
subspaces will exist.

Proof. Any 3-dimensional projective subspace has 3 hyperplanes containing it, refer
corollary 7. If a line is contained in a 3-dimensional projective subspace, then it is
contained in all the 3 hyperplanes, that contain that 3-dimensional projective subspace.
Also, if a line is not contained in a 3-dimensional projective subspace, it is not contained
in any of the hyperplanes, that contain it. This is because:

dim(L1 ∪ T1) = dim(L1) + dim(T1)− dim(L1 ∩ T1)

dim(L1) = 2 , dim(T1) = 4

dim(L1 ∩ T1) = 0

=⇒ dim(L1 ∪ T1) = 6

18

where L1 is the line, and T1 is the 3-dimensional projective subspace not containing
the line. A hyperplane is a 5-dimensional vector subspace. So, if dim(L1 ∪T1) > 5, L1

is not contained in any hyperplane containing T1.
Let Tij and Tjk be two 4-dimensional vector subspaces of V that represent two 3-
dimensional projective subspaces. Then, dim(Tij) = dim(Tjk) = 4. Also,

dim(Tij ∪ Tjk) = dim(Tij) + dim(Tjk)− dim(Tij ∩ Tjk)

It is easy to see that by virtue of base Galois field being GF(2), Tij and Tjk have 0,1 or
3 common hyperplanes. No other case is possible. If they have 3 common hyperplanes,
then Tij = Tjk. This implies that dim(Tij ∩ Tjk) = 4.
If they have one hyperplane in common, the 5-dimensional vector subspace corre-
sponding to that hyperplane must contain both the 4-dimensional vector subspaces.
This is possible iff dim(Tij ∪ Tjk) = 5, which in turn, by rank arguments, implies
dim(Tij ∩ Tjk) = 3.
If they have no hyperplane in common, then dim(Tij ∪ Tjk) = 6 which again, by rank
arguments, implies dim(Tij ∩ Tjk) = 2.
Consider the union of line Li with Lj ∈ L, j 6= i. By Lemma 8, the union generates a
3-dimensional projective space. Lets call it Tij. Similarly, let the union of line Li with
Lk ∈ L, k 6= i, j be called Tik.
By lemma 9, either Lk ⊂ Tij or Lk ∩ Tij = 0.
If (Li, Lk) ⊂ Tij, then Tik=Tij .
If Lk ∩ Tij = 0, then Tik is distinct from Tij . Since exactly 3 hyperplanes contain a
3-dimensional projective subspace Tik, which in turn contains Li, 3 new hyperplanes
reachable from Li get discovered as and when we get another distinct 3-dimensional
projective subspace. Moreover, dim(Tij ∩ Tik) = 2, which implies that Tij and Tik do
not share any hyperplanes.
Applying this argument iteratively for the 20 3-dimensional projective subspaces we see
that a maximum of 5 distinct 3-dimensional projective subspaces can be generated,
each of which gives a cardinality of 3 hyperplanes to Li, thus making 15 hyperplanes.
Each 3-dimensional projective subspace, e.g. Tij contains 15 points and hence, it can
contain a maximum of 5 disjoint lines. One of them is Li, and another 4 need to
be accounted for. So, when the union of Li is taken with the remaining 20 lines, a
maximum of 4 lines, out of these 20 lines, can give rise to same 3-dimensional projective
subspace, Tij. This implies that a minimum of 20/4 = 5 3-dimensional projective
subspaces can be generated from the remaining 20 lines.
Since a maximum and minimum of 5 3-dimensional projective subspaces can be gen-
erated, exactly 5 distinct 3-dimensional projective subspaces are generated. Moreover,
none of these subspaces share any hyperplanes.

19

5.1.5 Proof of Proposition 2

The main theorem behind the construction of schedule mentioned in proposition 2, is
as following.

Theorem 11. In P(5,GF(2)), given a set of 21 disjoint lines (1-dimensional projec-
tive subspaces) that cover all the points, a set of 21 disjoint 3-dimensional projective
subspaces can be created such that they cover all the hyperplanes. Here, hyperplane
covering implies that each hyperplane of P(5,GF(2)) contains, or is reachable in the
lattice to, at least one of the 21 disjoint 3-dimensional projective subspaces as its sub-
space. In this case, each point attains its cardinality of 31 reachable hyperplanes in
P(5,GF(2)), in the following manner:

1. It is reachable from 3 hyperplanes each, via 5 3-dimensional projective subspaces
that contain the line corresponding to it, as per the partition in 6.

