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Abstract

Let N0 denote the set of all non-negative integers and P(N0) be its power
set. An integer additive set-indexer (IASI) of a graph G is an injective func-
tion f : V (G) → P(N0) such that the induced function f+ : E(G) → P(N0)
defined by f+(uv) = f(u) + f(v) is also injective, where N0 is the set of all
non-negative integers. A graph G which admits an IASI is called an IASI
graph. An IASI of a graph G is said to be an arithmetic IASI if the elements
of the set-labels of all vertices and edges of G are in arithmetic progressions.
In this paper, we discuss about two special types of arithmetic IASIs.
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1 Introduction

1.1 Preliminaries on integer additive set-indexers

For all terms and definitions, not defined in this paper, we refer to [10] and for
more about graph labeling, we refer to [5]. Unless mentioned otherwise, all graphs
considered here are simple, finite and have no isolated vertices.
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The sum set of two sets A and B, denoted by A + B, is defined as A + B =
{a + b : a ∈ A, b ∈ B}. If at least one of two sets A and B is countably infinite,
then their sum set A + B will also be countably infinite. Hence, all sets mentioned
in this paper are finite sets. We denote the cardinality of a set A by |A|. Using the
concepts of the sum set of two sets, the notion of an integer additive set-indexer of
a given graph G is defined in [6] as follows.

Let N0 denote the set of all non-negative integers and P(N0) be its power set.
An integer additive set-indexer (IASI, in short) of a given graph G is an injective
function f : V (G) → P(N0) such that the induced function f+ : E(G) → P(N0)
defined by f+(uv) = f(u)+f(v) is also injective. A graph G which admits an integer
additive set-indexer is called an integer additive set-indexed graph (IASI-graph).

An IASI is said to be a k-uniform IASI if |f+(e)| = k for all e ∈ E(G). That
is, a connected graph G is said to have a k-uniform IASI if all of its edges have the
same set-indexing number k.

The cardinality of the labeling set of an element (vertex or edge) of a graph G
is called the set-indexing number of that element.

The vertex set V of a graph G is defined to be l-uniformly set-indexed, if all the
vertices of G have the same set-indexing number l.

Let f be an IASI defined on a graph G and let u, v be any two adjacent vertices
in G. Two ordered pairs (a, b) and (c, d) in f(u) × f(v) are said to be compatible
if a + b = c + d. If (a, b) and (c, d) are compatible, then we write (a, b) ∼ (c, d).
Clearly, ∼ is an equivalence relation.

A compatibility class of an ordered pair (a, b) in f(u)× f(v) with respect to the
integer k = a + b is the subset of f(u) × f(v) defined by {(c, d) ∈ f(u) × f(v) :
(a, b) ∼ (c, d)} and is denoted by Ck. Since f(u) and f(v) are finite sets, then each
compatibility class Ck in f(u)× f(v) contains finite number of elements.

It is to be noted that no compatibility class in f(u)× f(v) can be non-empty. If
a compatibility class Ck contains only one element, then it is called a trivial class.
A compatibility class Ck that contains maximum number of elements are called a
maximal compatibility class.

Lemma 1.1. [13] For a compatibility class Ck in f(u)× f(v), we have 1 ≤ |Ck| ≤
min (|f(u)|, |f(v)|).

A compatibility class which contain the highest possible number of elements is
called saturated class. That is, the cardinality of a saturated class in f(u)× f(v) is
min(|f(u)|, |f(v)|).

It is to be noted that all saturated classes in f(u)×f(v) are maximal compatible
classes, but a maximal compatible class need not be a saturated class of f(u)×f(v).
That is, the existence of a saturated class depends on the nature of elements in the
set-labels f(u) and f(v).

Based on the relation between the set-indexing numbers of an edge and its end
vertices in G, the following notion is introduced in [8].

A strong IASI is an IASI f such that |f+(uv)| = |f(u)| |f(v)| for all u, v ∈ V (G).
A graph which admits a strong IASI may be called a strong IASI graph. A strong
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IASI is said to be strongly uniform IASI if |f+(uv)| = k, for all u, v ∈ V (G) and for
some positive integer k.

1.2 Arithmetic Integer Additive Set-Indexers

By the term, an arithmetically progressive set, (AP-set, in short), we mean a set
whose elements are in an arithmetic progression. In this context, since the set-
labels of the elements of G need to be AP-sets, we take the sets having at least
three elements for labeling the vertices of a given graph G.

The common difference of the set-label of an element of a graph G is called the
deterministic index of that element. The deterministic ratio of an edge e of G is
the ratio, greater than or equal to 1, between the deterministic indices of its end
vertices.

