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The extremal problems on the inertia of weighted bicyclic graphs∗

Shibing Deng, Shuchao Li†, Feifei Song
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Abstract: LetGw be a weighted graph. The number of the positive, negative and zero eigenvalues in the spectrum

of Gw are called positive inertia index, negative inertia index and nullity of Gw, and denoted by i+(Gw), i−(Gw),

i0(Gw), respectively. In this paper, sharp lower bound on the positive (resp. negative) inertia index of weighted

bicyclic graphs of order n with pendant vertices is obtained. Moreover, all the weighted bicyclic graphs of order

n with at most two positive, two negative and at least n− 4 zero eigenvalues are identified, respectively.
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1. Introduction

In this paper, we only consider simple weighted graphs on positive weight set. Let Gw be a weighted graph

with vertex set {v1, v2, . . . , vn}, edge set E(G) 6= ∅ and W (Gw) = {wj > 0, j = 1, 2, . . . , |E(G)|}. The function

w : E(G) → W (Gw) is called a weight function of Gw. It is obvious that each weighted graph corresponds to a

weight function. The adjacency matrix of Gw on n vertices is defined as the matrix A(Gw) = (aij) such that aij =

w(vivj) if vivj ∈ E(G) and 0 otherwise. The eigenvalues λ1, λ2, . . . , λn of A(Gw) are said to be the eigenvalues

of the weighted graph Gw. The inertia of Gw is defined to be the triple In(Gw) = (i+(Gw), i−(Gw), i0(Gw)),

where i+(Gw), i−(Gw) and i0(Gw) are the numbers of the positive, negative and zero eigenvalues of A(Gw)

including multiplicities, respectively. i+(Gw) and i−(Gw) are called the positive, negative index of inertia (for

short, positive, negative index ) of Gw, respectively. The number i0(Gw) is called the nullity of Gw. Obviously,

i+(Gw) + i−(Gw) + i0(Gw) = n.

An induced subgraph of Gw is an induced subgraph of G having the same weights with those of Gw. For an

induced weighted subgraph Hw of the weighted graph Gw, let Gw −Hw be the subgraph obtained from Gw by

deleting all vertices of Hw and all incident edges. We define that the union of G1
w and G2

w, denoted by G1
w

⋃

G2
w, is

the graph with vertex-set V (G1
w)

⋃

V (G2
w), edge-set E(G1

w)
⋃

E(G2
w) and the weight of each edge is not changed.

A bicyclic graph is a simple connected graph in which the number of edges equals the number of vertices plus

1. A weighted path and a weighted cycle of order n are denoted by Pn
w , C

n
w, respectively. An isolated vertex is

sometime denoted by K1.

The study of eigenvalues of graph has been received a lot of attention due to its applications in chemitry (see

[2, 7, 10, 15] for details). As we know, if G is a bipartite graph, then i+(G) = i−(G) = α(G) = n−i0(G)
2 , where α(G)

is the matching number of G, otherwise, i+(G), i−(G) and i0(G) do dot have this relationship. Gregory et al. [8]

studied the subadditivity of the positive, negative indices of inertia and developed certain properties of Hermitian

rank which were used to characterize the biclique decomposition number. Gregory et al. [9] investigated the

inertia of a partial join of two graphs and established a few relations between inertia and biclique decompositions

of partial joins of graphs. Daugherty [3] characterized the inertia of unicyclic graphs in terms of matching number

and obtained a linear-time algorithm for computing it. Yu et al. [19] investigated the minimal positive index of
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inertia among all unweighted bicyclic graphs of order n with pendants, and characterized the bicyclic graphs with

positive index 1 or 2. Very recently, it is interesting to see that Marina et al. [1] studied the inertia set of a signed

graph in algebraic approach.

The nullity of unweighted graphs has been studied well in the literature. Tan and Liu [18] gave the nullity set

of unicyclic graphs and characterized the unicyclic graphs with maximum nullity. In addition, Nath and Sarma

[17] presented another version of characterization of an acyclic or unicyclic graph to be singular. One of the

present authors [13] investigated the nullity of graphs with pendant vertices. Fan and Qian [6] characterized the

bipartite graphs with the second largest nullity and the regular bipartite graphs with the third largest nullity. Fan

and Wang [5] characterized the unicyclic signed graphs of order n with nullity n−2, n−3, n−4, n−5, respectively.

Our paper is motivated directly by [4, 11, 13, 16]. On the one hand, Fan et al. [4] studied the nullity of signed

bicyclic graph (which is, in fact, the bicyclic graph with edge weight 1 or −1); Li [13] and Hu [11] studied the

nullity of unweighted bicyclic graph. On the other hand, Yu et al. [19] characterized all n-vertex unweighted

bicyclic graphs with positive index 1 or 2. It is natural and interesting for us to consider the extremal problems

on the inertia of weighted bicyclic graphs, which may generalize corresponding results of [4, 11, 13, 19].