2. It is reachable from 1 hyperplane each, via the remaining 16 3-d projective sub-
spaces that necessarily cannot contain the line corresponding to it.

The dual argument with the roles of points and hyperplanes interchanged also holds.

Proof. Generate the set of 21 disjoint lines L according to the coset decomposition
corresponding to the subgroup isomorphic to GF(22). We choose this subgroup as the
canonical subgroup mentioned in Lemma 9, i.e. {α0, α21, α42}.
Choose any line Li from this set and take its union with the remaining 20 lines in the set
to generate 5 distinct 3-dimensional projective subspaces(as proved in lemma 10). Call
these projective subspaces T1, T2, . . . , T5. Choose 5 distinct lines, each NOT equal to
Li, to represent each of these projective subspaces. Such a choice exists by lemma 8.
Pick the line representing T1, and take its union with the other 4 lines to generate 4
new 3-dimensional projective subspaces. Choose 4 more lines(distinct from the 5 lines
used earlier), to represent these 4 new projective subspaces. Again, such distinct lines
exist by lemma 8, and there are overall 21 distinct lines. Pick another line from T1

(not equal to the previously used lines), and take its union with the 4 newly chosen
lines to form yet more 4 new 3-dimensional projective subspaces. Repeat this process
2 more times, till one gets 21 different 3-d projective subspaces, each contributing 3
distinct hyperplanes to Li.
The following facts hold for the partitions of hyperplanes and points implied by the
above generation process.

1. Each line in the set L is contained in 5 3-d projective subspaces, and each 3-
dimensional projective subspace contains 5 lines from the set L.

2. A point in a line is reachable from 3 hyperplanes via every 3-d projective sub-
space that contains the line, and 1 hyperplane via every projective subspace that

20

doesn’t contain the line. In the latter case, if the 3-dimensional projective sub-
space doesn’t contain the line, it doesn’t contain the point. Hence, the projective
subspace will only contribute one hyperplane corresponding to the union of the
point with the 3-d projective subspace.

From the above facts, all the points of the theorem follow. The dual argument holds
in exactly the same way. One could have started with a partition of 3-dimensional
projective subspaces and generated lines by completely working in the dual vector
space and using the exact same arguments. Hence, there are two ways of folding for
each partition of V into disjoint lines.

To prove Proposition 2, we use lemmas 6, 8, 9, 10 and the above main theorem. For a
system based on point-hyperplane graph of P(5,GF(2)), the graph can be folded easily,
from theorem 11. A scheduling similar to the one used for Proposition 1 can then be
developed as following.
We begin by assigning one processing unit to every line of the disjoint set of 21 lines.
Each processing unit has an associated local memory. After the 3-dimensional projec-
tive subspaces have been created as explained above, we can assign a 3-d projective
space to each of the memories. The computation is again divided into two phases. In
phase 1, the points on a particular line are scheduled on the processing units corre-
sponding to that line in a sequential manner. A point gets 3 data units from a memory
if the 3-dimensional projective space corresponding to that memory contains the line,
otherwise it gets 1. In phase 2, the memory already has data corresponding to the
hyperplanes that contain the 3-dimensional projective subspace representing the mem-
ory and the communication is just between the processing unit and its own memory.
The output write-back cycles follow the schedule of input reads in both phases. It
is straightforward to prove, on lines of Lemma 5, that the above distribution of data
again leads to a conflict-free memory-access pattern, when all the processing units are
made to compute in parallel same computation but on different data.

6 Generalization of Folding Scheme to Arbitrary

Projective Geometries

In previous section, we gave complete construction of graph folding, and corresponding
scheduling for example of P(5,GF(2)). In this section, we generalize above propositions
for projective geometries of arbitrary dimension m, and arbitrary non-binary Galois
Field GF(q). The generalization is carried out for cases where (m+ 1) is not a prime
number. By extending the Prime Number Theorem to integer power of some fixed
number, it is expected that not many cases(values of q) are left out by doing such
restricted coverage.

21

A P(m,GF(q)) is represented using the elements of a vector space V of dimension
(m+ 1) over GF(q). If (m+ 1) is not prime, it can be factored into non-trivial prime
factors p1,p2,p3, . . . ,pn such that
p1 × p2 × . . .× pn = (m+ 1). The dimensions of these projective subspaces vary
from 1 to

(

m−1
2

)

, and the dimensions of the corresponding vector subspaces of V vary
from 2 to

(

m+1
2

)

. The points are the 0-dimensional projective subspaces (represented
by the 1-dimensional vector subspaces of V) and the hyperplanes are the (m− 1)
dimensional projective subspaces.
It is convenient to describe the folding scheme in two separate cases.

