The extremal problems on the inertia of weighted bicyclic graphs*

Shibing Deng, Shuchao Lit, Feifei Song
Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China

Abstract

Let G_{w} be a weighted graph. The number of the positive, negative and zero eigenvalues in the spectrum of G_{w} are called positive inertia index, negative inertia index and nullity of G_{w}, and denoted by $i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right)$, $i_{0}\left(G_{w}\right)$, respectively. In this paper, sharp lower bound on the positive (resp. negative) inertia index of weighted bicyclic graphs of order n with pendant vertices is obtained. Moreover, all the weighted bicyclic graphs of order n with at most two positive, two negative and at least $n-4$ zero eigenvalues are identified, respectively.

Keywords: Weighted bicyclic graphs; Adjacency matrix; Inertia
AMS subject classification: 05C50; 15A18

1. Introduction

In this paper, we only consider simple weighted graphs on positive weight set. Let G_{w} be a weighted graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, edge set $E(G) \neq \emptyset$ and $W\left(G_{w}\right)=\left\{w_{j}>0, j=1,2, \ldots,|E(G)|\right\}$. The function $w: E(G) \rightarrow W\left(G_{w}\right)$ is called a weight function of G_{w}. It is obvious that each weighted graph corresponds to a weight function. The adjacency matrix of G_{w} on n vertices is defined as the matrix $A\left(G_{w}\right)=\left(a_{i j}\right)$ such that $a_{i j}=$ $w\left(v_{i} v_{j}\right)$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise. The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $A\left(G_{w}\right)$ are said to be the eigenvalues of the weighted graph G_{w}. The inertia of G_{w} is defined to be the triple $\operatorname{In}\left(G_{w}\right)=\left(i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right), i_{0}\left(G_{w}\right)\right)$, where $i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right)$ and $i_{0}\left(G_{w}\right)$ are the numbers of the positive, negative and zero eigenvalues of $A\left(G_{w}\right)$ including multiplicities, respectively. $i_{+}\left(G_{w}\right)$ and $i_{-}\left(G_{w}\right)$ are called the positive, negative index of inertia (for short, positive, negative index) of G_{w}, respectively. The number $i_{0}\left(G_{w}\right)$ is called the nullity of G_{w}. Obviously, $i_{+}\left(G_{w}\right)+i_{-}\left(G_{w}\right)+i_{0}\left(G_{w}\right)=n$.

An induced subgraph of G_{w} is an induced subgraph of G having the same weights with those of G_{w}. For an induced weighted subgraph H_{w} of the weighted graph G_{w}, let $G_{w}-H_{w}$ be the subgraph obtained from G_{w} by deleting all vertices of H_{w} and all incident edges. We define that the union of G_{w}^{1} and G_{w}^{2}, denoted by $G_{w}^{1} \cup G_{w}^{2}$, is the graph with vertex-set $V\left(G_{w}^{1}\right) \cup V\left(G_{w}^{2}\right)$, edge-set $E\left(G_{w}^{1}\right) \bigcup E\left(G_{w}^{2}\right)$ and the weight of each edge is not changed. A bicyclic graph is a simple connected graph in which the number of edges equals the number of vertices plus 1. A weighted path and a weighted cycle of order n are denoted by P_{w}^{n}, C_{w}^{n}, respectively. An isolated vertex is sometime denoted by K_{1}.

The study of eigenvalues of graph has been received a lot of attention due to its applications in chemitry (see [2, 7, 10, 15 for details). As we know, if G is a bipartite graph, then $i_{+}(G)=i_{-}(G)=\alpha(G)=\frac{n-i_{0}(G)}{2}$, where $\alpha(G)$ is the matching number of G, otherwise, $i_{+}(G), i_{-}(G)$ and $i_{0}(G)$ do dot have this relationship. Gregory et al. [8] studied the subadditivity of the positive, negative indices of inertia and developed certain properties of Hermitian rank which were used to characterize the biclique decomposition number. Gregory et al. [9 investigated the inertia of a partial join of two graphs and established a few relations between inertia and biclique decompositions of partial joins of graphs. Daugherty 3 characterized the inertia of unicyclic graphs in terms of matching number and obtained a linear-time algorithm for computing it. Yu et al. [19] investigated the minimal positive index of

[^0]inertia among all unweighted bicyclic graphs of order n with pendants, and characterized the bicyclic graphs with positive index 1 or 2 . Very recently, it is interesting to see that Marina et al. [1] studied the inertia set of a signed graph in algebraic approach.

The nullity of unweighted graphs has been studied well in the literature. Tan and Liu [18] gave the nullity set of unicyclic graphs and characterized the unicyclic graphs with maximum nullity. In addition, Nath and Sarma [17] presented another version of characterization of an acyclic or unicyclic graph to be singular. One of the present authors [13] investigated the nullity of graphs with pendant vertices. Fan and Qian 6] characterized the bipartite graphs with the second largest nullity and the regular bipartite graphs with the third largest nullity. Fan and Wang [5] characterized the unicyclic signed graphs of order n with nullity $n-2, n-3, n-4, n-5$, respectively.

Our paper is motivated directly by [4, 11, 13, 16]. On the one hand, Fan et al. [4] studied the nullity of signed bicyclic graph (which is, in fact, the bicyclic graph with edge weight 1 or -1); Li [13] and Hu [11] studied the nullity of unweighted bicyclic graph. On the other hand, Yu et al. [19] characterized all n-vertex unweighted bicyclic graphs with positive index 1 or 2 . It is natural and interesting for us to consider the extremal problems on the inertia of weighted bicyclic graphs, which may generalize corresponding results of 4, 11, 13, 19,

This paper is organized as follows: in Section 2, some preliminaries are introduced. In Section 3, we present the lower bound for the positive, negative index of n-vertex weighted bicyclic graphs with pendants. In Section 4, we characterize all n-vertex weighted bicyclic graphs without pendant twins having one or two positive (resp. negative) eigenvalues. In Section 5, we characterize all n-vertex weighted bicyclic graphs without pendant twins of rank $2,3,4$.

2. Preliminaries

In this section, we list some lemmas which will be used to prove our main results. Suppose M, N are two Hermitian matrices of order n, if there exists an invertible matrix Q of order n such that $Q M Q^{*}=N, Q^{*}$ denotes the conjugate transpose of Q, then we say that M is congruent to N, denoted by $M \cong N$.

Lemma $2.1(\boxed{12]})$. Let M, N be two Hermitian matrices of ordern such that $M \cong N$, then $i_{+}(M)=i_{+}(N), i_{-}(M)=$ $i_{-}(N)$ and $i_{0}(M)=i_{0}(N)$.

It is easy to obtain the following result.
Lemma 2.2. Let $G_{w}=G_{w}^{1} \bigcup G_{w}^{2} \bigcup \ldots \bigcup G_{w}^{t}$ be a weighted graph, where $G_{w}^{i}(i=1,2, \ldots, t)$ are connected components of G_{w}. Then $i_{+}\left(G_{w}\right)=\sum_{i=1}^{t} i_{+}\left(G_{w}^{i}\right), i_{-}\left(G_{w}\right)=\sum_{i=1}^{t} i_{-}\left(G_{w}^{i}\right)$ and $i_{0}\left(G_{w}\right)=\sum_{i=1}^{t} i_{0}\left(G_{w}^{i}\right)$.