This paper is organized as follows: in Section 2, some preliminaries are introduced. In Section 3, we present

the lower bound for the positive, negative index of n-vertex weighted bicyclic graphs with pendants. In Section

4, we characterize all n-vertex weighted bicyclic graphs without pendant twins having one or two positive (resp.

negative) eigenvalues. In Section 5, we characterize all n-vertex weighted bicyclic graphs without pendant twins

of rank 2, 3, 4.

2. Preliminaries

In this section, we list some lemmas which will be used to prove our main results. Suppose M , N are two

Hermitian matrices of order n, if there exists an invertible matrix Q of order n such that QMQ∗ = N , Q∗ denotes

the conjugate transpose of Q, then we say that M is congruent to N , denoted by M ∼= N .

Lemma 2.1 ([12]). Let M,N be two Hermitian matrices of order n such that M ∼= N , then i+(M) = i+(N), i−(M) =

i−(N) and i0(M) = i0(N).

It is easy to obtain the following result.

Lemma 2.2. Let Gw = G1
w

⋃

G2
w

⋃

. . .
⋃

Gt
w be a weighted graph, where Gi

w (i = 1, 2, . . . , t) are connected

components of Gw. Then i+(Gw) =
∑t

i=1 i+(G
i
w), i−(Gw) =

∑t

i=1 i−(G
i
w) and i0(Gw) =

∑t

i=1 i0(G
i
w).

Let M be a Hermitian matrix. We denoted three types of elementary congruence matrix operations (ECMOs)

on M as follows:

1. interchanging ith and jth rows of M , while interchanging ith and jth columns of M ;

2. multiplying ith row of M by a non-zero number k, while multiplying ith column of M by k;

3. adding ith row of M multiplied by a non-zero number k to jth row, while adding ith column of M multiplied

by k to jth column.

By Lemma 2.1, the ECMOs do not change the inertia of a Hermitian matrix.

Lemma 2.3 ([19]). Let M be an n× n Hermitian matrix and N be the Hermitian matrix obtained by bordering

M as followings:

N =

(

M y

y∗ a

)

,
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where y is a column vector, y∗ denotes the conjugate transpose of y and a is a real number. Then i+(N) − 1 ≤

i+(M) ≤ i+(N), i−(M)− 1 ≤ i−(M) ≤ i−(N).

By Lemma 2.3 we can get the following result immediately:

Lemma 2.4 ([14]). Let Hw be an induced subgraph of G. Then i+(Hw) ≤ i+(Gw) and i−(Hw) ≤ i−(Gw).

Lemma 2.5 ([14]). Let Cn
w be a weighted cycle of order n. Then

i+(C
n
w) =







n+1
2 , if n ≡ 1 (mod 4);

n
2 , if n ≡ 2 (mod 4);
n−1
2 , if n ≡ 3 (mod 4).

i−(C
n
w) =







n−1
2 , if n ≡ 1 (mod 4);

n
2 , if n ≡ 2 (mod 4);
n+1
2 , if n ≡ 3 (mod 4).

Furthermore, if n ≡ 0 (mod 4), let Cn
w = v1v2 . . . vnv1 be a weighted cycle of order n, w(vivi+1) = ai (1 ≤ i ≤ n)

and let vn+1 = v1. Then

i+(C
n
w) = i−(C

n
w) =

{

n
2 − 1, if

∏

n

2

i=1 a2i−1 =
∏

n

2

i=1 a2i;

n
2 , otherwise.

Lemma 2.6 ([14]). Let Gw be a graph containing a pendant vertex v with its unique neighbor u. Then i+(Gw) =

i+(Gw − u− v) + 1 and i−(Gw) = i−(Gw − u− v) + 1.

The following result is an immediate consequence of Lemma 2.6.

Lemma 2.7. Let Pn
w be a weighted path of order n. Then

i+(P
n
w) = i−(P

n
w ) =

{

n−1
2 , if n are odd;

n
2 , if n are even;

Let u, v be two pendant vertices of a weighted graph Gw, u, v are called a pendant twin if they have the same

neighborhood in Gw. The following result is an immediate consequence of Lemma 2.6 since i+(K1) = i−(K1) = 0.

Lemma 2.8. If u, v is a pendant twin in a weighted graph Gw, then i+(Gw) = i+(Gw − v) = i+(Gw − u) and

i−(Gw) = i−(Gw − v) = i−(Gw − u).

Let Sk
w be a weighted star of order k with center v and non-central vertices v1, . . . , vk−1. We can get the

following two lemmas by Lemmas 2.4 and 2.6.

Lemma 2.9. Let G0
w be a weighted graph of order n − k such that u ∈ V (G0

w). Let G1
w be the graph obtained

from G0
w and Sk

w by inserting an edge between u and the center v of Sk
w. Let G2

w = G1
w − {vv1, vv2, . . . , vvk−1}+

{uv1, uv2, . . . , uvk−1} where w(uvi) = w(vvi). Then i+(G
1
w) ≥ i+(G

2
w) and i−(G

1
w) ≥ i−(G

2
w).