6.1 Folding for Geometry with Odd dimension

Suppose (m+ 1) is even. We prove the following lemmas.

Lemma 12. (Generalization of Lemma 1) In P(m,GF(q)) with odd m, the set of

points, which has cardinality
(

qm+1
−1

q−1

)

, can be partitioned into disjoint subsets. Each

block of this partition is a vector subspace having dimension
(

m+1
2

)

, and contains
(

q
(m+1)

2 −1
q−1

)

points each.

Proof. Let the vector space V, corresponding to P(m,GF(q)), be represented by

GF(qm+1). Since (m+ 1) is even,
(

m+1
2

)

divides (m+ 1). Hence, GF(q
m+1

2) is a

sub-field of GF(qm+1). The multiplicative cyclic group of GF(q
m+1

2) is isomorphic
to a subgroup of the multiplicative cyclic group of GF(qm+1). Hence, we can again
perform a coset decomposition to generate disjoint blocks of partition of corresponding
vector space, V, into subsets. Each such subset is a

(

m+1
2

)

-dimensional vector subspace
(-{0})(say, Si), representing a

(

m−1
2

)

-dimensional projective space i.e. a plane [2]. By
property of vector subspaces, if x ∈ Si then λ · x ∈ Si, where λ ∈ GF(q). Since each
point represents an equivalence class of vectors, except 0, a projective subspace of di-
mension

(

m−1
2

)

, corresponding to each partitioned vector subspace, contains exactly
(

q
(m+1)

2 −1
q−1

)

points.

Lemma 13. (Generalization of Corollary 2) In P(m,GF(q)) with odd m, the set of

hyperplanes, which has cardinality
(

qm+1
−1

q−1

)

, can be partitioned into disjoint subsets.

Each block of this partition is a vector subspace having dimension
(

m+1
2

)

, and contains
(

q
(m+1)

2 −1
q−1

)

hyperplanes each.

Proof. Because of duality of points and hyperplanes, there are an equal number of
hyperplanes containing each

(

m+1
2

− 1
)

-dimensional projective subspace. Further, the

22

set of such subspaces together covers all the hyperplanes of P(m,GF(q)). Here, hyper-
plane covering implies that each hyperplane of P(m,GF(q)) contains, or is reachable
in the lattice to, at least one of the chosen disjoint

(

m−1
2

)

-dimensional projective sub-
spaces as its subspace. Moreover, since we have a disjoint partition of points, there will
exist a corresponding disjoint partition of hyperplanes. The number of such partitions

can easily be seen to be

(

qm+1
−1

q
(m+1)

2 −1

)

.

The following theorem extends the partitioning portion of Proposition 1, as detailed
in its proof.

Theorem 14. Each point of P(m,GF(q)) with odd m is contained in

(

q
(m+1)

2 −1
q−1

)

hyperplanes belonging to a unique block of the partition that contains this point, and
(

qm−q
(m+1)

2

q−1

)

hyperplanes from remaining blocks of partition, that do not contain this

point.

Proof. By equation 3, each point has a total of
(

qm−1
q−1

)

hyperplanes containing it. By

putting lemmas 12 and 13 together, one can see that it is contained in

(

q
(m+1)

2 −1
q−1

)

hyperplanes belonging to the partition that contains this point. It is also contained

in

(

qm−q
(m+1)

2

q−1

)

hyperplanes belonging to the remaining

(

qm+1
−1

q
(m+1)

2 −1

)

− 1 = q
(m+1)

2

partitions in the following manner, using the two lemmas below.

Lemma 15. (Generalization of Lemma 3) In P(m,GF(q)), from any set of

(

q
(m−1)

2 −1
q−1

+ 1

)

points(hyperplanes), it is possible to find
(

m−1
2

+ 1
)

=
(

m+1
2

)

independent points(hyperplanes).