Let M be a Hermitian matrix. We denoted three types of elementary congruence matrix operations (ECMOs) on M as follows:

1. interchanging i th and j th rows of M, while interchanging i th and j th columns of M;
2. multiplying i th row of M by a non-zero number k, while multiplying i th column of M by k;
3. adding i th row of M multiplied by a non-zero number k to j th row, while adding i th column of M multiplied by k to j th column.

By Lemma 2.1, the ECMOs do not change the inertia of a Hermitian matrix.
Lemma 2.3 ([19]). Let M be an $n \times n$ Hermitian matrix and N be the Hermitian matrix obtained by bordering M as followings:

$$
N=\left(\begin{array}{ll}
M & y \\
y^{*} & a
\end{array}\right)
$$

where y is a column vector, y^{*} denotes the conjugate transpose of y and a is a real number. Then $i_{+}(N)-1 \leq$ $i_{+}(M) \leq i_{+}(N), i_{-}(M)-1 \leq i_{-}(M) \leq i_{-}(N)$.

By Lemma 2.3 we can get the following result immediately:
Lemma $2.4([14])$. Let H_{w} be an induced subgraph of G. Then $i_{+}\left(H_{w}\right) \leq i_{+}\left(G_{w}\right)$ and $i_{-}\left(H_{w}\right) \leq i_{-}\left(G_{w}\right)$.
Lemma 2.5 ([14]). Let C_{w}^{n} be a weighted cycle of order n. Then

$$
i_{+}\left(C_{w}^{n}\right)= \begin{cases}\frac{n+1}{2}, & \text { if } n \equiv 1(\bmod 4) ; \\
\frac{n}{2}, & \text { if } n \equiv 2(\bmod 4) ; \quad i_{-}\left(C_{w}^{n}\right)=\left\{\begin{array}{lll}
\frac{n-1}{2}, & \text { if } n \equiv 1 \quad(\bmod 4) ; \\
\frac{n-1}{2}, & \text { if } n \equiv 3(\bmod 4) .
\end{array} \quad \text { if } n \equiv 2(\bmod 4) ;\right. \\
\frac{n+1}{2}, & \text { if } n \equiv 3(\bmod 4) .\end{cases}
$$

Furthermore, if $n \equiv 0(\bmod 4)$, let $C_{w}^{n}=v_{1} v_{2} \ldots v_{n} v_{1}$ be a weighted cycle of order $n, w\left(v_{i} v_{i+1}\right)=a_{i}(1 \leq i \leq n)$ and let $v_{n+1}=v_{1}$. Then

$$
i_{+}\left(C_{w}^{n}\right)=i_{-}\left(C_{w}^{n}\right)= \begin{cases}\frac{n}{2}-1, & \text { if } \prod_{i=1}^{\frac{n}{2}} a_{2 i-1}=\prod_{i=1}^{\frac{n}{2}} a_{2 i} \\ \frac{n}{2}, & \text { otherwise }\end{cases}
$$

Lemma 2.6 ([14]). Let G_{w} be a graph containing a pendant vertex v with its unique neighbor u. Then $i_{+}\left(G_{w}\right)=$ $i_{+}\left(G_{w}-u-v\right)+1$ and $i_{-}\left(G_{w}\right)=i_{-}\left(G_{w}-u-v\right)+1$.

The following result is an immediate consequence of Lemma 2.6.
Lemma 2.7. Let P_{w}^{n} be a weighted path of order n. Then

$$
i_{+}\left(P_{w}^{n}\right)=i_{-}\left(P_{w}^{n}\right)= \begin{cases}\frac{n-1}{2}, & \text { if } n \text { are odd } \\ \frac{n}{2}, & \text { if } n \text { are even }\end{cases}
$$

Let u, v be two pendant vertices of a weighted graph G_{w}, u, v are called a pendant twin if they have the same neighborhood in G_{w}. The following result is an immediate consequence of Lemma 2.6 since $i_{+}\left(K_{1}\right)=i_{-}\left(K_{1}\right)=0$.

Lemma 2.8. If u, v is a pendant twin in a weighted graph G_{w}, then $i_{+}\left(G_{w}\right)=i_{+}\left(G_{w}-v\right)=i_{+}\left(G_{w}-u\right)$ and $i_{-}\left(G_{w}\right)=i_{-}\left(G_{w}-v\right)=i_{-}\left(G_{w}-u\right)$.

Let S_{w}^{k} be a weighted star of order k with center v and non-central vertices v_{1}, \ldots, v_{k-1}. We can get the following two lemmas by Lemmas 2.4 and 2.6.

Lemma 2.9. Let G_{w}^{0} be a weighted graph of order $n-k$ such that $u \in V\left(G_{w}^{0}\right)$. Let G_{w}^{1} be the graph obtained from G_{w}^{0} and S_{w}^{k} by inserting an edge between u and the center v of S_{w}^{k}. Let $G_{w}^{2}=G_{w}^{1}-\left\{v v_{1}, v v_{2}, \ldots, v v_{k-1}\right\}+$ $\left\{u v_{1}, u v_{2}, \ldots, u v_{k-1}\right\}$ where $w\left(u v_{i}\right)=w\left(v v_{i}\right)$. Then $i_{+}\left(G_{w}^{1}\right) \geq i_{+}\left(G_{w}^{2}\right)$ and $i_{-}\left(G_{w}^{1}\right) \geq i_{-}\left(G_{w}^{2}\right)$.

Lemma 2.10. Let G_{w}^{0} be a weighted graph of order $n-l-t$ and $u_{1}, u_{2} \in V\left(G_{0}\right)$. Assume that G_{w}^{1} is the graph obtained from G_{w}^{0}, S_{w}^{l+1} and S_{w}^{t+1} by identifying u_{1} with the center of S_{w}^{l+1}, u_{2} with the center of S_{w}^{t+1}, respectively. Let G_{w}^{2} be the graph obtained from G_{w}^{0}, S_{w}^{l+t+1} by identifying u_{1} with the center of S_{l+t+1}. Then $i_{+}\left(G_{w}^{1}\right) \geq i_{+}\left(G_{w}^{2}\right)$ and $i_{-}\left(G_{w}^{1}\right) \geq i_{-}\left(G_{w}^{2}\right)$.

Lemma 2.11. Let G_{w}^{1} and G_{w}^{2} be two weighted graphs with $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Let $P_{w}^{l}(l \geq 3)$ be a weighted path with two end-vertices v_{1}, v_{l}. Let S_{w}^{l} be a weighted star of order land have the same weight set with $P_{w}^{l}(l \geq 3)$. Let G_{w}^{\prime} be the graph obtained from $G_{w}^{1} \cup G_{w}^{2} \bigcup P_{w}^{l}$ by identifying u with v_{1} and v with v_{l}, respectively. Let $G_{w}^{\prime \prime}$ be the graph obtained from $G_{w}^{1} \cup G_{w}^{2}$ by identifying u, v with the center of S_{w}^{l}. Then $i_{+}\left(G_{w}^{\prime}\right) \geq i_{+}\left(G_{w}^{\prime \prime}\right)$ and $i_{-}\left(G_{w}^{\prime}\right) \geq i_{-}\left(G_{w}^{\prime \prime}\right)$.