Lemma 2.10. Let G0
w be a weighted graph of order n− l − t and u1, u2 ∈ V (G0). Assume that G1

w is the graph

obtained from G0
w, S

l+1
w and St+1

w by identifying u1 with the center of Sl+1
w , u2 with the center of St+1

w ,respectively.

Let G2
w be the graph obtained from G0

w, S
l+t+1
w by identifying u1 with the center of Sl+t+1. Then i+(G

1
w) ≥ i+(G

2
w)

and i−(G
1
w) ≥ i−(G

2
w).

Lemma 2.11. Let G1
w and G2

w be two weighted graphs with u ∈ V (G1) and v ∈ V (G2). Let P l
w(l ≥ 3) be a

weighted path with two end-vertices v1, vl. Let S
l
w be a weighted star of order l and have the same weight set with

P l
w(l ≥ 3). Let G′

w be the graph obtained from G1
w

⋃

G2
w

⋃

P l
w by identifying u with v1 and v with vl, respectively.

Let G′′

w be the graph obtained from G1
w

⋃

G2
w by identifying u, v with the center of Sl

w. Then i+(G
′

w) ≥ i+(G
′′

w)

and i−(G
′

w) ≥ i−(G
′′

w).
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Proof. In view of Lemma 2.6, we have

i+(G
′′

w) = 1 + i+(G
1
w − u) + i+(G

2
w − v).

Note that (G1
w − u)

⋃

(G2
w − v)

⋃

P l−1
w is an induced subgraph of G′

w. In light of Lemma 2.3, it follows that

i+(G
1
w − v) + i+(G

2
w − u) + i+(P

l−1
w ) ≤ i+(G

′

w).

By Lemma 2.7, i+(P
l−1
w ) ≥ 1 (l ≥ 3), therefore i+(G

′

w) ≥ i+(G
′′

w). Similarly, i−(G
′

w) ≥ i−(G
′′

w), as desired.

3. The minimal positive (negative) index of inertia of weighted bicyclic graphs

Let G be a bicyclic graph. The base of G, denoted by χ(G), is the unique bicyclic subgraph of G containing no

pendant vertices. Thus G can be obtained from χ(G) by attaching trees to some vertices of χ(G). Let Cp(p ≥ 3)

and Cq(q ≥ 3) be two vertex-disjoint cycles of length p, q and Pl = v1v2 . . . vl (l ≥ 1) be a path of length l − 1.

Assume that v ∈ V (Cp) and u ∈ V (Cq). Let ∞(p, l, q) be the graph obtained from Cp, Cq and Pl by identifying

v with v1, u with vl. Let Pp+2, Pl+2, Pq+2 be three paths with min{p, l, q} ≥ 0 and at most one of p, l, q is 0. Let

θ(p, l, q) be the graph obtained from Pp+2, Pl+2 and Pq+2 by identifying the three initial vertices and terminal

vertices. The weighted graphs ∞(p, l, q)w and θ(p, l, q)w are depicted in Fig. 1, where the number on each edge

denotes its weight. In what follows in our context, we always assume that the weight for each edge of ∞(p, l, q)w

(resp. θ(p, l, q)w) are as shown in Fig. 1.
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c1 c2 cqPl cq+1
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∞(p, l, q)w θ(p, l, q)w

Figure 1: Weighted graphs ∞(p, l, q)w and θ(p, l, q)w.

As we know, the connected bicyclic graphs can be partitioned into two classes: one class of bicyclic graphs

contain ∞(p, l, q) as its basis and the other class of bicyclic graphs contain θ(p, l, q) as its basis. We call bicyclic

graph G an ∞-graph if G contains some ∞(p, l, q) as its basis and a θ-graph if G contains some θ(p, l, q) as its

basis. We denote by B (resp. Bp) the set of all weighted bicyclic graphs (resp. weighted bicyclic graphs with

pendants) of order n. Let χ(Gw) be the base of Gw, by Lemma 2.6, there is no correlation between the inertia

index of Gw and the weighted set of Gw − χ(Gw). Hence, in order to determine In(Gw), it suffices to consider

the weight of χ(Gw) in what follows.

Theorem 3.1. Let Gw ∈ Bp and contain ∞(p, l, q) as its base. Then

i+(Gw) ≥











p+q

2 , if p, q are odd;
p+q
2 − 1, if p, q are even;

p+q−1
2 , otherwise.

This bound is sharp.

Proof. For a weighted ∞-graph, let u be the common vertex of Cp and Cq in ∞(p, 1, q). Let G∗ be the bicyclic

graph obtained by attaching n− p− q+ 1 (n ≥ p+ q) pendants to u (see Fig. 2) and let G∗

w denote the weighted

graph with G∗ as its underlying graph.
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Figure 2: Graphs G∗ and G∗∗.

Let S1(n) be the set of all n-vertex weighted bicyclic graphs whose underlying graph is obtained from∞(p, 1, q)

by attaching n− p− q + 1 (n ≥ p+ q) pendants to a vertex, different from u of Cp or Cq.