A study about the graphs whose elements are labeled by AP-sets, has been done
in [14] and proposed the following notions and results.

Let f : V (G) → P(N0) be an IASI on G. For any vertex v of G, if f(v) is an
AP-set, then f is called a vertex-arithmetic IASI of G. For an IASI f of G, if f+(e)
is an AP-set, for all e ∈ E(G), then f is called an edge-arithmetic IASI of G. A
graph that admits a vertex-arithmetic IASI (or an edge-arithmetic IASI) is called
a vertex-arithmetic IASI graph (or an edge-arithmetic IASI graph).

An IASI is said to be an arithmetic integer additive set-indexer if it is both
vertex-arithmetic and edge-arithmetic. That is, an arithmetic IASI of a given graph
G is an IASI f , under which the set-labels of all elements of G are AP-sets. A graph
that admits an arithmetic IASI is called an arithmetic IASI graph.

The admissibility of an arithmetic IASI by a graph is established in the following
theorem.

Theorem 1.2. [14] A graph G admits an arithmetic IASI f if and only if f is
a vertex arithmetic IASI and the deterministic ratio any edge of G is a positive
integer, which is less than or equal to the set-indexing number of its end vertex
having smaller deterministic index.

In other words, if vi and vj are two adjacent vertices of G, with deterministic indices
di and dj respectively with respect to an IASI f of G, where di ≤ dj, then f is an
arithmetic IASI if and only if dj = k di, where k is a positive integer such that
1 ≤ k ≤ |f(vi)|.

In this paper, we study the characteristics given graphs, the set-labels of whose
vertices and edges are AP-sets, with certain properties.

2 Isoarithmetic IASI of Graphs

If two AP-sets have the same common difference d, then their sum set is also an
AP-set with the same common difference d. In view of this property, we introduce
the following notion.
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Definition 2.1. Let f be an arithmetic IASI defined on a given graph G. If all the
elements of G have the same deterministic index under f , then f is said to be an
isoarithmetic IASI of G. A graph which admits an isoarithmetic IASI is called an
isoarithmetic IASI graph.

Note that if an IASI f of a graph G is an isoarithmetic IASI, then the set-
labels of all elements of G are AP-sets with the same common difference and the
deterministic ratio of every edge of G is 1.

Definition 2.2. Let f be an isoarithmetic IASI of a given graph G, under which
V (G) is l-uniformly set-indexed, then f is called an l-uniform l-uniform isoarith-
metic IASI of G.

In the following discussions, we study certain characteristics of isoarithmetic
IASI graphs. The following theorem verifies the existence of isoarithmetic IASIs for
given graphs.

Theorem 2.3. Every graph G admits an isoarithmetic integer additive set-indexer.

Proof. Let f be an IASI defined on a given graph G such that, for any vertex vi of
G, f(vi) is an AP-set with the same common difference d , where d > 1 is a non-
negative integer. Then, f+(vivj) is also an AP-set with the same common difference
d, for all edges vivj ∈ E(G). Therefore, f is an isoarithmetic IASI of G.

The following result establishes the hereditary nature of the existence of an
isoarithmetic IASI of a graph G.

Proposition 2.4. A subgraph of an isoarithmetic IASI graph G admits an (induced)
isoarithmetic IASI. That is, the existence of an isoarithmetic IASI is a hereditary
property.

Proof. Let H be a subgraph of the graph G. Let f be an isoarithmetic IASI of G.
Then, the restriction f |H of f to V (H) is an isoarithmetic IASI of H. Hence H is
also an isoarithmetic IASI graph.

An interesting question that arises here is about the set-indexing number of
edges of an isoarithmetic IASI graph. To proceed in this direction, we need the
following result.

Lemma 2.5. Let A and B be finite AP-sets of integers having the same common
difference d. Then, |A + B| = |A|+ |B| − 1.

Lemma 2.6. [12] Let A and B be finite sets of integers with |A| = k ≥ 2, |B| =
l ≥ 2. If |A + B| = k + l − 1, then A and B are arithmetic progressions with the
same common difference.

Invoking the above lemma, we propose the following theorem.

Theorem 2.7. Let G be a graph with an arithmetic IASI f defined on it. Then, f
is an isoarithmetic IASI on G if and only if the set-indexing number of every edge
of G is one less than the sum of the set-indexing numbers of it end vertices.
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Proof. Let vi and vj be two adjacent vertices on G. Then, f(vi) and f(vj) are two
AP-sets with cardinalities m and n respectively. Since f is an arithmetic IASI of
G, f+(vivj) is also an AP-set.