Proof. In view of Lemma 2.6, we have

$$
i_{+}\left(G_{w}^{\prime \prime}\right)=1+i_{+}\left(G_{w}^{1}-u\right)+i_{+}\left(G_{w}^{2}-v\right)
$$

Note that $\left(G_{w}^{1}-u\right) \bigcup\left(G_{w}^{2}-v\right) \bigcup P_{w}^{l-1}$ is an induced subgraph of G_{w}^{\prime}. In light of Lemma 2.3, it follows that

$$
i_{+}\left(G_{w}^{1}-v\right)+i_{+}\left(G_{w}^{2}-u\right)+i_{+}\left(P_{w}^{l-1}\right) \leq i_{+}\left(G_{w}^{\prime}\right)
$$

By Lemma 2.7, $i_{+}\left(P_{w}^{l-1}\right) \geq 1(l \geq 3)$, therefore $i_{+}\left(G_{w}^{\prime}\right) \geq i_{+}\left(G_{w}^{\prime \prime}\right)$. Similarly, $i_{-}\left(G_{w}^{\prime}\right) \geq i_{-}\left(G_{w}^{\prime \prime}\right)$, as desired.

3. The minimal positive (negative) index of inertia of weighted bicyclic graphs

Let G be a bicyclic graph. The base of G, denoted by $\chi(G)$, is the unique bicyclic subgraph of G containing no pendant vertices. Thus G can be obtained from $\chi(G)$ by attaching trees to some vertices of $\chi(G)$. Let $C^{p}(p \geq 3)$ and $C^{q}(q \geq 3)$ be two vertex-disjoint cycles of length p, q and $P_{l}=v_{1} v_{2} \ldots v_{l}(l \geq 1)$ be a path of length $l-1$. Assume that $v \in V\left(C^{p}\right)$ and $u \in V\left(C^{q}\right)$. Let $\infty(p, l, q)$ be the graph obtained from C^{p}, C^{q} and P_{l} by identifying v with v_{1}, u with v_{l}. Let $P_{p+2}, P_{l+2}, P_{q+2}$ be three paths with $\min \{p, l, q\} \geq 0$ and at most one of p, l, q is 0 . Let $\theta(p, l, q)$ be the graph obtained from P_{p+2}, P_{l+2} and P_{q+2} by identifying the three initial vertices and terminal vertices. The weighted graphs $\infty(p, l, q)_{w}$ and $\theta(p, l, q)_{w}$ are depicted in Fig. 1, where the number on each edge denotes its weight. In what follows in our context, we always assume that the weight for each edge of $\infty(p, l, q)_{w}$ (resp. $\left.\theta(p, l, q)_{w}\right)$ are as shown in Fig. 1.

Figure 1: Weighted graphs $\infty(p, l, q)_{w}$ and $\theta(p, l, q)_{w}$.

As we know, the connected bicyclic graphs can be partitioned into two classes: one class of bicyclic graphs contain $\infty(p, l, q)$ as its basis and the other class of bicyclic graphs contain $\theta(p, l, q)$ as its basis. We call bicyclic graph G an ∞-graph if G contains some $\infty(p, l, q)$ as its basis and a θ-graph if G contains some $\theta(p, l, q)$ as its basis. We denote by \mathscr{B} (resp. \mathscr{B}_{p}) the set of all weighted bicyclic graphs (resp. weighted bicyclic graphs with pendants) of order n. Let $\chi\left(G_{w}\right)$ be the base of G_{w}, by Lemma 2.6, there is no correlation between the inertia index of G_{w} and the weighted set of $G_{w}-\chi\left(G_{w}\right)$. Hence, in order to determine $\operatorname{In}\left(G_{w}\right)$, it suffices to consider the weight of $\chi\left(G_{w}\right)$ in what follows.

Theorem 3.1. Let $G_{w} \in \mathscr{B}_{p}$ and contain $\infty(p, l, q)$ as its base. Then

$$
i_{+}\left(G_{w}\right) \geq \begin{cases}\frac{p+q}{2}, & \text { if } p, q \text { are odd } \\ \frac{p+q}{2}-1, & \text { if } p, q \text { are even } \\ \frac{p+q-1}{2}, & \text { otherwise } .\end{cases}
$$

This bound is sharp.
Proof. For a weighted ∞-graph, let u be the common vertex of C^{p} and C^{q} in $\infty(p, 1, q)$. Let G^{*} be the bicyclic graph obtained by attaching $n-p-q+1(n \geq p+q)$ pendants to u (see Fig. 2) and let G_{w}^{*} denote the weighted graph with G^{*} as its underlying graph.

Figure 2: Graphs G^{*} and $G^{* *}$.

Let $\mathscr{S}_{1}(n)$ be the set of all n-vertex weighted bicyclic graphs whose underlying graph is obtained from $\infty(p, 1, q)$ by attaching $n-p-q+1(n \geq p+q)$ pendants to a vertex, different from u of C^{p} or C^{q}.

Let $\mathscr{S}_{2}(n)$ be the set of all n-vertex weighted bicyclic graphs whose underlying graph is obtained from $\infty(p, 2, q)$ by attaching $n-p-q(n \geq p+q+1)$ pendants to the vertex u of C^{p} or C^{q}.

In view of Lemma 2.6, we have

$$
\begin{equation*}
i_{+}\left(G_{w}^{*}\right)=1+i_{+}\left(P_{w}^{p-1}\right)+i_{+}\left(P_{w}^{q-1}\right) \tag{3.1}
\end{equation*}
$$

First we are to show that $i+\left(G_{w}^{*}\right) \leq i_{+}\left(G_{w}\right)$ for any $G_{w} \in \mathscr{S}_{1}(n) \bigcup \mathscr{S}_{2}(n)$. In fact, if $G_{w} \in \mathscr{S}_{1}(n)$, without loss of generality, we suppose all the pendant vertices are attached at C^{p}. Then by Lemma 2.6, we have

$$
\begin{align*}
i_{+}\left(G_{w}\right) & =1+ \begin{cases}\frac{p-1}{2}+i_{+}\left(P_{w}^{q-1}\right), & \text { if } p \text { is odd } \\
\frac{p-2}{2}+i_{+}\left(C_{w}^{q}\right) \text { or, } i_{+}\left(P_{w}^{q-1}\right), & \text { if } p \text { is even }\end{cases} \\
& =1+i_{+}\left(P_{w}^{p-1}\right)+ \begin{cases}i_{+}\left(P_{w}^{q-1}\right), & \text { if } p \text { is odd } \\
i_{+}\left(C_{w}^{q}\right) o r, i_{+}\left(P_{w}^{q-1}\right), & \text { if } p \text { is even. }\end{cases} \tag{3.2}
\end{align*}
$$