Let S2(n) be the set of all n-vertex weighted bicyclic graphs whose underlying graph is obtained from∞(p, 2, q)

by attaching n− p− q (n ≥ p+ q + 1) pendants to the vertex u of Cp or Cq.

In view of Lemma 2.6, we have

i+(G
∗

w) = 1 + i+(P
p−1
w ) + i+(P

q−1
w ). (3.1)

First we are to show that i + (G∗

w) ≤ i+(Gw) for any Gw ∈ S1(n)
⋃

S2(n). In fact, if Gw ∈ S1(n), without

loss of generality, we suppose all the pendant vertices are attached at Cp. Then by Lemma 2.6, we have

i+(Gw) = 1 +

{

p−1
2 + i+(P

q−1
w ), if p is odd;

p−2
2 + i+(C

q
w) or, i+(P

q−1
w ), if p is even.

= 1 + i+(P
p−1
w ) +

{

i+(P
q−1
w ), if p is odd;

i+(C
q
w) or, i+(P

q−1
w ), if p is even.

(3.2)

By Lemma 2.4, i+(C
q
w) ≥ i+(P

q−1
w ). Hence, in view of (3.1) and (3.2) we have i+(G

∗

w) ≤ i+(Gw).

If Gw ∈ S2(n), without loss of generality, we suppose all the pendant vertices are attached at Cp. Then by

Lemma 2.6 we have

i+(Gw) = 1 +

{

p−1
2 + i+(C

q
w), if p is odd;

p−2
2 + i+(C

q
w) or i+(G

′

w), if p is even.

= 1 + i+(P
p−1
w ) +

{

i+(C
q
w), if p is odd;

i+(C
q
w) or i+(G

′

w), if p is even,
(3.3)

where G′

w is a graph obtained by attaching a pendant vertex to a vertex of Cq. Note that i+(C
q
w) ≥ i+(P

q−1
w )

and i+(G
′

w) ≥ i+(P
q−1
w ) from Lemma 2.4. Hence, in view of (3.1) and (3.3) we have i+(G

∗

w) ≤ i+(Gw).

From Lemmas 2.9, 2.10 and 2.11, G∗

w attains the minimal positive index among all n-vertex weighted bicyclic

graphs with pendant vertices containing two edge disjoint weighted cycles Cp
w and Cq

w.

Similarly, we can have the following theorem:

Theorem 3.2. Let Gw ∈ Bp and contain ∞(p, l, q) as its base. Then

i−(Gw) ≥











p+q

2 , if p, q are odd;
p+q

2 − 1, if p, q are even;
p+q−1

2 , otherwise.

This bound is sharp.

By Theorems 3.1 and 3.2, it follows that
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Theorem 3.3. Let Gw be a weighted ∞-graph of order n with pendant vertices, then i+(Gw) ≥ 3, i−(Gw) ≥ 3

and i0(Gw) ≤ n− 6.

Theorem 3.4. Let Gw ∈ Bp and contain θ(p, l, q) as its base (n ≥ p+ q + l + 3). If plq 6= 0, then

i+(Gw) ≥











1 + p+q+l

2 , is p+ q + l is even;
p+q+l

2 , if p, q, l are odd;

1 + p+q+l+1
2 , otherwise.

This bound is sharp.

Proof. Let u, v be two vertices in θ(p, l, q) (see Fig. 1) and S3(n) (n ≥ p + q + l + 3) be the set of all n-vertex

weighted bicyclic graphs with n − p − q − l − 2 pendant vertices attached to a vertex, different from u and v of

θ(p, l, q). Let G∗∗ be the bicyclic graph with n − p − q − l − 2 (n ≥ p + q + l + 3) pendant vertices attached to

v in θ(p, l, q) and let G∗∗

w denote the weighted graph with G∗∗ as its underlying graph, where G∗∗ is depicted in

Fig. 2. We will verify that i+(G
∗∗

w ) ≤ i+(Gw) for any Gw ∈ S3(n).

For any Gw ∈ S3(n), without loss of generality, assume that n − p− q − l − 2 pendant vertices are attached

to a vertex of Pp+2 − u− v in Gw. By Lemma 2.6, we have

i+(Gw) =

{

1 + p

2 + i+(P
l+q+1
w ), if p is even;

1 + p−1
2 + i+(C

l+q+2
w ), or 1 + p+1

2 + i+(P
q
w) + i+(P

l
w), if p is odd.

i+(G
∗∗

w ) =

{

1 + p

2 + i+(P
l+q+1
w ), if p is even;

1 + p+1
2 + i+(P

q
w) + i+(P

l
w), if p is odd.

Note that i+(C
q+l+2
w ) ≥ i+(P

q
w) + i+(P

l
w) + 1 from Lemma 2.3, hence we have i+(G

∗∗

w ) ≤ i+(Gw).

