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ABSTRACT

Derangements in a Ferrers Board. (May 2014)

William B. Linz
Department of Mathematics

Texas A&M University

Research Advisor: Dr. Catherine Yan
Department of Mathematics

The classic derangement question of counting the number of derangements for n objects

from some initial permutation of the objects was first considered by de Montfort in 1708.

A particular recasting of a permutation allows us to place any permutation onto an n × n

board, from which certain properties of derangements may be understood. This research

extends the classic derangement question to the more general Ferrers board, which is an

n × n board with a missing section λ in the lower-right corner. Various properties of the

derangement numbers for these more general boards are stated and proven in the course of

this work.
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CHAPTER I

BACKGROUND AND INTRODUCTION

The study of rearrangements of objects is a classic exercise. I propose to consider the

rearrangements of certain structures in a mathematically rigorous fashion. To explain the

concepts involved in the question, I present some notation and definitions forthwith.

Definitions and Beginning Notions

We begin by letting S denote the set S = {1, 2, 3 . . . , n}, where n is a positive integer. We

now present two definitions.

Definition 1 A permutation of the set S is a rearrangement of the elements of S. Permu-

tations can be considered to be words of length n, where a permutation p = p1p2 . . . pn, and

p1, p2, . . . , pn are the elements of S in some order.

Definition 2 A derangement of the set S is a permutation of S such that no element is in

its original position. For example, 1 will not be in the first position of the permutation, 2

will not be in the second position, . . . , n will not be in the nth position.

It is a classical question to ask: For a given positive integer n, how many derangements, Dn,

does it have? We can see that D1 = 0, D2 = 1 (corresponding to the permutation 21), and

D3 = 2 (corresponding to the permutations 231 and 312). There is a general formula for Dn

that can be attained by using the Inclusion-Exclusion Principle.

The classic derangement question can be formulated on an n×n board, where n is a positive

integer. A permutation on such an n× n board is a placement of points on the board such

that no two points are in the same row or column, and every row and column contains one

point. This is equivalent to placing n nonattacking rooks onto the board, as a rook can

only move along rows and columns, so if one has two rooks in the same row or column, they

must necessarily be attacking one another. Given an initial permutation σ0, a derangement

4



is a permutation on the n × n board which shares no common squares with σ0. From this

formulation, the classic derangement properties can be easily computed.

The classic question is an example of the class of problems of forbidden position permutations,

i.e. questions relating to permutations on chessboards, given that certain squares on the

chessboard are forbidden.

There exist results that are able to compute the number of derangements from a given

permutation, if the forbidden positions of the board are known. However, these results

are only computationally useful if certain properties of the forbidden positions are easier to

calculate than the number of derangements themselves.

The Ferrers Board

This document will investigate the derangement question on a more general class of boards

known as Ferrers Boards. Given an n×n board as above, let r1, r2, . . . , ri, . . . , rn denote the

ith row of the board, where r1 is the bottom row. Further, let r′1, r
′
2, . . ., r

′
i, . . . r

′
n denote

the number of squares in row ri of the board. Then a Ferrers board B has the property

that 1 ≤ r′1 ≤ r′2 ≤ . . . r′n = n. Thus, a Ferrers board is an n × n board with a section

λ missing in the lower right corner, and so we may write B = (n × n) − λ. Permutations

and derangements on a Ferrers board are defined as in the classic case. If λ is a rectangle,

then we shall refer to B as a rectangular Ferrers board ; otherwise, B will be referred to as a

nonrectangular Ferrers Board (see Figure I.2 below for examples).

With the above notation, note that if λ = ∅ (if no squares are forbidden), then the Ferrers

board is equivalent to the board used in the classical case.

In the course of this document, it will be shown that, unlike the classic derangement, the

enumeration of the derangements in the more general class of Ferrers board is dependent on σ

(for a fixed λ 6= ∅). However, a particular bijection is obtained when λ is rectangular, showing

that the derangement number for this class of boards is dependent on n, but independent

of σ. It will also be shown that for all Ferrers boards, a particular injection is preserved,
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A rectangular Ferrers Board A nonrectangular Ferrers Board

Fig. I.2.: Examples of rectangular and nonrectangular Ferrers Boards

so that the number of derangements from any permutation can be bounded by the number

of derangements resulting from two particular well-defined permutations on a Ferrers board.