By Lemma 2.4, $i_{+}\left(C_{w}^{q}\right) \geq i_{+}\left(P_{w}^{q-1}\right)$. Hence, in view of (3.1) and (3.2) we have $i_{+}\left(G_{w}^{*}\right) \leq i_{+}\left(G_{w}\right)$.
If $G_{w} \in \mathscr{S}_{2}(n)$, without loss of generality, we suppose all the pendant vertices are attached at C^{p}. Then by Lemma 2.6 we have

$$
\begin{align*}
i_{+}\left(G_{w}\right) & =1+ \begin{cases}\frac{p-1}{2}+i_{+}\left(C_{w}^{q}\right), & \text { if } p \text { is odd } \\
\frac{p-2}{2}+i_{+}\left(C_{w}^{q}\right) \text { or } i_{+}\left(G_{w}^{\prime}\right), & \text { if } p \text { is even }\end{cases} \\
& =1+i_{+}\left(P_{w}^{p-1}\right)+ \begin{cases}i_{+}\left(C_{w}^{q}\right), & \text { if } p \text { is odd } \\
i_{+}\left(C_{w}^{q}\right) \text { or } i_{+}\left(G_{w}^{\prime}\right), & \text { if } p \text { is even }\end{cases} \tag{3.3}
\end{align*}
$$

where G_{w}^{\prime} is a graph obtained by attaching a pendant vertex to a vertex of C^{q}. Note that $i_{+}\left(C_{w}^{q}\right) \geq i_{+}\left(P_{w}^{q-1}\right)$ and $i_{+}\left(G_{w}^{\prime}\right) \geq i_{+}\left(P_{w}^{q-1}\right)$ from Lemma 2.4. Hence, in view of (3.1) and (3.3) we have $i_{+}\left(G_{w}^{*}\right) \leq i_{+}\left(G_{w}\right)$.

From Lemmas 2.9, 2.10 and 2.11, G_{w}^{*} attains the minimal positive index among all n-vertex weighted bicyclic graphs with pendant vertices containing two edge disjoint weighted cycles C_{w}^{p} and C_{w}^{q}.

Similarly, we can have the following theorem:
Theorem 3.2. Let $G_{w} \in \mathscr{B}_{p}$ and contain $\infty(p, l, q)$ as its base. Then

$$
i_{-}\left(G_{w}\right) \geq \begin{cases}\frac{p+q}{2}, & \text { if } p, q \text { are odd } \\ \frac{p+q}{2}-1, & \text { if } p, q \text { are even } \\ \frac{p+q-1}{2}, & \text { otherwise. }\end{cases}
$$

This bound is sharp.
By Theorems 3.1 and 3.2, it follows that

Theorem 3.3. Let G_{w} be a weighted ∞-graph of order n with pendant vertices, then $i_{+}\left(G_{w}\right) \geq 3, i_{-}\left(G_{w}\right) \geq 3$ and $i_{0}\left(G_{w}\right) \leq n-6$.

Theorem 3.4. Let $G_{w} \in \mathscr{B}_{p}$ and contain $\theta(p, l, q)$ as its base $(n \geq p+q+l+3)$. If $p l q \neq 0$, then

$$
i_{+}\left(G_{w}\right) \geq \begin{cases}1+\frac{p+q+l}{2}, & \text { is } p+q+l \text { is even } \\ \frac{p+q+l}{2}, & \text { if } p, q, l \text { are odd } \\ 1+\frac{p+q+l+1}{2}, & \text { otherwise }\end{cases}
$$

This bound is sharp.
Proof. Let u, v be two vertices in $\theta(p, l, q)$ (see Fig. 1) and $\mathscr{S}_{3}(n)(n \geq p+q+l+3)$ be the set of all n-vertex weighted bicyclic graphs with $n-p-q-l-2$ pendant vertices attached to a vertex, different from u and v of $\theta(p, l, q)$. Let $G^{* *}$ be the bicyclic graph with $n-p-q-l-2(n \geq p+q+l+3)$ pendant vertices attached to v in $\theta(p, l, q)$ and let $G_{w}^{* *}$ denote the weighted graph with $G^{* *}$ as its underlying graph, where $G^{* *}$ is depicted in Fig. 2. We will verify that $i_{+}\left(G_{w}^{* *}\right) \leq i_{+}\left(G_{w}\right)$ for any $G_{w} \in \mathscr{S}_{3}(n)$.

For any $G_{w} \in \mathscr{S}_{3}(n)$, without loss of generality, assume that $n-p-q-l-2$ pendant vertices are attached to a vertex of $P_{p+2}-u-v$ in G_{w}. By Lemma 2.6, we have

$$
\begin{aligned}
& i_{+}\left(G_{w}\right)= \begin{cases}1+\frac{p}{2}+i_{+}\left(P_{w}^{l+q+1}\right), \\
1+\frac{p-1}{2}+i_{+}\left(C_{w}^{l+q+2}\right), \text { or } 1+\frac{p+1}{2}+i_{+}\left(P_{w}^{q}\right)+i_{+}\left(P_{w}^{l}\right), & \text { if } p \text { is even; }\end{cases} \\
& i_{+}\left(G_{w}^{* *}\right)= \begin{cases}1+\frac{p}{2}+i_{+}\left(P_{w}^{l+q+1}\right), & \text { if } p \text { is edd. } \\
1+\frac{p+1}{2}+i_{+}\left(P_{w}^{q}\right)+i_{+}\left(P_{w}^{l}\right), & \text { if } p \text { is odd. }\end{cases}
\end{aligned}
$$

Note that $i_{+}\left(C_{w}^{q+l+2}\right) \geq i_{+}\left(P_{w}^{q}\right)+i_{+}\left(P_{w}^{l}\right)+1$ from Lemma 2.3, hence we have $i_{+}\left(G_{w}^{* *}\right) \leq i_{+}\left(G_{w}\right)$.
By Lemmas 2.9, 2.10 and 2.11, $G_{w}^{* *}$ attains the minimal positive index among all n-vertex weighted bicyclic graphs with pendant vertices containing $\theta(p, l, q)$ as its base, $n \geq p+q+l+3$.

Similarly, we can have the following theorem:
Theorem 3.5. Let $G_{w} \in \mathscr{B}_{p}$ and contain $\theta(p, l, q)$ as its base $(n \geq p+q+l+3)$. If $p l q \neq 0$, then

$$
i_{-}\left(G_{w}\right) \geq \begin{cases}1+\frac{p+q+l}{2}, & \text { is } p+q+l \text { is even } \\ \frac{p+q+l}{2}, & \text { if } p, q, l \text { are odd } \\ 1+\frac{p+q+l+1}{2}, & \text { otherwise }\end{cases}
$$

This bound is sharp.
Next we consider the special case that one of p, l, q is zero, Without loss of generality, we may assume $l=0$. By a similar discussion as in the proof of Theorem 3.3, we can get the following result.

Theorem 3.6. Let $G_{w} \in \mathscr{B}_{p}$ and contain $\theta(p, 0, q)$ as its base $(n \geq p+q+l+3)$. Then

$$
i_{+}\left(G_{w}\right)=i_{-}\left(G_{w}\right) \geq \begin{cases}1+\frac{p+q}{2}, & \text { if } p+q \text { is even } \\ 1+\frac{p+q+1}{2}, & \text { otherwise }\end{cases}
$$

This bound is sharp.
By Theorems 3.5 and 3.6 we have
Theorem 3.7. Let G_{w} be a weighted θ-graph of order n with pendant vertices. Then $i_{+}\left(G_{w}\right) \geq 2, i_{-}\left(G_{w}\right) \geq 2$ and $i_{0}\left(G_{w}\right) \leq n-4$.