By Lemmas 2.9, 2.10 and 2.11, G∗∗

w attains the minimal positive index among all n-vertex weighted bicyclic

graphs with pendant vertices containing θ(p, l, q) as its base, n ≥ p+ q + l + 3.

Similarly, we can have the following theorem:

Theorem 3.5. Let Gw ∈ Bp and contain θ(p, l, q) as its base (n ≥ p+ q + l + 3). If plq 6= 0, then

i−(Gw) ≥











1 + p+q+l

2 , is p+ q + l is even;
p+q+l

2 , if p, q, l are odd;

1 + p+q+l+1
2 , otherwise.

This bound is sharp.

Next we consider the special case that one of p, l, q is zero, Without loss of generality, we may assume l = 0.

By a similar discussion as in the proof of Theorem 3.3, we can get the following result.

Theorem 3.6. Let Gw ∈ Bp and contain θ(p, 0, q) as its base (n ≥ p+ q + l + 3). Then

i+(Gw) = i−(Gw) ≥

{

1 + p+q
2 , if p+ q is even;

1 + p+q+1
2 , otherwise.

This bound is sharp.

By Theorems 3.5 and 3.6 we have

Theorem 3.7. Let Gw be a weighted θ-graph of order n with pendant vertices. Then i+(Gw) ≥ 2, i−(Gw) ≥ 2

and i0(Gw) ≤ n− 4.
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4. Characterization of weighted bicyclic graphs with small positive (negative) indices

In this section we characterize the extremal weighted bicyclic graphs with positive (resp. negative) indices 1, 2.

Theorem 4.1. Let Gw ∈ B. Then i+(Gw) = 1 if and only if Gw is one of the following graphs: the weighted

graph θ(1, 1, 1)w with weighted condition c1a2 = a1c2 and a2b1 = a1b2; the weighted graph θ(1, 0, 1)w with weighted

condition a2c1 = a1c2.

Proof. By Theorems 3.3 and 3.7, it suffices to consider the case that the weighted bicyclic graphs of order n

without pendant vertices. If Gw is a ∞-graph, it contains P 2
w

⋃

P 2
w as an induced subgraph, hence i+(Gw) ≥

i+(P
2
w

⋃

P 2
w) = 2. Then we just need to consider the case that Gw is a θ-graph. Without loss of generality, we

assume that l ≤ p ≤ q.

If l = 0, then we have p + q + 1 ≤ 3, otherwise it contains P 4
w as an induced subgraph and by Lemma 2.7,

i+(P
4
w) = 2. Noted that p + q ≥ 2, then the underlying graph of Gw must be θ(1, 0, 1). Applying ECMOs to

A(Gw) yields i+(Gw) = 1 if and only if the weight of Gw satisfies a2c1 = a1c2.

If l > 0, then we have p+ q+ 2 ≤ 4, otherwise it contains Ck
w as an induced subgraph and i+(C

k
w) ≥ 3, where

k ≥ 5. Noted that p + q ≥ 2, then the underlying graph of Gw must be θ(1, 1, 1). Applying ECMOs to A(Gw)

yields i+(Gw) = 1 if and only if the weight of Gw satisfies a2c1 = a1c2 and a2b1 = a1b2.

Similarly, we have the following theorem:

Theorem 4.2. Let Gw ∈ B. Then i−(Gw) = 1 if and only if Gw is the weighted graph θ(1, 1, 1)w with weighted

condition c1a2 = a1c2 and a2b1 = a1b2.

Table 1: The weighted condition for each Gw ∈ B\Bp satisfying i+(Gw) = 2.

weighted graph Gw weighted conditions of Gw weighted graph G weighted conditions of Gw

∞(3, 1, 3)w θ(1, 1, 1)w a2b1 6= a1b2, or a2c1 6= a1c2

∞(3, 2, 3)w 4a1a3b1b3 − a2b2c
2
1 ≥ 0 θ(1, 0, 1)w a2c1 6= a1c2

∞(3, 1, 4)w b1b3 = b2b4 θ(1, 0, 2)w a1b2 ≥ c1c3

∞(4, 1, 4)w a1a3 = a2a4, b1b3 = b2b4 θ(2, 0, 2)w a2b1c2 = a1a3c2 + a2c1c3

Theorem 4.3. Let Gw ∈ B\Bp, then i+(Gw) = 2 if and only if Gw
∼= ∞(3, 1, 3)w,∞(3, 2, 3)w,∞(3, 1, 4)w,

∞(4, 1, 4)w, θ(1, 1, 1)w, θ(1, 0, 1)w, θ(1, 0, 2)w, or θ(2, 0, 2)w and the corresponding weighted conditions are as shown

in Table 1, where the empty cell means there is no correlation between the inertia index of Gw and its weight set.

Proof. We distinguish the following two possible cases to prove our results.

Case 1 Gw is a weighted ∞-graph.