First, assume that f is an isoarithmetic IASI on G. Then, f(vi) and f(vj) are
AP-sets with the same common difference, say d. Then, the set-label of the edge
vivj is the set f+(vivj), which is also an AP-set with the same common difference
d. Therefore, by Lemma 2.5, the set-indexing number of the edge vivj is m+n− 1.

Conversely, assume that he set-indexing number of every edge of G is one less
than the sum of the set-indexing numbers of it end vertices. That is, for any edge
vivj in G, we have |f+(vivj)| = |f(vi)| + |f(vj)| − 1. Since f is an arithmetic IASI
of G, |f(vi)| ≥ 3 ∀ vi ∈ V (G). Therefore, by Lemma 2.6, both f(vi) and f(vj) also
have the same common difference that of f+(vivj). Hence, f is an isoarithmetic
IASI of G.

The following theorem is an immediate consequence of Theorem 2.7.

Theorem 2.8. Let f be an arithmetic IASI defined on a given graph G such that
V (G) is l-uniformly set-indexed. Then, f is an isoarithmetic IASI of G if and only
if G is a (2l − 1)-uniform IASI graph.

Proof. Let V (G) is l-uniformly set-indexed under an arithmetic IASI f . Then, we
have |f(vi)| = |f(vj)| = l for any two (adjacent) vertices of G. Then, by Theorem
2.7, f is an isoarithmetic IASI of G if and only if |f+(vivj) = 2l − 1 for every edge
vivj in G.

The following result addresses the question whether an isoarithmetic IASI could
be a strong IASI.

Proposition 2.9. No isoarithmetic IASI defined on a given graph G can be a strong
IASI of G.

Proof. Let f be an isoarithmetic IASI of a graph G. Then, the set-labels of the
vertices of G under f are AP-sets with the same common difference d. If possible,
let f be a strong IASI. Then, by Theorem 2.7, we have m + n − 1 = mn. This
condition holds only when m = 1 or n = 1, which is a contradiction to the fact that
the set-labels of the elements of G contain at least 3 elements. Hence, f is not a
strong IASI of the graph G.

In view of Proposition 2.9, for any two adjacent vertices vi, vj ∈ V (G), it can
be seen that under an isoarithmetic IASI f on G, some compatibility classes in
f(vi)×f(vj), contain more than one element. Then, the question about the number
of elements in various compatibility classes arises much interest. The following
theorem discusses the number of elements in the compatibility classes of f(vi)×f(vj)
in G.

Theorem 2.10. Let G be a graph which admits an isoarithmetic IASI, say f .
Then, the number of saturated classes in the Cartesian product of the set-labels of
any two adjacent vertices in G is one greater than the difference between cardinality
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of the set-labels of these vertices. More over, exactly two compatibility classes, other
than the saturated classes, have the same cardinality in the Cartesian product of the
set-labels of these vertices.

Proof. Let vi and vj be two adjacent vertices in G. Also, let |f(vi)| = m and
|f(vj)| = n. Without loss of generality, let m ≥ n. Then, by lemma 1.1, the
maximum cardinality of a compatible class in f(vi)× f(vj) is n.

Let f(vi) = {a, a + d, a + 2d, . . . , a + (m − 1)d} and f(vj) = {b, b + d, b +
2d, . . . , b + (n − 1)d}, where a and b are two positive integers. Consider the set-
label of the edge vivj defined by f+(vivj) = f(vi) + f(vj). Then, f+(vivj) =
{a + b, a + b + d, a + b + 2d, . . . , a + b + (m + n− 2)d}.

By Lemma 1.1, a compatibility class can have at most of n elements. Let
r = a + b. Then, the compatibility classes in f(vi)× f(vj) are given by,

Cr = {(a, b)},
Cr+d = {(a + d, b), (a, b + d)},
Cr+2d = {(a + 2d, b), (a + d, b + d), (a, b + 2d)},
Cr+3d = {(a + 3d, b), (a + 2d, b + d), (a + d, b + 2d), (a, b + 3d)},
........ ... ......................................................

........ ... .......................................................

Cr+(m+n−3)d = {(a + (n− 1)d, b + (m− 2)d), (a + (n− 2)d, b + (m− 1)d)},
Cr+(m+n−2)d = {(a + (n− 1)d, b + (m− 1)d)}.

Hence, the cardinality of different compatibility classes are,

|Cr| = |Cr+(m+n−2)d| = 1.

|Cr+d| = |Cr+(m+n−3)d| = 2.

|Cr+2d| = |Cr+(m+n−4)d| = 3.

|Cr+3d| = |Cr+(m+n−5)d| = 4.

|Cr+4d| = |Cr+(m+n−6)d| = 5.