Proof. As mentioned earlier via lemma 13, each block of the partition of hyperplane
set is covered by a vector subspace of dimension

(

m+1
2

)

. This representative vector
subspace, in turn, is formed by

(

m+1
2

)

independent points and all their linear com-
binations contained in it, using coefficients from GF(q). The total number of points
contained in a

(

m−1
2

)

dimensional vector space, based on
(

m−1
2

)

independent points,

is

(

q
(m−1)

2 −1
q−1

)

. Therefore, in any set of

(

q
(m−1)

2 −1
q−1

+ 1

)

points, it is possible to find
(

m−1
2

+ 1
)

=
(

m+1
2

)

independent points.

By duality in PG lattice, it is straightforward to prove that in any set of

(

q
(m−1)

2 −1
q−1

+ 1

)

hyperplanes, it is possible to find
(

m−1
2

+ 1
)

=
(

m+1
2

)

independent hyperplanes as
well.

23

Lemma 16. (Generalization of lemma 4) Any point that does not lie in a
(

m−1
2

)

di-

mensional projective subspace is reachable from exactly

(

q
(m−1)

2 −1
q−1

)

hyperplanes through

that projective subspace, which is contained in

(

q
(m+1)

2 −1
q−1

)

hyperplanes overall.

Proof. If that point is reachable from any more hyperplanes than

(

q
(m−1)

2 −1
q−1

)

, then

by lemma 15, we could find
(

m+1
2

)

independent hyperplanes reachable from both this
point as well as a

(

m−1
2

)

dimensional projective subspace. A
(

m−1
2

)

dimensional projec-
tive subspace contains exactly

(

m+1
2

)

independent points and hyperplanes. Hence the
presence of

(

m+1
2

)

independent hyperplanes containing a particular
(

m−1
2

)

dimensional
projective subspace implies that all the

(

m+1
2

)

independent points also contained in the
same subspace, and their linear combinations, are exactly the points that are reachable
from such set of hyperplanes. This contradicts the fact that the original point was not
one of the

(

m+1
2

)

independent points reachable from the
(

m−1
2

)

dimensional projective
subspace.
If that point is contained in any less hyperplanes, then the point would not be reachable
from the established number of hyperplanes in the above partition, as governed by
its degree. From the equations below, it is easy to see that even if 1 partition not
containing the considered point contributes even 1 hyperplane less towards degree of
the considered point, the overall degree of the point in the bipartite graph cannot be
achieved.

Hyperplanes from partitions not containing the point=

(

q
(m−1)

2 − 1

q − 1

)

∗ q
(m+1)

2

=

(

qm − q
(m+1)

2

q − 1

)

Total degree =

(

q
(m+1)

2 − 1

q − 1

)

(from partition containing the point) +

(

qm − q
(m+1)

2

q − 1

)

=

(

qm − 1

q − 1

)

as required

Putting together these two lemmas, we arrive at the desired conclusion for theorem
14.

24

Given the above construction, it is easy to develop a folding architecture and scheduling
strategy by extending the scheduling for P(5,GF(2)) in section 5.1.3 in a straightforward
way. One processing unit is once again assigned to each of the disjoint partitions

of points. Using a memory of size
(

qm−1
q−1

)

collocated with the processing unit, it is

again possible to provably generate a conflict-free memory access pattern, by extending
Lemma 5. We omit the details of the scheduling strategy, since it is a simple extension
of the strategies discussed earlier for a 5-dimensional projective space.

6.2 Folding for Geometry with Even-but-factorizable dimen-

sion

If (m+ 1) is not even, then let m+ 1 = (k+ 1) ∗ t, where k > 0 and t ≥ 3 (t = 2
comes under case 1). Then there exists a projective subspace of dimension k and its
dual projective subspace will be of dimension (m− k− 1). We will use these projective
subspaces to partition the points and hyperplanes into disjoint sets and then assign
these sets to processing units.

Lemma 17. (Generalization of Lemma 6) In P(m,GF(q)) with m factorizable as
(m+ 1 = (k+ 1) ∗ t), the set of points can be partitioned into disjoint subsets. Each
block of this partition is a vector subspace having dimension k and same cardinality.

Proof. Let the vector space equivalent of P(m,GF(q)) be V. V has dimension (m+ 1),
and a vector subspace of V which corresponds to projective subspace of dimension k
has a dimension of (k+ 1). Since (k + 1) divides (m+ 1), we can partition V into
disjoint subsets, each set having (k+ 1) independent vectors [2]. The subsets are
obtained by coset decomposition of multiplicative group of GF(qm+1). The blocks
of this partition are vector subspaces of dimension (k+ 1), and hence represent a
k-dimensional projective subspace each.
Let S denote the collection of these identical-sized subsets(vector subspaces), and let
the ith subset be denoted by Si. An equivalent subset of points of projective space can
be obtained from each coset Si as the set of equivalence classes using the equivalence
relation ai = λ · aj , where ai, aj ∈ Si, and λ ∈ GF(q). Also, since t ≥ 3, we have, k<
⌊m+1

2
⌋.