4. Characterization of weighted bicyclic graphs with small positive (negative) indices

In this section we characterize the extremal weighted bicyclic graphs with positive (resp. negative) indices 1,2 .
Theorem 4.1. Let $G_{w} \in \mathscr{B}$. Then $i_{+}\left(G_{w}\right)=1$ if and only if G_{w} is one of the following graphs: the weighted graph $\theta(1,1,1)_{w}$ with weighted condition $c_{1} a_{2}=a_{1} c_{2}$ and $a_{2} b_{1}=a_{1} b_{2}$; the weighted graph $\theta(1,0,1)_{w}$ with weighted condition $a_{2} c_{1}=a_{1} c_{2}$.

Proof. By Theorems 3.3 and 3.7, it suffices to consider the case that the weighted bicyclic graphs of order n without pendant vertices. If G_{w} is a ∞-graph, it contains $P_{w}^{2} \bigcup P_{w}^{2}$ as an induced subgraph, hence $i_{+}\left(G_{w}\right) \geq$ $i_{+}\left(P_{w}^{2} \bigcup P_{w}^{2}\right)=2$. Then we just need to consider the case that G_{w} is a θ-graph. Without loss of generality, we assume that $l \leq p \leq q$.

If $l=0$, then we have $p+q+1 \leq 3$, otherwise it contains P_{w}^{4} as an induced subgraph and by Lemma 2.7, $i_{+}\left(P_{w}^{4}\right)=2$. Noted that $p+q \geq 2$, then the underlying graph of G_{w} must be $\theta(1,0,1)$. Applying ECMOs to $A\left(G_{w}\right)$ yields $i_{+}\left(G_{w}\right)=1$ if and only if the weight of G_{w} satisfies $a_{2} c_{1}=a_{1} c_{2}$.

If $l>0$, then we have $p+q+2 \leq 4$, otherwise it contains C_{w}^{k} as an induced subgraph and $i_{+}\left(C_{w}^{k}\right) \geq 3$, where $k \geq 5$. Noted that $p+q \geq 2$, then the underlying graph of G_{w} must be $\theta(1,1,1)$. Applying ECMOs to $A\left(G_{w}\right)$ yields $i_{+}\left(G_{w}\right)=1$ if and only if the weight of G_{w} satisfies $a_{2} c_{1}=a_{1} c_{2}$ and $a_{2} b_{1}=a_{1} b_{2}$.

Similarly, we have the following theorem:
Theorem 4.2. Let $G_{w} \in \mathscr{B}$. Then $i_{-}\left(G_{w}\right)=1$ if and only if G_{w} is the weighted graph $\theta(1,1,1)_{w}$ with weighted condition $c_{1} a_{2}=a_{1} c_{2}$ and $a_{2} b_{1}=a_{1} b_{2}$.

Table 1: The weighted condition for each $G_{w} \in \mathscr{B} \backslash \mathscr{B}_{p}$ satisfying $i_{+}\left(G_{w}\right)=2$.

weighted graph G_{w}	weighted conditions of G_{w}	weighted graph G	weighted conditions of G_{w}
$\infty(3,1,3)_{w}$		$\theta(1,1,1)_{w}$	$a_{2} b_{1} \neq a_{1} b_{2}$, or $a_{2} c_{1} \neq a_{1} c_{2}$
$\infty(3,2,3)_{w}$	$4 a_{1} a_{3} b_{1} b_{3}-a_{2} b_{2} c_{1}^{2} \geq 0$	$\theta(1,0,1)_{w}$	$a_{2} c_{1} \neq a_{1} c_{2}$
$\infty(3,1,4)_{w}$	$b_{1} b_{3}=b_{2} b_{4}$	$\theta(1,0,2)_{w}$	$a_{1} b_{2} \geq c_{1} c_{3}$
$\infty(4,1,4)_{w}$	$a_{1} a_{3}=a_{2} a_{4}, b_{1} b_{3}=b_{2} b_{4}$	$\theta(2,0,2)_{w}$	$a_{2} b_{1} c_{2}=a_{1} a_{3} c_{2}+a_{2} c_{1} c_{3}$

Theorem 4.3. Let $G_{w} \in \mathscr{B} \backslash \mathscr{B}_{p}$, then $i_{+}\left(G_{w}\right)=2$ if and only if $G_{w} \cong \infty(3,1,3)_{w}, \infty(3,2,3)_{w}, \infty(3,1,4)_{w}$, $\infty(4,1,4)_{w}, \theta(1,1,1)_{w}, \theta(1,0,1)_{w}, \theta(1,0,2)_{w}$, or $\theta(2,0,2)_{w}$ and the corresponding weighted conditions are as shown in Table 1, where the empty cell means there is no correlation between the inertia index of G_{w} and its weight set.

Proof. We distinguish the following two possible cases to prove our results.
Case $1 G_{w}$ is a weighted ∞-graph.
Note that if G_{w} contains P_{w}^{6} as an induced subgraph, then $i_{+}\left(G_{w}\right) \geq 3$. Hence, it suffices to consider that $p+l+q-4 \leq 5$, i.e., $p+l+q \leq 9$. Note that $p+l+q \geq 7$, hence $7 \leq p+l+q \leq 9$.

If $p+l+q=7$, then G_{w} must be $\infty(3,1,3)_{w}$. Applying the ECMOs to $A\left(G_{w}\right)$, we have $i_{+}\left(G_{w}\right)=2$ and the positive index of G_{w} is independent of its weights.

If $p+l+q=8$, then $G_{w} \cong \infty(3,2,3)_{w}$ or, $\infty(3,1,4)_{w}$. Applying the ECMOs to $A\left(G_{w}\right)$, if $G_{w} \cong \infty(3,2,3)_{w}$, then we have $i_{+}\left(G_{w}\right)=2$ if and only if the weight of G_{w} satisfies $4 a_{1} a_{3} b_{1} b_{3}-a_{2} b_{2} c_{1}^{2} \geq 0$; if $G_{w} \cong \infty(3,1,4)_{w}$, then we have $i_{+}\left(G_{w}\right)=2$ if and only if the weight of G_{w} satisfies $b_{1} b_{3}=b_{2} b_{4}$.

If $p+l+q=9$, then $G_{w} \cong \infty(3,3,3)_{w}, \infty(3,2,4)_{w}, w_{w} \infty(3,1,5)$ or, $\infty(4,1,4)_{w}$. Applying the ECMOs to $A\left(G_{w}\right)$, if $G_{w} \cong \infty(4,1,4)_{w}$, then we have $i_{+}\left(G_{w}\right)=2$ if and only if the weight of G_{w} satisfies $a_{1} a_{3}=a_{2} a_{4}$ and $b_{1} b_{3}=b_{2} b_{4}$; if $G_{w} \cong \infty(3,3,3)_{w}, \infty(3,2,4)_{w}$ or $\infty(3,1,5)_{w}$, then G_{w} contains H_{w} as its induced subgraph, where the underlying graph of H_{w} is depicted in Fig. 3. By Lemma 2.6, $i_{+}\left(G_{w}\right) \geqslant i_{+}\left(H_{w}\right) \geq 3$.

Figure 3: The underlying graph of H_{w}.

Case $2 G_{w}$ is a weighted θ-graph. In this case, we assume, without loss of generality, that $l \leq p \leq q$. By Lemmas 2.5 and 2.7, we have $i_{+}\left(P_{w}^{6}\right)=3$ and $i_{+}\left(C_{w}^{k}\right) \geq 3, k \geq 5$. Hence, it suffices to consider that G_{w} does not contain P_{w}^{6} or C_{w}^{k} as an induced subgraph, $k \geq 5$.