......... ... ...........................

......... ... ...........................

|Cr+(n−2)d| = |Cr+md| = n− 1.

Then, each of the remaining compatibility classes Cr+(n−1)d,Cr+(n)d, . . . ,Cr+(m−1)d
contains n elements, which is the highest number of elements possible in a compati-
bility class Cr. Hence, all these classes are saturated classes. Therefore, the number
of saturated classes in f(vi)× f(vj) = m + n− 1− 2(n− 1) = m− n + 1.

Also, it can be noted from the above equations that there are exactly two com-
patibility classes, other than the saturated classes, have the same cardinality p,
where 1 ≤ p ≤ n− 1. This completes the proof.

Corollary 2.11. Let f be an isoarithmetic IASI defined on a graph G, under which
V (G) is l-uniformly set-indexed. Then, there is exactly one saturated class in the
Cartesian product of the set-labels of any two adjacent vertices in G.
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Proof. Let f be an isoarithmetic IASI defined on a graph G, under which V (G)
is l-uniformly set-indexed. Then, for any two adjacent vertices vi and vj in G,
in |f(vi)| = |f(vj) = l. By Theorem 2.10, the number of saturated classes in
f(vi)× f(vj) is |f(vi)| − |f(vj) + 1 = 1.

Can an isoarithmetic IASI f defined on a given graph G be a uniform IASI of G?
If so, what are the conditions required for f to be a uniform IASI? The following
theorem provides a solution to these questions.

Theorem 2.12. An isoarithmetic IASI of a G is a uniform IASI if and only if
V (G) is uniformly set-indexed or G is bipartite.

Proof. Let f be an isoarithmetic IASI of a graph G. If V (G) is l-uniformly set-
indexed, then by Theorem 2.8, G is (2l− 1)-uniform IASI. Now, assume that V (G)
is not uniformly set-indexed. Then, for at least one edge of G, say vivj, |f(vi)| 6=
|f(vj)|. Let G is bipartite with bipartition (X, Y ). Label the vertices of X by
distinct m-element AP-sets having the common difference d and the vertices of
Y by distinct n-element AP-sets with the same common difference d. Then, by
Theorem 2.7, every edge of G has the set-indexing number m + n − 1. That is, f
is (m + n− 1)-uniform IASI.

Conversely, assume that f is an r-uniform IASI of a connected graph G. If V (G)
is uniformly set-indexed, the proof is complete. Hence, assume that V (G) is not
uniformly set-indexed. Since G is connected, there exist a unique pair of distinct
positive integers m and n such that r = m + n − 1 and every edge of G has one
vertex with set-indexing number m and other end vertex with set-indexing number
n. Let X and Y be the sets of all vertices of G with set-indexing number m and n
respectively. Let vi ∈ X. Then, vivj ∈ E(G) =⇒ f+(vivj) = m + n− 1 =⇒ vj ∈
Y . Similarly, for vj ∈ Y, vjvk ∈ E(G) =⇒ f+(vkvj) = m + n − 1 =⇒ vk ∈ X.
Therefore, (X, Y ) is a bipartition of G.

In view of Theorem 2.12, it is natural to enquire whether an isoarithmetic IASI
of a disconnected graph G can be a uniform IASI and to determine the conditions,
if exist, required for an isoarithmetic IASI of such a graph G to be a uniform IASI?
Let us establish a solution to all these questions in the following theorem.

Theorem 2.13. An isoarithmetic IASI f of a graph G is an r-uniform IASI if
and only if every component G is either bipartite or its vertex set is l-uniformly
set-indexed, where l = 1

2
(r + 1).

Proof. Let G be a graph with q components, say G1, G2, . . . , Gq and f be an isoarith-
metic IASI defined on G. Let f be an r-uniform IASI on G. Since each Gi is a
subgraph of G, by Proposition 2.4, a restriction fi of f to V (Gi) induces an isoarith-
metic IASI on Gi, which is also an r-uniform IASI on Gi. Since Gi is a connected
graph, by Theorem 2.12, Gi is a bipartite graph or V (Gi) is l-uniformly set-indexed.