Finally, the derangement numbers will be enumerated in several ways for the case of a

rectangular Ferrers board.

6



CHAPTER II

BOUNDING THE DERANGEMENT NUMBERS OF FERRERS

BOARDS

Bounds for the Derangement Number on a Ferrers Board

In the classic derangement case, it is known that the derangement number is independent

of the initial permutation and only dependent on n. This is reflected in the enumeration of

the derangements as [4]:

Dn = n!
n∑
i=0

(−1)i

i!

In this paper, we will show that the derangement number for a general Ferrers Board is

dependent on n, λ, and in certain cases the given permutation, σ. However, in any case,

we will show that the derangement number is bounded by the derangement number of two

well-defined permutations. To demonstrate this bound, we will define two operations on the

initial permutation.

Left-Right and Right-Left Movements

Denote by S(B) the set of all permutations on a Ferrers board B (with a given λ). We label

the rows of B ascendingly as r1, r2, . . . , ri, . . . , rn and the columns from left-to-right as c1,

c2, . . . , cj, . . . , cn. Denote the square in the ith row and the jth column as (ri, cj). Note that

S(B) = ∅ unless the board B contains {(rd, cd)|1 ≤ d ≤ n}, the diagonal from the lower left

to the upper right corner. We subsequently assume that B does contain that diagonal.

Definition 1 Let σ be a permutation on B. Let (rm, ci), (rk, cj) ∈ σ, where rm is above

rk (i.e. m > k) and ci is to the left of cj (i.e. i < j). Then the left-right movement is a

transformation LR : σ → σ′, with respect to (rm, ci), (rk, cj) where σ′ is another permutation

on B, defined by the following (see Figure II.1 on the next page):

1. LR((rm, ci)) = (rm, cj)

7



2. LR((rk, cj)) = (rk, ci)

3. LR(x) = x for all other x ∈ σ

rk

rm

ci cj

X

X rk

rm

ci cj

X

X

Fig. II.1.: An LR Movement (note that the rows and columns are not necessarily adjacent)

We can then define the transformation RL : σ′ → σ, the right-left movement, as the inverse

function of LR, with the additional caveat that if the RL transformation would move a point

of σ′ to a point in λ, then RL is undefined for that particular set of points.

We will also make the simple observation that given two points in any permutation σ,

one can perform either a left-right or a right-left movement on the points, but not both

simultaneously, as it is necessarily true that either i < j or j < i.

Noncrossing and Nonnesting Permutations

Given a Ferrers board B, we define two particular permutations using the notation of the pre-

vious section: the noncrossing permutation, denoted NCB, and the nonnesting permutation,

denoted NNB.

Definition 2 The noncrossing permutation will be defined algorithmically:

1. Let (r1, ci) be the unique point such that (r1, ci) ∈ B, but (r1, ci+1) /∈ B. Then,

(r1, ci) ∈ NCB.

2. For all subsequent rows rm do the following:

(a) If r′m > r′m−1, then find (rm, cim) ∈ B such that (rm, cim+1) /∈ B. Then, (rm, cim) ∈

NCB.
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(b) If r′m = r′m−1, and (rm−1, cq) ∈ NCB, then find the maximal p < q such that

(rj, cp) /∈ NCB for any j ∈ {1, 2, . . . ,m− 1}. Then, (rm, cp) ∈ NCB.

Definition 3 The nonnesting permutation is defined as NNB = {(ri, ci)|1 ≤ i ≤ n}. This

corresponds to the diagonal from the bottom left to the upper right on B.

Remark These definitions come from the well-known noncrossing and nonnesting matchings.

There is a well-known bijection between the set of Ferrers Boards of side length n and the

set of matchings of cardinality 2n; see [1] for instance.

Connecting LR, RL, NCB and NNB

We establish two lemmas that connect the previous notions together.

Lemma 1 The noncrossing permutation is a permutation such that initially only left-right

movements can be performed on its elements. Similarly, the nonnesting permutation is a

permutation such that initially only right-left movements can be performed on its elements.