Theorem 18. (Generalization of Corollary 7 and Lemma 8, and their combination)
It is possible to construct a set of dual((m− k− 1)-dimensional) projective subspaces,
using the above point sets, such that no two of such subspaces are contained in any
hyperplane. Further, they together cover all the hyperplanes of P(m,GF(q)), thus
creating a disjoint partition of set of hyperplanes. Here, hyperplane covering implies
that each hyperplane of P(m,GF(q)) contains, or is reachable in the lattice from, at
least one of the chosen disjoint (m− k− 1)-dimensional projective subspaces as its
subspace.

25

Proof. In a PG lattice, (m− k) independent points are required to create a (m− k− 1)-

dimensional (dual) projective subspace. Since
(

m−k
k+1

)

=
(

(m+1)−(k+1)
k+1

)

= (t− 1), the

union of any (t− 1) disjoint sets taken from S, each containing (k+ 1) independent
points, and the points that are all possible linear combinations over GF(q) of these,
will form a (m− k− 1) dimensional projective subspace. The points represent the
equivalence classes mentioned in lemma 17.
Without loss of generality, let the first (t− 1) sets, S0,S1,S2,S3, . . . ,St−3,St−2 ∈ S,
be combined to make some (m− k− 1)-dimensional projective space T1.
Here, S0,S1,S2,S3, . . . ,St−2 are cosets that have been obtained by the coset decom-
position of the nonzero elements of GF(qm+1). The elements of the ith (co)set in S can
be written as:

Si ≡ {αi, αi+β, αi+2β, . . . (qk+1 − 1) terms}

where, α is the generator of the multiplicative group ofGF(qm+1), and {0, α0, αβ, α2β, . . . (qk+1−

1) terms}, β=
(

qm+1
−1

qk+1
−1

)

, forms a subfield of GF(qm+1) that is isomorphic to GF(qk+1).

Moreover, any Si ∈ S contains only the non-zero elements of a vector space over
GF(q), and their all possible linear combinations of the form (c0a0 + c1a1+ . . .+ cnan)
∀c0, c1, . . . , cn ∈ GF(q). Here, a0, a1 . . . , an ∈ Si, and all c’s are not all simultaneously
0. We will need the following following two lemmas and their corollaries, to complete
the proof.

Lemma 19. (Generalization of lemma 9) Consider Sk ∈ S, k 6= 0, 1, 2, 3, . . . , (t − 2).
If even one point of Sk is common with T1, then all points of Sk must be common and
thus, Sk ⊂ T1.

Proof. Divide the set of points of T1 into two parts:

• X1 consists of the points of S0,S1, . . . ,S(t−2).

• X2 is the set of points of the form c0α
u0 + c1α

u1 + . . .+ c(t−2)α
u(t−2).

where αui ∈ Si and ci ∈ GF(q) and there are at least two non-zero ci’s.

Moreover, if αui ∈ Si, then ciα
ui ∈ Si, ∀ci ∈ GF(q). This is becuase ci also belongs

to GF(qm+1), and hence is some power of α. Therefore, we can abuse notation and
simply write

X2 is the set of all points of the form αu0 + αu1 + . . .+ αu(t−2) (9)

such that there are at least two non-zero terms in the summation.
Let Sk ≡ {αk, αk+β, αk+2β, · · · }. Consider αk ∈ Sk. It is clear that since Sk is disjoint
from Si, i ∈ 0, 1, . . . , (t− 2), αk 6∈ X1.

26

Suppose if αk ∈ X2, then we have,

αk+β = αk.αβ (10)

=⇒ αk+β = (αu0 + αu1 + . . .+ αu(t−2)).αβ (11)

=⇒ αk+β = αu0+β + αu1+β + . . .+ αu(t−2)+β (12)

Now, if αi ∈ Sj for some i, j, then α(i+β) ∈ Sj . Therefore, it is clear that equation
(12) represents some linear combination of elements of S0, . . . , St−2 and hence must be
contained in T1.
Proceeding in a similar way for all multiples of β, we find that all points ∈ Sk are
eventually found part of T1, where we started just by having one point being part of
T1.