Conversely, assume that every component G is either bipartite or its vertex set
is l-uniformly set-indexed. If the vertex sets of all components of G are l-uniformly
set-indexed, then V (G) will also be l-uniformly set-indexed. Then by Theorem
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2.12, the isoarithmetic IASI f will be a uniform IASI of G. If for a component Gi

of G, V (Gi) is not uniformly indexed, then Gi is a bipartite graph with bipartition
(Xi, Yi). We can label the vertices in Xi by distinct AP-sets having mi elements
and the common difference d > 1 and label the vertices in Yi by distinct AP-sets
having ni elements and the same common difference d, where mi, ni ≥ 3 are the
positive integers such that mi +ni−1 = r. Then, the corresponding IASI, say fi, is
an r-uniform IASI of Gi. Label all the vertices of every component of G by distinct
AP-sets having the same common difference d, as explained above, according to
whether it is bipartite or not. Then, the function f : V (G) → P(N0) defined by
f(v) = fi(v), if v ∈ V (Gi) is an isoarithmetic IASI of G, which is a uniform IASI
of G.

Now that we have discussed the characteristics of arithmetic IASIs of certain
graphs, all of whose elements have the same deterministic indices, we now proceed
to consider the graphs whose different vertices have different deterministic indices.

3 Biarithmetic IASI graphs

By Theorem 1.2, a graph admits an arithmetic IASI if and only if the deterministic
ratios of all its edges are positive integers greater than or equal to 1. We have
considered the case when the deterministic ratio of all edges of G is 1. For studying
the remaining cases, we introduce the following notion.

Definition 3.1. An arithmetic IASI f of a graph G, under which the deterministic
ratio of each edge of G is a positive integer greater than 1 and less than or equal to
the set-indexing number of the end vertex of e having smaller deterministic index.

In other words, a biarithmetic IASI of a graph G is an arithmetic IASI f of
G, for which the deterministic indices of any two adjacent vertices vi and vj in G,
denoted by di and dj respectively such that di < dj, holds the condition dj = kdi
where k is a positive integer such that 1 < k ≤ |f(vi)|.

In general, all edges of G may not have the same deterministic ratio. Hence, we
introduce the following notion.

Definition 3.2. Let f be a biarithmetic IASI defined on a graph G. If the deter-
ministic ratio of every edge of G is the same, say k, then f is called an identical
biarithmetic IASI of G and G is called an identical biarithmetic IASI graph.

The existence of a biarithmetic IASI for a given graph G depends upon the
cardinality of set-labels of vertices of G and the adjacency between the vertices.
The following result establishes the admissibility of biarithmetic IASI by a given
graph.

Proposition 3.3. Every graph G admits a biarithmetic IASI.

The above result can be verified by taking the elements and cardinalities of
the set-labels properly so that the conditions on the deterministic indices of the
elements of G, as mentioned in 1.2, are fulfilled.
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An identical biarithmetic IASI may not exist for every graph G. The follow-
ing theorem discusses the conditions required for a graph G to admit an identical
biarithmetic IASI.

Theorem 3.4. A graph G admits an identical biarithmetic IASI if and only if it is
bipartite.

Proof. Let G be a bipartite graph having a bipartition (X, Y ) of V (G). Now,
define a function f : V (G) → P(N0) in such a way that f assigns distinct AP-
sets having the same common difference, say d > 1, to distinct vertices in X and
distinct AP-sets having the same common difference, say k d, to distinct vertices of
Y , wherek = min{|f(ui)|, ui ∈ X}. Then, f is an identical biarithmetic IASI of G.

Conversely, let G admits an identical biarithmetic IASI. If possible, assume
that G is not a bipartite graph. Then, G contains at least one odd cycle. For a
positive integer n = 2i + 1; i ≥ 1, let Cn = v1v2v3 . . . v2i+1v1 be an odd cycle in
G. Let k be a positive integer such that k ≤ |f(vj)|, where 1 ≤ j ≤ n and d be a
positive integer, greater than 1. Label the first vertex v1 by an AP-set with common
difference d. Now, label the vertices v2, v3, . . . , v2n of Cn by distinct AP-sets of non-
negative integers in such a way that the edges connecting these vertices in Cn have
the deterministic ratio k. Then, the vertices of Cn at the odd positions have the
deterministic index kl d, where l is an even integer, positive or negative, and the
vertices of Cn at the even positions have the deterministic index ks d, where s is an
odd integer, positive or negative.

Now, it remains to find a set-label for the vertex v2i+1. If we choose an AP-set,
which is not used for labeling the previous vertices, to label the vertex v2i+1 in such a
way that the edge v2iv2i+1 has the deterministic ratio k, then the deterministic index
of the vertex v2i+1 is kr d, where r is an even integer. Therefore, the deterministic
ratio of the edge v2i+1v1 is greater than k. If we choose a set-label for v2i+1 in such
a way that the edge v2i+1v1 has the deterministic ratio k, then the deterministic
index of the vertex v2i+1 is kr d, where r is an odd integer. But, we know that v2n is
kr1 d, where r1 is also an odd integer. Therefore, the deterministic ratio of the edge
v2iv2i+1 can not be k. In both cases, Cn do not admit an identical biarithmetic IASI.
Then, by Remark 3.6, G can not be an identical biarithmetic IASI graph, which is
a contradiction to the hypothesis. Hence, G must be bipartite. This completes the
proof.