Note that if Gw contains P 6
w as an induced subgraph, then i+(Gw) ≥ 3. Hence, it suffices to consider that

p+ l + q − 4 ≤ 5, i.e., p+ l + q ≤ 9. Note that p+ l + q ≥ 7, hence 7 ≤ p+ l + q ≤ 9.

If p+ l+ q = 7, then Gw must be ∞(3, 1, 3)w. Applying the ECMOs to A(Gw), we have i+(Gw) = 2 and the

positive index of Gw is independent of its weights.
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If p+ l+ q = 8, then Gw
∼= ∞(3, 2, 3)w or, ∞(3, 1, 4)w. Applying the ECMOs to A(Gw), if Gw

∼= ∞(3, 2, 3)w,

then we have i+(Gw) = 2 if and only if the weight of Gw satisfies 4a1a3b1b3 − a2b2c
2
1 ≥ 0; if Gw

∼= ∞(3, 1, 4)w,

then we have i+(Gw) = 2 if and only if the weight of Gw satisfies b1b3 = b2b4.

If p + l + q = 9, then Gw
∼= ∞(3, 3, 3)w,∞(3, 2, 4)w,w ∞(3, 1, 5) or, ∞(4, 1, 4)w. Applying the ECMOs to

A(Gw), if Gw
∼= ∞(4, 1, 4)w, then we have i+(Gw) = 2 if and only if the weight of Gw satisfies a1a3 = a2a4 and

b1b3 = b2b4; if Gw
∼= ∞(3, 3, 3)w,∞(3, 2, 4)w or ∞(3, 1, 5)w, then Gw contains Hw as its induced subgraph, where

the underlying graph of Hw is depicted in Fig. 3. By Lemma 2.6, i+(Gw) > i+(Hw) ≥ 3.

PSfrag replacements

H

Figure 3: The underlying graph of Hw.

Case 2 Gw is a weighted θ-graph. In this case, we assume, without loss of generality, that l ≤ p ≤ q. By

Lemmas 2.5 and 2.7, we have i+(P
6
w) = 3 and i+(C

k
w) ≥ 3, k ≥ 5. Hence, it suffices to consider that Gw does not

contain P 6
w or Ck

w as an induced subgraph, k ≥ 5.

First consider l > 0. In this subcase, we have p+ q+2 ≤ 4, otherwise Gw contains Ck
w as an induced subgraph

with k ≥ 5. Hence, i+(Gw) ≥ i+(C
k
w) ≥ 3. It is routine to check that p+ q ≥ 2, hence p+ q = 2, which implies

the underlying graph of Gw must be θ(1, 1, 1). Applying the ECMOs to A(Gw) yields i+(Gw) = 2 if and only if

the weight of Gw satisfies a2b1 6= a1b2 or, a2c1 6= a1c2.

Now consider l = 0. In this subcase, we have p+ q+1 ≤ 5; otherwise Gw contains P 6
w as an induced subgraph.

Note that p+ q ≥ 2, hence 2 ≤ p+ q ≤ 4.

If p + q = 2, then Gw
∼= θ(1, 0, 1)w. Applying ECMOs to A(Gw) yields i+(Gw) = 2 if and only if the

weight of Gw satisfies a2c1 6= a1c2. If p + q = 3, then Gw
∼= θ(1, 0, 2)w. Applying ECMOs to A(Gw) yields

i+(Gw) = 2 if and only if the weight of Gw satisfies a1b2 ≥ c1c3. If p + q = 4, Gw
∼= θ(1, 0, 3)w or, θ(2, 0, 2)w.

If Gw
∼= θ(2, 0, 2)w, then applying ECMOs to A(Gw) yields i+(Gw) = 2 if and only if the weight of Gw satisfies

a2b1c2 − a1a3c2 − a2c1c3 = 0. If Gw
∼= θ(1, 0, 3)w, then applying ECMOs to A(Gw) yields i+(Gw) = 3 and the

positive index of Gw is independent of the weights.

Table 2: The weighted condition for each Gw ∈ Bp but no pendant twins and satisfying i+(Gw) = 2.

weighted graph Gw weighted conditions of Gw weighted graph Gw weighted conditions of Gw

G1
w, G

3
w, G

6
w, G

7
w, G

8
w G9

w, G
10
w a1c2 = a2c1

G2
w a1b2 = a2b1 G11

w a1a3 = a2b1

G4
w, G

5
w a1b2 = a2b1, a1c2 = a2c1

In what follows, we shall characterize all weighted bicyclic graphs with pendants having two positive eigenval-

ues.

Theorem 4.4. Let Gw ∈ Bp but no pendant twins. Then i+(Gw) = 2 if and only if Gw
∼= G1

w, G
2
w, . . . , G

10
w

or, G11
w and the corresponding weighted conditions are as shown in Table 2, where the underlying graphs of

G1
w, G

2
w, . . . , G

10
w , G11

w are depicted in Fig. 4 and the empty cell in Table 2 means there is no correlation between

the inertia index of Gw and its weight set.
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Figure 4: Graphs G1, G2, . . . , G11.
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Figure 5: Graphs G12, G13, . . . , G36.