Proof We begin with NCB. Let rm, rk be two rows with m > k. If r′m = r′k, then there are

ci, cj such that (rm, ci), (rk, cj) ∈ NCB, with i < j (by Definition 2). But this fulfills the

requirements of Definition 1 for a LR movement, and so in this case only LR movements can

be made. On the other hand, if r′m > r′k, and (rm, ci), (rk, cj) ∈ NCB then either i < j or

j < i. If j < i, then suppose that (rk, ci) is not in the forbidden area λ. Every row below

rk also contains a point in ci by definition of a Ferrers board and by extension so does every

column between cj and ci. By comparison to Definition 2, it follows that (r1, cq) ∈ NCB

for some q > i. But since (rk, cj) ∈ NCB and j < i by assumption, at some row below

rk the algorithmic definition of NCB would yield ci as the maximal column not already

used. Hence, there would be some row rp with p < k such that (rp, ci) ∈ NCB. But this

is a contradiction to (rm, ci) ∈ NCB, so we conclude that (rk, ci) ∈ λ. Since (rk, ci) /∈ B,

by Definition 1 for a RL movement, no RL movement can be performed, and hence no

movement of any kind can be made on these points. If on the other hand, j < i, then clearly

the conditions for Definition 1 of the LR movement are satisfied, so an LR movement can
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be performed on these points. Hence, only LR movements can be initially performed on the

NCB permutation.

For the NNB permutation, let (rm, cm), (rn, cn) ∈ NNB, with m < n. Then, by comparison

to Definition 1, the conditions for a LR movement are nowhere satisfied, but the conditions

for a RL movement are satisfied if (rm, cn) ∈ B. Thus, only RL movements can be initially

performed on the NNB permutation. �

Lemma 2 Let M be any permutation on B. Then, M can be attained by a sequence of

LR movements starting from NCB. Similarly, M can also be attained by a sequence of RL

movements starting from NNB.

Proof We present an algorithm forNCB to attain any other permutationM = {(rm, cim)|1 ≤

m ≤ n}. This algorithm will operate from m = 1 to m = n. For r1:

1. Let (r1, cj1) ∈ NCB By definition, it is the rightmost cell of r1. If ci1 = cj1 , then move

onto r2 as described below. Otherwise, go to step 2.

2. There is a set of columns C1j between ci1 and cj1 . Take the maximal element less than

j1, say k, so that (rik , ck) ∈ NCB for some row rik . Then, do:

(a) LR((r1, ci1)) = (r1, ck)

(b) LR((rik , ck)) = (rik , ci1)

3. With the new element (r1, ck), continue to form the set of columns to the right of ci1

and to the left of ck to find a maximal column and point in the new permutation σ′

created following the first LR movement. As in step 2, perform the LR movement on

the given two points. Continue to do this until the point (r1, ci1) is achieved. then

proceed to r2 as described below.

For the rows rm, m ≥ 2:
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1. In general, apply the algorithm as above. However, when computing between cjm and

cim (where (rm, cjm) is a point attained at some time during the performance of the

algorithm on the mth row), ignore columns cia , where a < m, so that ra is below rm.

2. The LR movement for a general point (rm, cb) with point (rc, cd) where d < b is the

maximal (rightmost) column such that m < c is given by:

(a) LR((rm, cb)) = (rm, cd)

(b) LR((rc, cd)) = (rc, cb)

3. Continue this procedure until a permutation with the points (r1, ci1), . . ., (rm, cim) is

attained. Then do the same procedure for the row rm+1.

After a point (rm, cim) is attained in the above algorithm, it is subsequently fixed during

the succeeding operations. Hence, since (r1, ci1) can be initially attained, all points are

subsequently attained, and so any permutation M can be generated from this algorithm.

Further, by Lemma 1, NCB is a permutation such that only LR movements can be initially

performed on it, and every step in the algorithm is defined to be a LR movement, so that

after one instance of the algorithm is performed, the points above the current row remain

fixed so that only LR movements can be performed on those points in the upper rows. We

therefore have that any permutation M can be generated from a sequence of LR movements

starting from NCB.

The algorithm for NNB is similar. The algorithm computes a minimal leftmost column

greater than the current column with a row greater than the current row at the given stage

of the process. Then, an RL movement is performed on the two generated points, and the

same process is applied onto the new generated permutation until the desired (rm, cim) is

achieved for a given row rm, and then as in the algorithm for NNB, those points remain

fixed. Hence, any permutation M can be achieved by a sequence of these RL movements

from NNB, as Lemma 1 gives that one can perform this operation and all rows above the

11



current row remain so that they only perform RL movements with the other rows above the

current one. �

We easily attain the following corollary:

Corollary 1 The nonnesting permutation can be achieved following a sequence of left-right

movements starting from the noncrossing permutation, and the noncrossing permutation can

be achieved following a sequence of right-left movements from the nonnesting permutation.