First consider $l>0$. In this subcase, we have $p+q+2 \leq 4$, otherwise G_{w} contains C_{w}^{k} as an induced subgraph with $k \geq 5$. Hence, $i_{+}\left(G_{w}\right) \geq i_{+}\left(C_{w}^{k}\right) \geq 3$. It is routine to check that $p+q \geq 2$, hence $p+q=2$, which implies the underlying graph of G_{w} must be $\theta(1,1,1)$. Applying the ECMOs to $A\left(G_{w}\right)$ yields $i_{+}\left(G_{w}\right)=2$ if and only if the weight of G_{w} satisfies $a_{2} b_{1} \neq a_{1} b_{2}$ or, $a_{2} c_{1} \neq a_{1} c_{2}$.

Now consider $l=0$. In this subcase, we have $p+q+1 \leq 5$; otherwise G_{w} contains P_{w}^{6} as an induced subgraph. Note that $p+q \geq 2$, hence $2 \leq p+q \leq 4$.

If $p+q=2$, then $G_{w} \cong \theta(1,0,1)_{w}$. Applying ECMOs to $A\left(G_{w}\right)$ yields $i_{+}\left(G_{w}\right)=2$ if and only if the weight of G_{w} satisfies $a_{2} c_{1} \neq a_{1} c_{2}$. If $p+q=3$, then $G_{w} \cong \theta(1,0,2)_{w}$. Applying ECMOs to $A\left(G_{w}\right)$ yields $i_{+}\left(G_{w}\right)=2$ if and only if the weight of G_{w} satisfies $a_{1} b_{2} \geq c_{1} c_{3}$. If $p+q=4, G_{w} \cong \theta(1,0,3)_{w}$ or, $\theta(2,0,2)_{w}$. If $G_{w} \cong \theta(2,0,2)_{w}$, then applying ECMOs to $A\left(G_{w}\right)$ yields $i_{+}\left(G_{w}\right)=2$ if and only if the weight of G_{w} satisfies $a_{2} b_{1} c_{2}-a_{1} a_{3} c_{2}-a_{2} c_{1} c_{3}=0$. If $G_{w} \cong \theta(1,0,3)_{w}$, then applying ECMOs to $A\left(G_{w}\right)$ yields $i_{+}\left(G_{w}\right)=3$ and the positive index of G_{w} is independent of the weights.

Table 2: The weighted condition for each $G_{w} \in \mathscr{B}_{p}$ but no pendant twins and satisfying $i_{+}\left(G_{w}\right)=2$.

weighted graph G_{w}	weighted conditions of G_{w}	weighted graph G_{w}	weighted conditions of G_{w}
$G_{w}^{1}, G_{w}^{3}, G_{w}^{6}, G_{w}^{7}, G_{w}^{8}$		G_{w}^{9}, G_{w}^{10}	$a_{1} c_{2}=a_{2} c_{1}$
G_{w}^{2}	$a_{1} b_{2}=a_{2} b_{1}$	G_{w}^{11}	$a_{1} a_{3}=a_{2} b_{1}$
G_{w}^{4}, G_{w}^{5}	$a_{1} b_{2}=a_{2} b_{1}, a_{1} c_{2}=a_{2} c_{1}$		

In what follows, we shall characterize all weighted bicyclic graphs with pendants having two positive eigenvalues.

Theorem 4.4. Let $G_{w} \in \mathscr{B}_{p}$ but no pendant twins. Then $i_{+}\left(G_{w}\right)=2$ if and only if $G_{w} \cong G_{w}^{1}, G_{w}^{2}, \ldots, G_{w}^{10}$ or, G_{w}^{11} and the corresponding weighted conditions are as shown in Table 2, where the underlying graphs of $G_{w}^{1}, G_{w}^{2}, \ldots, G_{w}^{10}, G_{w}^{11}$ are depicted in Fig. 4 and the empty cell in Table 2 means there is no correlation between the inertia index of G_{w} and its weight set.

Figure 4: Graphs $G^{1}, G^{2}, \ldots, G^{11}$.

Figure 5: Graphs $G^{12}, G^{13}, \ldots, G^{36}$.

Proof. By Lemmas 2.5, 2.6 and applying the ECMOs, it is routine to check that $i_{+}\left(G_{w}^{i}\right)=2, i=1, \ldots, 11$, and the weight condition for G_{w}^{i} is listed in Table 2. Furthermore, $i_{+}\left(G_{w}^{j}\right) \geq 3$ holds for any weighted condition, $j=12, \ldots, 36$. Here the underlying graphs of $G_{w}^{1}, \ldots, G_{w}^{11}$ are depicted in Fig. 4, while those of $G_{w}^{12}, \ldots, G_{w}^{36}$ are depicted in Fig. 5.

Let $\mathcal{H}=G-\chi(G)$ and denote by $v(\mathcal{H})$ the number of vertices of \mathcal{H} in what follows. Note that if $i_{+}\left(G_{w}\right)=2$, by Theorem 3.3, G_{w} must be a weighted θ-graph and by Lemma 2.4, we have $i_{+}\left(\chi\left(G_{w}\right)\right) \leq 2$. Hence, in view of Theorems 4.1 and 4.3 , we have $\chi(G) \in\{\theta(1,1,1), \theta(1,0,1), \theta(1,0,2), \theta(2,0,2)\}$.

First, we characterize all graphs G_{w} with $\theta(1,1,1)$ as its base satisfying $i_{+}\left(G_{w}\right)=2$ according to the following two possible cases.

Case 1. \mathcal{H} is a collection of isolated vertices.

If $v(\mathcal{H})=1, G_{w}$ must be G_{w}^{1} or G_{w}^{2}. By Lemmas 2.5 and 2.6 , we have $i_{+}\left(G_{w}^{2}\right)=2$ if and only if the weight of G_{w} satisfies $a_{1} b_{2}=a_{2} b_{1}$. It is routine to check that $i_{+}\left(G_{w}^{1}\right)=2$.

If $v(\mathcal{H})=2, G_{w}$ must be G_{w}^{3}, G_{w}^{12} or, G_{w}^{13}, but $i_{+}\left(G_{w}^{12}\right)=i_{+}\left(G_{w}^{13}\right)=3$.
If $v(\mathcal{H}) \geq 3$, then by Lemma $2.4 i_{+}\left(G_{w}\right) \geq 3$ since G_{w} contains G_{w}^{12} or, G_{w}^{13} as an induced subgraph.
Case 2. \mathcal{H} has a P_{2} as an induced subgraph.
If $\mathcal{H}=P_{2}, G_{w}$ must be G_{w}^{4} or G_{w}^{5}. By Lemma $2.6, i_{+}\left(G_{w}^{4}\right)=i_{+}\left(G_{w}^{5}\right)=1+i_{+}\left(G_{w}^{\prime}\right)$, where G_{w}^{\prime} is $\theta(1,1,1)_{w}$. By applying ECMOs on $A\left(G_{w}^{\prime}\right)$, we have $i_{+}\left(G_{w}^{4}\right)=i_{+}\left(G_{w}^{5}\right)=2$ if and only if the weight of G_{w} satisfies the condition that $a_{2} b_{1}=a_{1} b_{2}$ and $a_{2} c_{1}=a_{1} c_{2}$.