Proof. By Lemmas 2.5, 2.6 and applying the ECMOs, it is routine to check that i+(G
i
w) = 2, i = 1, . . . , 11, and

the weight condition for Gi
w is listed in Table 2. Furthermore, i+(G

j
w) ≥ 3 holds for any weighted condition,

j = 12, . . . , 36. Here the underlying graphs of G1
w, . . . , G

11
w are depicted in Fig. 4, while those of G12

w , . . . , G36
w are

depicted in Fig. 5.

Let H = G−χ(G) and denote by v(H) the number of vertices of H in what follows. Note that if i+(Gw) = 2,

by Theorem 3.3, Gw must be a weighted θ-graph and by Lemma 2.4, we have i+(χ(Gw)) ≤ 2. Hence, in view of

Theorems 4.1 and 4.3, we have χ(G) ∈ {θ(1, 1, 1), θ(1, 0, 1), θ(1, 0, 2), θ(2, 0, 2)}.

First, we characterize all graphs Gw with θ(1, 1, 1) as its base satisfying i+(Gw) = 2 according to the following

two possible cases.

Case 1. H is a collection of isolated vertices.
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If v(H) = 1, Gw must be G1
w or G2

w. By Lemmas 2.5 and 2.6, we have i+(G
2
w) = 2 if and only if the weight

of Gw satisfies a1b2 = a2b1. It is routine to check that i+(G
1
w) = 2.

If v(H) = 2, Gw must be G3
w, G

12
w or, G13

w , but i+(G
12
w ) = i+(G

13
w ) = 3.

If v(H) ≥ 3, then by Lemma 2.4 i+(Gw) ≥ 3 since Gw contains G12
w or, G13

w as an induced subgraph.

Case 2. H has a P2 as an induced subgraph.

If H = P2, Gw must be G4
w or G5

w. By Lemma 2.6, i+(G
4
w) = i+(G

5
w) = 1 + i+(G

′

w), where G′

w is θ(1, 1, 1)w.

By applying ECMOs on A(G′

w), we have i+(G
4
w) = i+(G

5
w) = 2 if and only if the weight of Gw satisfies the

condition that a2b1 = a1b2 and a2c1 = a1c2.

If H contains the union of P2 and an isolated vertex as an induced subgraph, then by Lemma 2.4, i+(Gw) ≥ 3

since it contain one of Gi
w’s (i = 14, . . . , 19) as an induced subgraph.

If H contains a P3 as an induced subgraph, then by Lemma 2.4, i+(Gw) = 1 + i+(G
′

w) ≥ 3, where G′

w is G1
w

or G2
w and i+(G

1
w) = 2, i+(G

2
w) ≥ 2.

Next we characterize all graphs Gw with θ(1, 0, 1) as its base satisfying i+(Gw) = 2 according to the following

four possible cases.

Case 1. H is a collection of isolated vertices.

If v(H) = 1, Gw must be G6
w or G7

w.

If v(H) = 2, Gw must be G8
w, G

20
w or G21

w , but i+(G
20
w ) = i+(G

21
w ) = 3.

If v(H) ≥ 3, then by Lemma 2.4, i+(Gw) ≥ 3 since Gw contains G20
w or G21

w as an induced subgraph.

Case 2. H is P2. In this subcase, the underlying graph of Gw must be G9
w or G10

w , by calculation we have

i+(G
9
w) = i+(G

10
w ) = 2 if and only if the weight of G9

w and G10
w satisfies the condition that a2c1 = a1c2.

Case 3. H contains the union of P2 and an isolated vertex as an induced subgraph. By Lemma 2.4, i+(Gw) ≥ 3

since it contains one of Gi
w’s (i = 22, . . . , 27) as an induced subgraph.

Case 4. H contains a P3 as an induced subgraph. By Lemma 2.4, i+(Gw) ≥ 3 since Gw contains G28
w or G29

w

as an induced subgraph.

Now we characterize all graphs Gw with θ(1, 0, 2) as its base satisfying i+(Gw) = 2 according to the following

two possible cases.

Case 1. H is a collection of isolated vertices.

If v(H) = 1, Gw must be G11
w , G30

w or G31
w . Note that i+(G

30
w ) = i+(G

31
w ) = 3, and by Lemmas 2.5 and 2.6,

i+(G
11
w ) = 2 if and only if the weight of G11

w satisfies a1a3 = a2b1.

If v(H) ≥ 2, then by Lemma 2.4, i+(Gw) ≥ 3 since Gw contains G30
w or G31

w as an induced subgraph.

Case 2. H contains a P2 as a induced subgraph, Gw must be G32
w , G33

w or G34
w , but each of them have more

than 2 positive eigenvalues.

At last, we consider graphs Gw with θ(2, 0, 2) as its base satisfying i+(Gw) = 2. In fact, in this case, Gw

contains G35
w or G36

w as an induced subgraph.

Similarly, we can have the following theorems.