Producing a Bound for the Derangement Number

Let M ∈ S(B). We use dB(M) to denote the number of derangements from a permutation

M on a given board B. We now present and prove a general bound for dB(M).

Theorem 1 If M ∈ S(B), and NCB and NNB are the noncrossing and nonnesting per-

mutations defined previously, then the following inequality holds:

dB(NCB) ≤ dB(M) ≤ dB(NNB).

First, we will establish the following lemma:

Lemma 3 Let (rm, ci), (rk, cj) ∈ B with m > k and i < j. Let M,M ′ ∈ S(B) so that M

contains (rm, ci) and (rk, cj), and M ′ be formed by LR((rm, ci), (rk, cj)). Let DB(M) denote

the set of all derangements on B from the permutation M , and let DB(M ′) denote the set

of all derangements on B from the permutation M ′. Then, in general, there is an injection

from DB(M) to DB(M ′). It follows that dB(M) ≤ dB(M ′).

Proof We intend to define an injective map DB(M)→ DB(M ′), and demonstrate that in

certain cases the map fails to be surjective.

We divide the derangements of DB(M) into three subcases: S1, the set of all derangements

which do not contain the points (rk, ci) and (rm, cj); S2, the set of all derangements which

contain both (rk, ci) and (rm, cj); and S3, the set of all derangements which contain exactly
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one of these points. There are two subsets of S3: S3a, the subset of all derangements which

contain (rk, ci), but not (rm, cj); and S3b, the subset of all derangements which do contain

(rm, cj), but not (rk, ci). We define a map φ : B −M → B −M ′ as follows:

Set φ(ρ) = ρ for all derangements ρ ∈ S1.

For ρ2 ∈ S2, set 

φ((rk, ci)) = (rm, ci)

φ((rm, cj)) = (rk, cj)

φ(x) = x, for all other x ∈ ρ2.

Let (rm, ce), (rd, cj) be in an arbitrary derangement ρ3 of S3. Consider derangements in S3a

which do not have corresponding derangements in S3b (i.e. those where (rk, ce) ∈ λ). Then,

we define a function 

φ((rm, ce)) = (rm, ce)

φ((rk, ci)) = (rd, cj)

φ((rd, cj)) = (rd, ci).
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Similarly, for those derangements where {(rn, ce), (rd, ci)} is in S3b, but (rd, cj) ∈ λ, then we

set 

φ((rk, ce)) = (rm, ce)

φ((rd, ci)) = (rk, cj)

φ((rm, cj)) = (rd, ci).

Now, consider those derangements where (rk, ce), (rd, ci) ∈ B −M . These contain derange-

ments from both S3a and S3b. We write a function

φ((rm, ce)) = (rm, ci)

φ((rk, ci)) = (rk, ce)

φ((rd, cj)) = (rd, cj).

and



φ((rk, ce)) = (rm, ce)

φ((rd, ci)) = (rk, cj)

φ((rm, cj)) = (rd, ci).

For all other points x ∈ ρ3 (in any of the subcases), set φ(x) = x.

14



We show that φ defined in this way is injective. To see this, firstly note that the sets S1, S2,

S3 are disjoint, and that the φ function only operates on the row and column associated with

the LR movement. Thus, it is enough to check that the restrictions of φ on S1, S2, and S3

are themselves injective. But this is easily satisfied: Let ρ, ρ′ ∈ Si for any i, so that ρ 6= ρ′.

If ρ and ρ′ differ in points other than those changed by the functional definitions, then those

differences necessarily remain fixed, so that φ(ρ) 6= φ(ρ′). If, on the other hand, they differ

in one of the changed points (in the case of S3), then since the functional definitions all

interchange among row and column, we conclude that the differences in row or column in

the preimage are fixed in the image. Thus, φ(ρ) 6= φ(ρ′), and so φ is an injective map.