In the following discussion, we study certain characteristics of identical and
non-identical biarithmetic IASI graphs.

Analogous to Proposition 2.4, we propose following result on biarithmetic IASI
graphs.

Proposition 3.5. Any subgraph of a biarithmetic IASI graph G also admits a
(induced) biarithmetic IASI. That is, existence of biarithmetic IASI is a hereditary
property.

This proposition can be verified from the fact that an IASI of a graph G induces
an IASI to all its subgraphs. By the above proposition, it can be noted that an
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identical biarithmetic IASI of a graph G also induces an identical biarithmetic IASI
to any subgraph of G. This statement can also be re-stated as follows.

Remark 3.6. If a graph G does not admit an identical biarithmetic IASI, then no
supergraph of G can be an identical biarithmetic IASI graph.

To learn about the set-indexing number of edges of a biarithmetic graph, we
need the following theorem which estimates the set-indexing number of edges of a
arithmetic IASI graph.

Theorem 3.7. [14] Let G be a graph which admits an arithmetic IASI, say f and let
vi and vj be two adjacent vertices in G with the deterministic indices di and dj, such
that di ≤ dj. Then, the set-indexing number of the edge vivj is |f(vi)|+k(|f(vj)|−1),
where k ≤ |f(vi)| is the deterministic ratio of the edge vivj.

The set-indexing number of the edges a biarithmetic IASI graph can be written
as a special case of Theorem 3.7 as follows.

Theorem 3.8. Let G be a graph which admits an arithmetic IASI, say f and let vi
and vj be two adjacent vertices in G with the deterministic indices di and dj, such
that dj = k di, where k is a positive integer such that 1 < k ≤ |f(vi)|. Then, the
set-indexing number of the edge vivj is |f(vi)|+ k(|f(vj)| − 1).

Our next aim is to verify whether a biarithmetic IASI of a given graph can
be a strong IASI of G. The following theorem explains a necessary and sufficient
condition for a biarithmetic IASI of G to be a strong IASI.

Theorem 3.9. Let G be a graph which admits a biarithmetic IASI, say f . Then,
f is a strong IASI of G if and only if the deterministic ratio of every edge of G
is equal to the set-indexing number of its end vertex having smaller deterministic
index.

Proof. Let f be an arithmetic IASI of G. Let vi and vj are two adjacent vertices in
G and di and dj be their deterministic indices under f . Without loss of generality,
let di < dj. Then, by Theorem 3.8, the set-indexing number of the edge vivj is
|f(vi)|+ k(|f(vj)| − 1).

Assume that f is a strong IASI. Therefore, f+(vivj) = mn. Then,

|f(vi)|+ k(|f(vj)| − 1) = |f(vi)| |f(vj)|
=⇒ k(|f(vj)| − 1) = |f(vi)| (|f(vj)| − 1)

=⇒ k = |f(vi)|.

Conversely, assume that the deterministic indices di and dj of two adjacent vertices
vi and vj respectively in G, where di < dj such that dj = |f(vi)|.di. Assume that
f(vi) = {ar = a + rdi : 0 ≤ r < |f(vi)|} and f(vj) = {bs = b + s k di : 0 ≤ s <
|f(vj)|}, where k ≤ |f(vi)|. Now, arrange the terms of f+(vivj) = f(vi) + f(vj)
in rows and columns as follows. For bs ∈ f(vj), 0 ≤ s < |f(vj)|, arrange the
terms of f(vi) + bs in (s + 1)-th row in such a way that equal terms of different
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rows come in the same column of this arrangement. Then the common difference
between consecutive elements in each row is di. Since k = |f(vi)|, the difference
between the final element of any row (other than the last row) and first element of
its succeeding row is also di. That is, no column in this arrangement contains more
than one element. Hence, all elements in this arrangement are distinct. Therefore,
total number of elements in f(vi) + f(vj) is |f(vi)| |f(vj)|. Hence, f is a strong
IASI.

Invoking Theorem 3.9, the condition for an identical biarithmetic IASI to be a
strong IASI is established in the following theorem.

Theorem 3.10. An identical biarithmetic IASI of a graph G is a strong IASI of
G if and only if one partition of V (G) is k-uniformly set-indexed, where k is the
deterministic ratio of the edges of G.