If \mathcal{H} contains the union of P_{2} and an isolated vertex as an induced subgraph, then by Lemma $2.4, i_{+}\left(G_{w}\right) \geq 3$ since it contain one of G_{w}^{i} 's $(i=14, \ldots, 19)$ as an induced subgraph.

If \mathcal{H} contains a P_{3} as an induced subgraph, then by Lemma 2.4, $i_{+}\left(G_{w}\right)=1+i_{+}\left(G_{w}^{\prime}\right) \geq 3$, where G_{w}^{\prime} is G_{w}^{1} or G_{w}^{2} and $i_{+}\left(G_{w}^{1}\right)=2, i_{+}\left(G_{w}^{2}\right) \geq 2$.

Next we characterize all graphs G_{w} with $\theta(1,0,1)$ as its base satisfying $i_{+}\left(G_{w}\right)=2$ according to the following four possible cases.

Case 1. \mathcal{H} is a collection of isolated vertices.
If $v(\mathcal{H})=1, G_{w}$ must be G_{w}^{6} or G_{w}^{7}.
If $v(\mathcal{H})=2, G_{w}$ must be G_{w}^{8}, G_{w}^{20} or G_{w}^{21}, but $i_{+}\left(G_{w}^{20}\right)=i_{+}\left(G_{w}^{21}\right)=3$.
If $v(\mathcal{H}) \geq 3$, then by Lemma 2.4, $i_{+}\left(G_{w}\right) \geq 3$ since G_{w} contains G_{w}^{20} or G_{w}^{21} as an induced subgraph.
Case 2. \mathcal{H} is P_{2}. In this subcase, the underlying graph of G_{w} must be G_{w}^{9} or G_{w}^{10}, by calculation we have $i_{+}\left(G_{w}^{9}\right)=i_{+}\left(G_{w}^{10}\right)=2$ if and only if the weight of G_{w}^{9} and G_{w}^{10} satisfies the condition that $a_{2} c_{1}=a_{1} c_{2}$.

Case 3. \mathcal{H} contains the union of P_{2} and an isolated vertex as an induced subgraph. By Lemma $2.4, i_{+}\left(G_{w}\right) \geq 3$ since it contains one of G_{w}^{i} 's $(i=22, \ldots, 27)$ as an induced subgraph.

Case 4. \mathcal{H} contains a P_{3} as an induced subgraph. By Lemma $2.4, i_{+}\left(G_{w}\right) \geq 3$ since G_{w} contains G_{w}^{28} or G_{w}^{29} as an induced subgraph.

Now we characterize all graphs G_{w} with $\theta(1,0,2)$ as its base satisfying $i_{+}\left(G_{w}\right)=2$ according to the following two possible cases.

Case 1. \mathcal{H} is a collection of isolated vertices.
If $v(\mathcal{H})=1, G_{w}$ must be G_{w}^{11}, G_{w}^{30} or G_{w}^{31}. Note that $i_{+}\left(G_{w}^{30}\right)=i_{+}\left(G_{w}^{31}\right)=3$, and by Lemmas 2.5 and 2.6, $i_{+}\left(G_{w}^{11}\right)=2$ if and only if the weight of G_{w}^{11} satisfies $a_{1} a_{3}=a_{2} b_{1}$.

If $v(\mathcal{H}) \geq 2$, then by Lemma $2.4, i_{+}\left(G_{w}\right) \geq 3$ since G_{w} contains G_{w}^{30} or G_{w}^{31} as an induced subgraph.
Case 2. \mathcal{H} contains a P_{2} as a induced subgraph, G_{w} must be G_{w}^{32}, G_{w}^{33} or G_{w}^{34}, but each of them have more than 2 positive eigenvalues.

At last, we consider graphs G_{w} with $\theta(2,0,2)$ as its base satisfying $i_{+}\left(G_{w}\right)=2$. In fact, in this case, G_{w} contains G_{w}^{35} or G_{w}^{36} as an induced subgraph.

Similarly, we can have the following theorems.
Theorem 4.5. Let $G_{w} \in \mathscr{B} \backslash \mathscr{B}_{p}$, then $i_{-}\left(G_{w}\right)=2$ if and only if G_{w} is one of the following graphs: the weighted graph $\infty(4,1,4)_{w}$ with weighted condition $a_{1} a_{3}=a_{2} a_{4}$ and $b_{1} b_{3}=b_{2} b_{4}$; the weighted graph $\theta(1,1,1)_{w}$ with weighted condition $a_{2} b_{1} \neq a_{1} b_{2}$ or $a_{2} c_{1} \neq a_{1} c_{2}$; the weighted graph $\theta(1,0,1)_{w}$; the weighted graph $\theta(1,0,2)_{w}$ with weighted
condition $a_{1} b_{2} \leq c_{1} c_{3}$; the weighted graph $\theta(2,0,2)_{w}$ with weighted condition $a_{2} b_{1} c_{3}-a_{1} a_{3} c_{2}-a_{2} c_{1} c_{3}=0$; the weighted graph $\theta(1,1,2)_{w}$ with weighted condition $a_{1} b_{2}=a_{2} b_{1}$.

Theorem 4.6. Let $G_{w} \in \mathscr{B}_{p}$ but no pendant twins, then $i_{-}\left(G_{w}\right)=2$ if and only if G_{w} is one of the following graphs: the weighted graph $G_{w}^{1}, G_{w}^{3}, G_{w}^{6}, G_{w}^{8}$; the weighted graph $\left.G_{w}^{4}, G_{w}^{5}\right)$ with weighted condition $a_{2} b_{1}=a_{1} b_{2}$ and $a_{2} c_{1}=a_{1} c_{2}$; the weighted graph G_{w}^{2} with weighted condition $a_{1} b_{2}=a_{2} b_{1}$; the weighted graph G_{w}^{11} with weighted condition $a_{1} a_{3}=a_{2} b_{1}$.

5. Weighted bicyclic graphs with rank $2,3,4$

The rank of a weighted bicyclic graph G_{w} is the rank of its adjacency matrix $A\left(G_{w}\right)$, denoted by $r\left(G_{w}\right)$. Then it is easy to see that $r\left(G_{w}\right)=i_{+}\left(G_{w}\right)+i_{-}\left(G_{w}\right)$. In this section, we'll characterize the weighted bicyclic graphs with rank $2,3,4$, respectively.

Theorem 5.1. Let $G_{w} \in \mathscr{B}$, then $r\left(G_{w}\right)=2$ if and only if $G_{w} \cong \theta(1,1,1)_{w}$ with weighted condition $a_{1} c_{2}=a_{2} c_{1}$ and $a_{1} b_{2}=a_{2} b_{1}$.

Proof. Let G_{w} be a weighted bicyclic graph, $i_{+}\left(G_{w}\right) \geq 1$ and $i_{-}\left(G_{w}\right) \geq 1$ since G contains P_{2} as an induced subgraph. Then $r\left(G_{w}\right)=2$ if and only if $i_{+}\left(G_{w}\right)=i_{-}\left(G_{w}\right)=1$. By Theorems 4.1 and 4.2 we know G_{w} must be $\theta(1,1,1)_{w}$ with weighted condition $a_{1} c_{2}=a_{2} c_{1}$ and $a_{2} b_{1}=a_{1} b_{2}$.