Corollary 20. For any Ti that has been generated by taking (t− 1) projective sub-
spaces from S, the remaining Si’s are either contained in Ti, or have no intersection
with Ti.

Lemma 21. Any two (m− k− 1)-dimensional projective subspaces constructed as
above intersect in a vector subspace of dimension (t− 2) ∗ (k+ 1).

Proof. Without loss of generality, consider two specific (m− k− 1)-dimensional pro-
jective subspaces represented by their corresponding vector subspaces, created using
construction mentioned above. For example, Ti = S0∪S1∪S2∪S3∪ . . .∪St−3∪St−2,
and Tj = S1 ∪ S2 ∪ S3 ∪ . . . ∪ St−3 ∪ St−2 ∪ St−1. Here, we represent both Ti and
Tj with only the linearly independent Sk that are contained in them. By corollary 20,
the remaining Sl are either linearly dependent on these, or do not intersect Ti / Tj at
all. If we have dim(Ti ∩Tj) = (t− 2) ∗ (k+ 1), then

dim(Ti ∪Tj) = dim(Ti) + dim(Tj)− dim(Ti ∩Tj)

= 2m− 2k − (k + 1) ∗ (t− 2)

= 2m− 2k − (k + 1) ∗ t+ 2(k + 1)

= m+ 1 (Since, m+1=(k+1)*t)

Since V is the overall vector space of dimension (m+ 1), and both Ti and Tj are
represented by subspaces of V, dim(Ti ∪ Tj) ≤ m+ 1. Thus, if dim(Ti ∩ Tj) <
(t− 2) ∗ (k + 1), we get dim(Ti ∪Tj) > m+ 1, which is a contradiction.
Also, Property 1 implies that Ti and Tj intersect in a finite number of Si ∈ S.
This means that they intersect in a dimension which is a multiple of (k + 1). Thus,
if dim(Ti ∩ Tj) > (t− 2) ∗ (k+ 1), both Ti and Tj become identical (they share
(t− 1) ∗ (k + 1) independent points). Thus, the only possible value of dim(Ti ∩ Tj)
is (t− 2) ∗ (k + 1).

27

Corollary 22. Any two (m− k− 1)-dimensional projective subspaces constructed as
above do not have any hyperplanes in common. This is because dim(Ti ∪Tj) > m, no
hyperplane (m-dimensional vector subspace of V) can contain both Ti and Tj.

To finish off the constructive proof of theorem 18, we just need to generate various
Ti by collecting different sets of Si ∈ S, and including all possible linear combinations
over GF(q) of all vectors in this union of Si in Ti. Corollary 22 implies that the
distinct Ti will not share any hyperplanes. Since S is exhaustive (i.e. it covers all the
points), going through all possible combinations of Si to generate Ti, will generate a set
T of (m− k− 1)-dimensional projective subspaces, which will exhaustively cover all
the hyperplanes in P(m,GF(q))(any Ti can be represented by the set of hyperplanes
that it is contained in). Thus, we will have a partition of hyperplanes which has a
cardinality equal to that of the set S (duality of points and hyperplanes).

6.2.1 Properties of Partitions

The following facts hold for the partitions obtained above:

1. No. of hyperplanes per Ti = No. of points per Si =
(

qk+1
−1

q−1

)

= φ(k, k − 1, q)

2. No. of hyperplanes per Si =
(

q(k+1)(t−1)
−1

q−1

)

= φ(m− k − 1, m− 1− k − 1, q)

3. Each Si is contained in exactly
(

q(k+1)(t−1)
−1

qk+1
−1

)

distinct Ti.

Property 3 is a consequence of the following. If Si ∩Ti = ∅, then

dim(Ti ∪ Si) = dim(Ti) + dim(Si)− dim(Ti ∩ Si)

= m− k + k + 1− 0

= m+ 1

Therefore, if Si∩Ti = ∅, then Si is contained in none of the hyperplanes that contain
Ti. Also, if Si is contained in Ti, it is contained in all the hyperplanes that contain Ti.
From Corollary 20, it follows that no other case is possible. Thus, every Si is contained

in exactly
(

φ(m−k−1,m−1−k−1,q)
φ(k,k−1,q)

)

=
(

q(k+1)(t−1)
−1

qk+1
−1

)

Ti
′s.