Theorem 4.5. Let Gw ∈ B\Bp, then i−(Gw) = 2 if and only if Gw is one of the following graphs: the weighted

graph ∞(4, 1, 4)w with weighted condition a1a3 = a2a4 and b1b3 = b2b4; the weighted graph θ(1, 1, 1)w with weighted

condition a2b1 6= a1b2 or a2c1 6= a1c2; the weighted graph θ(1, 0, 1)w; the weighted graph θ(1, 0, 2)w with weighted
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condition a1b2 ≤ c1c3; the weighted graph θ(2, 0, 2)w with weighted condition a2b1c3 − a1a3c2 − a2c1c3 = 0; the

weighted graph θ(1, 1, 2)w with weighted condition a1b2 = a2b1.

Theorem 4.6. Let Gw ∈ Bp but no pendant twins, then i−(Gw) = 2 if and only if Gw is one of the following

graphs: the weighted graph G1
w, G

3
w, G

6
w, G

8
w; the weighted graph G4

w, G
5
w) with weighted condition a2b1 = a1b2 and

a2c1 = a1c2; the weighted graph G2
w with weighted condition a1b2 = a2b1; the weighted graph G11

w with weighted

condition a1a3 = a2b1.

5. Weighted bicyclic graphs with rank 2, 3, 4

The rank of a weighted bicyclic graph Gw is the rank of its adjacency matrix A(Gw), denoted by r(Gw). Then

it is easy to see that r(Gw) = i+(Gw) + i−(Gw). In this section, we’ll characterize the weighted bicyclic graphs

with rank 2, 3, 4, respectively.

Theorem 5.1. Let Gw ∈ B, then r(Gw) = 2 if and only if Gw
∼= θ(1, 1, 1)w with weighted condition a1c2 = a2c1

and a1b2 = a2b1.

Proof. Let Gw be a weighted bicyclic graph, i+(Gw) ≥ 1 and i−(Gw) ≥ 1 since G contains P2 as an induced

subgraph. Then r(Gw) = 2 if and only if i+(Gw) = i−(Gw) = 1. By Theorems 4.1 and 4.2 we know Gw must be

θ(1, 1, 1)w with weighted condition a1c2 = a2c1 and a2b1 = a1b2.

Theorem 5.2. Let Gw ∈ B, then r(Gw) = 3 if and only if Gw
∼= θ(1, 0, 1)w with weighted condition a2c1 = a1c2.

Proof. Let Gw be a weighted bicyclic graph, since i+(Gw) ≥ 1 and i−(Gw) ≥ 1, then r(Gw) = 3 if and only if

i+(Gw) = 1, i−(Gw) = 2 or i+(Gw) = 2, i−(Gw) = 1. Note that either i+(Gw) or i−(Gw) equals 1, hence by

Theorems 4.1 and 4.2 we know Gw must be θ(1, 0, 1)w with weighted condition a2c1 = a1c2.

Theorem 5.3. Let Gw ∈ B\Bp, then r(Gw) = 4 if and only if Gw is one of the following graphs: the weighted

graph ∞(4, 1, 4)w satisfying a1a3 = a2a4 and b1b3 = b2b4; the weighted graph θ(1, 1, 1)w satisfying a2b1 6= a1b2

or a2c1 6= a1c2; the weighted graph θ(1, 0, 1)w satisfying a2c1 6= a1c2; the weighted graph θ(1, 0, 2)w satisfying

a1b2 = c1c3; the weighted graph θ(2, 0, 2)w satisfying a2b1c3 − a1a3c2 − a2c1c3 = 0.

Proof. If Gw be a weighted bicyclic graph, it is easy to know that i+(Gw) ≥ 1 and i−(Gw) ≥ 1. Then r(Gw) = 4 if

and only if (i+(Gw), i−(Gw)) = (1, 3) or (i+(Gw), i−(Gw)) = (3, 1) or (i+(Gw), i−(Gw)) = (2, 2). If one of i+(Gw)

and i−(Gw) equals 1, then Gw must be θ(1, 1, 1)w or θ(1, 0, 1)w, by Theorems 4.1 and 4.2 we know r(Gw) < 4.

Hence, it suffices to consider that (i+(Gw), i−(Gw)) = (2, 2). By Theorems 4.3 and 4.5, (i+(Gw), i−(Gw)) =

(2, 2) if and only if Gw is one of the graphs described in Theorem 5.3.

Similarly, we can have the following theorem:

Theorem 5.4. Let Gw ∈ Bp but no pedant twins n(n ≥ 4), if r(Gw) = 4 if and only if Gw is one of the following

graphs: the weighted graphs G1
w, G

3
w, G

6
w, G

8
w; the weighted graph G2

w satisfying the weighted condition a1b2 = a2b1;

the weighted graph G4
w, G

5
w satisfying the weighted condition a2b1 = a1b2 and a2c1 = a1c2; the weighted graph G11

w

satisfying the weighted condition a1a3 = a2b1.
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