Theorem 5.2. Let $G_{w} \in \mathscr{B}$, then $r\left(G_{w}\right)=3$ if and only if $G_{w} \cong \theta(1,0,1)_{w}$ with weighted condition $a_{2} c_{1}=a_{1} c_{2}$.
Proof. Let G_{w} be a weighted bicyclic graph, since $i_{+}\left(G_{w}\right) \geq 1$ and $i_{-}\left(G_{w}\right) \geq 1$, then $r\left(G_{w}\right)=3$ if and only if $i_{+}\left(G_{w}\right)=1, i_{-}\left(G_{w}\right)=2$ or $i_{+}\left(G_{w}\right)=2, i_{-}\left(G_{w}\right)=1$. Note that either $i_{+}\left(G_{w}\right)$ or $i_{-}\left(G_{w}\right)$ equals 1 , hence by Theorems 4.1 and 4.2 we know G_{w} must be $\theta(1,0,1)_{w}$ with weighted condition $a_{2} c_{1}=a_{1} c_{2}$.

Theorem 5.3. Let $G_{w} \in \mathscr{B} \backslash \mathscr{B}_{p}$, then $r\left(G_{w}\right)=4$ if and only if G_{w} is one of the following graphs: the weighted graph $\infty(4,1,4)_{w}$ satisfying $a_{1} a_{3}=a_{2} a_{4}$ and $b_{1} b_{3}=b_{2} b_{4}$; the weighted graph $\theta(1,1,1)_{w}$ satisfying $a_{2} b_{1} \neq a_{1} b_{2}$ or $a_{2} c_{1} \neq a_{1} c_{2}$; the weighted graph $\theta(1,0,1)_{w}$ satisfying $a_{2} c_{1} \neq a_{1} c_{2}$; the weighted graph $\theta(1,0,2)_{w}$ satisfying $a_{1} b_{2}=c_{1} c_{3}$; the weighted graph $\theta(2,0,2)_{w}$ satisfying $a_{2} b_{1} c_{3}-a_{1} a_{3} c_{2}-a_{2} c_{1} c_{3}=0$.

Proof. If G_{w} be a weighted bicyclic graph, it is easy to know that $i_{+}\left(G_{w}\right) \geq 1$ and $i_{-}\left(G_{w}\right) \geq 1$. Then $r\left(G_{w}\right)=4$ if and only if $\left(i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right)\right)=(1,3)$ or $\left(i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right)\right)=(3,1)$ or $\left(i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right)\right)=(2,2)$. If one of $i_{+}\left(G_{w}\right)$ and $i_{-}\left(G_{w}\right)$ equals 1 , then G_{w} must be $\theta(1,1,1)_{w}$ or $\theta(1,0,1)_{w}$, by Theorems 4.1 and 4.2 we know $r\left(G_{w}\right)<4$.

Hence, it suffices to consider that $\left(i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right)\right)=(2,2)$. By Theorems 4.3 and $4.5,\left(i_{+}\left(G_{w}\right), i_{-}\left(G_{w}\right)\right)=$ $(2,2)$ if and only if G_{w} is one of the graphs described in Theorem 5.3.

Similarly, we can have the following theorem:
Theorem 5.4. Let $G_{w} \in \mathscr{B}_{p}$ but no pedant twins $n(n \geq 4)$, if $r\left(G_{w}\right)=4$ if and only if G_{w} is one of the following graphs: the weighted graphs $G_{w}^{1}, G_{w}^{3}, G_{w}^{6}, G_{w}^{8}$; the weighted graph G_{w}^{2} satisfying the weighted condition $a_{1} b_{2}=a_{2} b_{1}$; the weighted graph G_{w}^{4}, G_{w}^{5} satisfying the weighted condition $a_{2} b_{1}=a_{1} b_{2}$ and $a_{2} c_{1}=a_{1} c_{2}$; the weighted graph G_{w}^{11} satisfying the weighted condition $a_{1} a_{3}=a_{2} b_{1}$.

References

[1] M. Arav, F.J. Hall, Z.S. Li, H. van der Holst, The inertia set of a signed graph, Linear Algebra Appl. 439 (5) (2013) 1506-1529.
[2] L. Collatz, U. Sinogowitz, Spektren endlicher grapfen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63-77.
[3] S. Daugherty, The inertia of unicyclic graphs and the implications for closed-shells, Linear Algebra Appl. 429 (2008) 849-858.
[4] Y.Z. Fan, W. Du, C. Dong, The nullity of bicyclic signed graphs, arXiv:1207.6765 [math.CO]
[5] Y.Z. Fan, Y. Wang, A note on the nullity of unicyclic signed graphs, Linear Algebra Appl. 397 (2005) 245-251.
[6] Y.Z. Fan, K.S. Qian, On the nullity of bipartite graphs, Linear Algebra Appl. 430 (2009) 2943-2949.
[7] P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, 1995.
[8] D.A. Gregory, V.L. Watts, B.L. Shader, Biclique decompositions and Hermitian rank, Linear Algebra Appl. 292 (1999) 267-280.
[9] D.A. Gregory, B. Heyink, K.N. Vander Meulen, Inertia and biclique decompositions of joins of graphs, J. Comb. Theory Ser. B 88 (2003) 135-151.
[10] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Top. Curr. Chem. 42 (1973) 49-93.
[11] S.B. Hu, B.L. Liu, X.Z. Tan, On the nullity of bicyclic graphs, Linear Algebra Appl. 429 (2008) 1387-1391.
[12] P. Lancaster, M. Tismenetsky, The Theory of Matrices, second ed., Academic Press Inc., Orlando, FL, 1985.
[13] S.C. Li, On the nullity of graphs with pendant vertices, Linear Algebra Appl. 429 (2008) 1619-1628.
[14] S.C. Li, F.F. Song, On the positive and negative inertia of weighted graphs, arXiv:1307.5110 [math.CO]
[15] H.C. Longuet-Higgins, Some studies in molecular orbital theory I. Resonance structures and molecular orbitals in unsaturated hydrocarbons, J. Chem. Phys. 18 (1950) 265-274.
[16] H.C. Ma, W.H. Yang, S.G. Li, Positive and negative inertia index of a graph, Linear Algebra Appl. 438 (1) (2013) 331-341.
[17] M. Nath, B.K. Sarma, On the null-spaces of acyclic and unicyclic singular graphs, Linear Algebra Appl. 427 (2007) 42-54.
[18] X.Z. Tan, B.L. Liu, On the nullity of unicyclic graphs, Linear Algebra Appl. 408 (2005) 212-220.
[19] G.H. Yu, L.H. Feng, Q.W. Wang, Bicyclic graphs with small positive index of inertia, Linear Algebra Appl. 438 (2013) 2036-2045.

[^0]: ${ }^{*}$ Financially supported by the National Natural Science Foundation of China (Grant Nos. 11271149, 11371062), the Program for New Century Excellent Talents in University (Grant No. NCET-13-0817) and the Special Fund for Basic Scientific Research of Central Colleges (Grant No. CCNU13F020)).
 ${ }^{\dagger}$ Corresponding author.
 Email addresses: 750861119@qq.com (S.B. Deng), lscmath@mail.ccnu.edu.cn (S.C. Li), 928046810@qq.com (F.F. Song)