6.2.2 Scheduling

The above stated facts can be used to generate a construction and schedule analogous
to the one used for Theorem 11 as follows.
For computations described in section 3.2, we begin by assigning one processing unit
to each Si. To each of these processing units, we also assign one local memory. A

28

Ti containing the corresponding Si is also assigned to the processing unit. The com-
putations associated with points contained in Si are executed on the corresponding
processing unit in a sequential fashion. Once the computations corresponding to the
points are finished, the computations associated with the hyperplanes containing Ti

are executed on the corresponding processing unit in a sequential manner. Each point
gets data corresponding to φ(k, k − 1, q) hyperplanes from every Tk that contains Si,
when its computation gets scheduled. The remaining Tj’s (the ones not containing
this point (call it A)) have the following property:

dim(Tj ∪A) = dim(Tj) + dim(A)− dim(Tj ∩ A)

= m− k + 1

= m+ 1− k

Therefore, the number of hyperplanes reachable from Tj, for point A, will be the num-
ber of hyperplanes containing the projective subspace (Tj ∪ A). It is a (m+ 1− k)
vector subspace and therefore is a (m− k) projective subspace. The number of hyper-
planes containing it is given by:
φ(m− (m− k)− 1, m− 1− (m− k)− 1, q) = φ(k − 1, k − 2, q)

Lemma 23. (Generalization of Theorem 11) In the above construction, computation
on a particular point is able to be reachable from, and get, all the data from all the
hyperplanes(equal to degree of the point vertex). The dual argument for hyperplane
computations is also true.

Proof. Let any point A be contained in a particular Si. In the above construction, we

have shown that each Si is contained in
(

φ(m−k−1,m−1−k−1,q)
φ(k,k−1,q)

)

Ts. Each of the Ts have

φ(k, k − 1, q) hyperplanes associated with them. Also, all of these hyperplanes will
contain the point A. Thus, A is contained in φ(m−k−1, m−1−k−1, q) hyperplanes
via the Ts that contain the Si in which point A lies. From each of the remaining Ts,
it gets a degree of φ(k− 1, k− 2, q) hyperplanes (shown in the previous paragraph). It
can be verified, by simple calculations, that

φ(m−k−1, m−1−k−1, q)+φ(k−1, k−2, q)∗

(

qm+1 − 1

qk+1 − 1
−

q(k+1)(t−1) − 1

qk+1 − 1

)

= φ(m−1, m−2, q)

. Since φ(m− 1, m− 2, q) is exactly equal to the number of hyperplanes that contain
A, we have established the desired result.
The dual arguments apply to the hyperplanes.

The incidence relations can be utilized to generate a data distribution similar to the
case of 21 processing units for P(5,GF(2)). A corresponding schedule naturally follows.
For a point, the processing unit ‘i’ starts by picking up data from its local memory.

29

It then cycles through the remaining memories (j’s)and picks up data corresponding
to the hyperplanes shared between the point and Tj. The address generation for the
memories is just a counter if the data is written into the memories in the order that
they will be accessed. For the computation scheduled on behalf of a hyperplane the
same access pattern is followed but an address look up is required.

7 Prototyping Results

The folding scheme described in this paper was employed to design a decoder for
DVD-R/CD-ROM purposes [6], [1], while another folding scheme described in [12]
was used to design another decoder system described in [11]. Both the designs are
patent pending. For the former decoder system, (31, 25, 7) Reed-Solomon codes were
chosen as subcodes, and (63 point, 63 hyperplane) bipartite graph from P(5,GF(2))
was chosen as the expander graph. The overall expander code was thus (1953, 1197,
761)-code. A folding factor of 9 was used for the above expander graph to do the
detailed design.
The design was implemented on a Xilinx virtex 5 LX110T FPGA [14]. The post place-
and-route frequency was estimated as 180.83 MHz. The estimated throughput of the
system at this frequency is ≈ 125Mbytes/s. For a 72x CD-ROM read system, the data
transfer rate is 10.8Mbytes/s. Thus the throughput of system designed by us is much
higher than what standards require.

8 Conclusion

We have presented a detailed strategy to be used for folding computations, that have
been derived from projective geometry based graphs. The scheme is based on partition-
ing of projective spaces into disjoint subspaces. The symmetry inherent in projective
geometry graphs gives rise to conflict-freedom in memory accesses, and also regular
data distribution. The throughput acheived by such folding schemes is optimal, since
the schemes do not entail data shuffling overheads(refer section 5.1.3). Such schemes
have also been employed in real systems design. As such, we have found many ap-
plications of projective geometry based graphs in certain areas, most notably in error
correction coding and digital system design, that have been reported [1], [12], [3], [13].