Proof. Let f be an identical arithmetic IASI of G. Then, by Theorem 3.4, G is
bipartite. Let (X, Y ) be the bipartition of G, where X = {ui, 1 ≤ i ≤ r} and
Y = {vj, 1 ≤ j ≤ s}, r + s = |V (G)|. Also let di be the deterministic index of
the vertex ui ∈ X and d′j be the deterministic index of vj ∈ Y . Without loss of
generality, let X is k-uniformly set-indexed, where k is the deterministic ratio of
the edges of G. Therefore, |f(ui)| = k ∀ui ∈ X. Then, since f is an identical
biarithmetic IASI, we have d′j = |f(ui)| di for every edge uivj ∈ V (G). Hence, by
Theorem 3.9, f is a strong IASI of G.

Conversely, assume that the identical biarithmetic IASI f of G is a strong IASI.
Then, for every edge e of G, the set-label of the end vertex of e having smaller
deterministic index must have exactly k elements, where k is the deterministic ratio
of the edges of G. Let X be the set of all these vertices having set-indexing number
k. Since f is an identical biarithmetic IASI, no vertices in X can be adjacent to
each other. Therefore, (X, V −X) is a bipartition of V (G), where X is k-uniformly
set-indexed. This completes the proof.

In this context, it is interesting to check the existence of saturated classes or
maximal compatibility classes and their cardinalities. The following theorem pro-
vides the necessary and sufficient condition for the existence of saturated classes
and the number of saturated classes in the Cartesian product of the set-labels of
two adjacent vertices.

Theorem 3.11. Let G be a graph that admits a biarithmetic IASI, say f . Let
vi and vj be two adjacent vertices in G, where vi has the smaller deterministic
index. Let k be the deterministic ratio of the edge vivj. Then, a compatible class in
f(vi)× f(vj) is a saturated class if and only if |f(vi)| = (|f(vj)| − 1) k + r, r > 0.
Also, number of saturated classes in f(vi)×f(vj) is |f(vi)|−(|f(vj)|−1) k. Moreover,
for 1 ≤ p ≤ n− 1, there are exactly 2k compatibility classes contain p elements.

Proof. Let f(vi) = {a, a+ di, a+ 2di, . . . , a+ (m− 1)di} and f(vj) = {b, b+ kdi, b+
2kdi, . . . , b + (n − 1)kdi}, where a and b are positive integers. Consider the set-
label of the edge vivj defined by f+(vivj) = f(vi) + f(vj). Let a + b = q. Then,
f+(vivj) = {q, q + d, q + 2d, . . . , q + [(m− 1) + k(n− 1)]d}.
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Arrange the elements of f(vi)× f(vj) in rows and columns as follows. Write the
elements of f(vi) + {bs}, bs ∈ f(vj), 0 ≤ s ≤ (n − 1) in (s + 1)-th row in such a
way that equal terms in these rows come in the same column. Hence, we have n
rows containing m elements in each row. Then, each column of this arrangement
corresponds to a compatibility class and the number of elements in a column is the
cardinality of the corresponding compatibility class. It is to be noted that the last
(m−k) elements of each row, except the last row, will be the first m−k elements of
the succeeding row. Hence, for j ≤ n, if m > jk, then last (m− (j − 1)k) elements
of the first row will be the first (m− (j − 1)k) elements of the j-th row.

Assume that there are r > 0 saturated classes in f(vi) × f(vj). Then, clearly
m > n and hence by Lemma 1.1, a saturated class in f(vi) × f(vj) can have a
maximum of n elements. Then, r columns of the arrangement contains n elements.
Therefore, the last m+ (n− 1)k elements of the first row are the first m+ (n− 1)k
elements in the n-th (the last) row. That is, m− (n− 1)k = r or m = (n− 1)k + r
where r is a positive integer.

Conversely, assume that m = (n− 1)k + r, r > 0. From the above step, we note
that m − (n − 1)k = r elements of the first row are common to all n rows in the
above row and column arrangement. That is, r elements are common to all the n
rows of this arrangement. Hence, there are r = m − (n − 1)k saturated classes in
f(vi)× f(vj). This completes the proof.

Since each column in the row and column arrangement, we mentioned above,
corresponds to a compatibility class and the set-indexing number of an edge vivj is
equal to the number of distinct compatibility classes in f(vi)× f(vj), by Theorem
3.8, we have |f(vi)|+k(|f(vj)|−1) columns in the arrangement. Note that the first
k elements of the first row and the last k elements of the last row do not appear in
any other rows. Therefore, the number columns having exactly one element is 2k.
That is, the number of compatibility classes with one element is 2k.

Now remove these 2k columns from the arrangement. Then, in the revised
arrangement, the first k elements of the first two rows are the same and the last k
elements of the last two rows are the same and these element do not appear in any
other rows. Therefore, the number of compatibility classes with 2 elements is 2k.

Proceeding like this, we have the number of compatibility classes having p ele-
ments is 2k, where 1 ≤ p ≤ (n− 1).

It is clear that if f(vi) < f(vj) in Theorem 3.11, then there is no saturated class
in f(vi)×f(vj). Then, our next intention is to study the case when |f(vi)| = pk+q,
where p and q are non-negative integers such that p < (|f(vj)| − 1) and q < k.
Hence, we need to study further to determine the number of maximal compatibility
classes and their cardinality. The following theorem provides the number of maximal
compatibility classes in f(vi)× f(vj).

Theorem 3.12. Let G be a graph that admits a biarithmetic IASI, say f . Let vi
and v2 be two adjacent vertices of G, where vi has the smaller deterministic index
and k ≤ |f(vi)|, be the deterministic ratio of the edge vivj. If |f(vi)| = pk+q, where
p, q are non-negative integers such that p ≤ (|f(vj)| − 1) and q < k, then
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(i) if q = 0, then (|f(vj)|−p+1)k compatibility classes are maximal compatibility
classes and contain p elements.

(ii) if q > 0, then (|f(vj)| − p − 1)k + q compatibility classes are compatibility
classes and contain (p + 1) elements.

Proof. Let vi and vj be two adjacent vertices of G with deterministic indices di
and dj, such that dj = k.di, where k ≤ |f(vi)| is the deterministic ratio of the
edge vivj. Also, let |f(vi)| = m and |f(vj)| = n. Since f is a biarithmetic IASI,
we have k ≤ m. By Theorem 2.8, the set-indexing number of the edge vivj is
m + k(n− 1). Now, assume that m = pk + q, where p, q are non-negative integers
such that 1 ≤ p ≤ (n − 1) and 0 ≤ q < k. Arrange the elements of f(vi) × f(vj)
in such a way that f(vi) + {bs}, where bs = b + sd ∈ Aj, 0 ≤ s ≤ k(n − 1)}, in
(s + 1)-th row and equal terms in these rows come in the same column.

Case-1: Let q = 0. That is, m = pk. From the above arrangement, we observe
that the last k elements of the each row in the first half of the arrangement and the
first k elements of each row in the second half of this arrangement are common to
exactly p rows. Therefore, the cardinality of a maximal class in this case is p.

Moreover, as explained in Theorem 3.11, for 1 ≤ j ≤ p − 1 there exist exactly
2k classes containing j elements. Therefore, the total number of non-maximal
compatibility classes is 2k(p− 1). Therefore, the number of maximal compatibility
classes is m + k(n− 1)− 2k(p− 1) = pk + (n− 1)k − 2pk = (n− p + 1)k.

Case-2: Let q ≥ 0. That is, m = pk + q. From the above arrangement, we
observe that the last q elements of the each row in the first half of the arrangement
and the first k elements of each row in the second half of this arrangement are
common to exactly p + 1 rows. Therefore, the cardinality of a maximal class in
this case is p + 1. Now, for 1 ≤ j ≤ p there exist exactly 2k classes containing j
elements. Therefore, the total number of non-maximal compatibility classes is 2kp.
Therefore, the number of maximal compatibility classes is m + k(n − 1) − 2kp =
pk + q + (n− 1)k− 2pk = (n− p− 1)k + q. That is, the number of maximal classes
here is (n−p−1)k+ q and the number of elements in each of these maximal classes
is p + 1. This completes the proof.

4 Conclusion

In this paper, we have discussed some characteristics of graphs which admit certain
types of IASIs called isoarithmetic and biarithmetic IASIs. We have formulated
some conditions for some graph classes to admit these types of arithmetic IASIs and
discussed about certain properties characteristics of isoarithmetic and biarithmetic
IASI graphs. Problems related to the characterisation of different biarithmetic
IASI graphs are still open. The problems regarding the admissibility of certain
graph operations and products which admit isoarithmetic and biarithmetic IASIs,
characterisation of given graphs which admit biarithmetic IASIs, uniform and non-
uniform, etc. are promising and worth studying. The IASIs which are vertex
arithmetic, but not edge arithmetic can also be studied in detail.
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The IASIs under which the vertices of a given graph are labeled by different
standard sequences of non negative integers, are also note worthy. The problems
of establishing the necessary and sufficient conditions for various graphs and graph
classes to have certain IASIs still remain unsettled. All these facts highlight a wide
scope for further studies in this area.
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