References

[1] B.S. Adiga, Swadesh Choudhary, Hrishikesh Sharma, and Sachin Patkar. System
for Error Control Coding using Expander-like codes constructed from higher di-
mensional Projective Spaces, and their Applications. Indian Patent Requested,
September 2010. 2455/MUM/2010.

30

[2] Tor Bu. Partitions of a Vector Space. Discrete Mathematics, 31(1):79–83, 1980.

[3] Swadesh Choudhary, Tejas Hiremani, Hrishikesh Sharma, and Sachin Patkar. A
Folding Strategy for DFGs derived from Projective Geometry based graphs. In
Intl. Congress on Computer Applications and Computational Science, December
2010.

[4] Shu Lin et al. Low-density parity-check codes based on finite geometries: a
rediscovery and new results. IEEE Transactions on Information Technology,
47(7):2711–2736, 2001.

[5] Tom Hoholdt and Jorn Justesen. Graph Codes with Reed-Solomon Component
Codes. In International Symposium on Information Theory, pages 2022–2026,
2006.

[6] ISO and IEC. ISO/IEC 23912:2005, Information technology 80 mm (1,46 Gbytes
per side) and 120 mm (4,70 Gbytes per side) DVD Recordable Disk (DVD-R),
2005.

[7] Rakesh Kumar Katare and N. S. Chaudhari. Study of Topological Property of
Interconnection Networks and its Mapping to Sparse Matrix Model. Intl. Journal
of Computer Science and Applications, 6(1):26–39, 2009.

[8] Behrooz Parhami and Mikhail Rakov. Perfect Difference Networks and Related In-
terconnection Structures for Parallel and Distributed Systems. IEEE Transactions
on Parallel and Distributed Systems, 16(8):714–724, August 2005.

[9] Behrooz Parhami and Mikhail Rakov. Performance, Algorithmic and Robustness
Attributes of Perfect Difference Networks. IEEE Transactions on Parallel and
Distributed Systems, 16(8):725–736, August 2005.

[10] Abhishek Patil, Hrishikesh Sharma, S.N. Sapre, B.S. Adiga, and Sachin Patkar.
Finite Projective Geometry based Fast, Conflict-free Parallel Matrix Computa-
tions. Submitted to Intl. Journal of Parallel, Emergent and Distributed Systems,
January 2011.

[11] Hrishikesh Sharma. A Decoder for Regular LDPC Codes with Folded Architecture.
Indian Patent Requested, January 2007. 205/MUM/2007.

[12] Hrishikesh Sharma, Subhasis Das, Rewati Raman Raut, and Sachin Patkar. High
Throughput Memory-efficient VLSI Designs for Structured LDPC Decoding. In
Intl. Conf. on Pervasive and Embedded Computing and Comm. Systems, 2011.

31

[13] Hrishikesh Sharma and Sachin Patkar. A Design Methodology for Folded,
Pipelined Architectures in VLSI Applications using Projective Space Lattices.
Submitted to IEEE Intl. Journal of Parallel and Distributed Systems, January
2011.

[14] Xilinx, Inc. Xilinx Virtex-5 Family Overview, version 5.0, 2009.

32

	1 Introduction
	2 Projective Spaces
	2.1 Projective Spaces as Finite Field Extension
	2.2 Projective Spaces as Lattices
	2.3 Relationship between Projective Subspaces
	2.4 Union of Projective Subspaces

	3 A Model for Computations Involved
	3.1 The Computation Graph
	3.2 Description of Computations

	4 The Concept of Folding
	4.1 Lattice Embedding

	5 A Folding Scheme for P(5,GF(2))
	5.1 Proof of Propositions
	5.1.1 Some Cardinalities of P(5,GF(2)) Lattice
	5.1.2 Lemmas for Proving Proposition ??
	5.1.3 Proof of Proposition ??
	5.1.4 Lemmas for Proving Proposition ??
	5.1.5 Proof of Proposition 2

	6 Generalization of Folding Scheme to Arbitrary Projective Geometries
	6.1 Folding for Geometry with Odd dimension
	6.2 Folding for Geometry with Even-but-factorizable dimension
	6.2.1 Properties of Partitions
	6.2.2 Scheduling

	7 Prototyping Results
	8 Conclusion