Because the RL movement is the inverse of the LR movement, we see that the right-left

movement is injective with respect to these cases. However, this does not describe the

entire space of possible derangements given the RL movement, as there is one other kind

of derangement that cannot be created in the left-right structure. These are the derange-

ments corresponding to the following: suppose that (rd, cj), (rd, ce), (rk, ce) ∈ λ. Then, there

are derangements containing (rd, ci), (rk, cj), (rm, ce) (refer to Figure II.2 below; note that

the X’s are points of M ′, and the bullets are points of the derangement). But, if a RL

movement is performed, there is no possible way to rearrange the elements of the squares

given to create a different derangement in DB(M ′) (since the only squares then available are

(rd, ci), (rk, ci), (rm, cj), (rn, ce)). Thus, if we assign these derangements to derangements in

DB(M), then its assignment will necessarily be equivalent to the assignment of a different

derangement in DB(M ′). Thus, such a defined function would not be injective, and so the

original LR movement is not surjective when the above case exists. We therefore conclude

that dB(M) ≤ dB(M ′) for all cases, and that equality does not necessarily hold. �

Proof of Theorem 1 By Lemma 2, any permutation M can be generated from a sequence

of left-right moves beginning with NCB, that dB(NCB) ≤ dB(M), and again from Lemma 2

any permutation M can be achieved from a sequence of right-left moves starting from NNB

that dB(M) ≤ dB(NNB). Thus, dB(NCB) ≤ dB(M) ≤ dB(NNB). �

15



rd

rk

ci cj ce

X

Xrm

•

•

•

λ

Fig. II.2.: The Failure of the Bijection of φ

There is now a corollary which will aid the enumeration of the derangement numbers.

Corollary 2 If λ is rectangular, then dB(M) is independent of the initial choice of M

(corresponding to a property in the classic derangement case). The following converse also

holds: if n is sufficiently large, and dB(M) is independent of M , then λ must be rectangular.

Proof The proof to Lemma 3 demonstrates that the function φ is bijective unless each of

(rd, cj), (rd, ce), (rk, ce) ∈ λ. But if λ is rectangular, then also (rk, cj) ∈ λ, which is impossible,

since by assumption (rk, cj) ∈ B. Thus, φ is bijective if λ is rectangular, and so dB(M) is

independent of the choice of M .

To prove the converse, we require that card(S(B)) ≥ 2 (if there are only 0 or 1 permutations

on B, then every permutation necessarily has the same number of derangements).

We first derive a condition for λ to be rectangular. Namely, we have that if r′1 = r′2 = · · · =

r′i < r′i+1 = r′i+2 = · · · = r′n for some i such that 1 ≤ i ≤ n, then λ is rectangular. This is

true, as the length of the bottom i rows is r′1, and the length of the top n − i rows is r′n,

whence λ = i× (n− r′1), which is rectangular.

Suppose that λ is nonrectangular. The contrapositive of the above condition implies that

if λ is nonrectangular, then there is some rf such that r′1 < r′f < r′n. For ease of notation,

set r′f = g. Consider the set of points (rf , cg), (rf , cn), (r1, cg), (r1, cn). By construction,

(rf , cg) ∈ B. However, since r′1 < r′f , we have that (r1, cg), (r1, cn) ∈ λ, and since r′f < r′n,

16



we have that (rf , cn) ∈ λ. This set of points therefore satisfies the case where the bijection

of φ in Lemma 3 fails to hold, so dB(M) cannot be constant for all M . �
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CHAPTER III

SPECIFIC ENUMERATION OF DERANGEMENTS IN

FERRERS BOARDS WITH A MISSING RECTANGULAR

SECTION

Enumeration of Derangements in Ferrers Board with a missing Rectangular Sec-

tion

The exact enumeration of the derangement numbers may be described as a rook placement

problem. For a Ferrers board as we have defined it, the forbidden positions are the squares in

λ∪σ, where λ is the forbidden area (since we will subsequently assume that λ is rectangular,

we set λ = r × s, where r, s ≥ 0), σ the initial permutation. There is a well-known theorem

connecting the rook coefficients rk and the number of permutations avoiding the forbidden

positions (the theorem can be found in [4]; the result is due to Kaplansky and Riordan in

[3]).

Theorem 2 Let N0 be the number of ways to avoid a forbidden position on an n×n board.

Then, the following equality holds:

N0 =
n∑
k=0

rk(−1)k(n− k)!

where the rk are the aforementioned rook coefficients, i.e the number of ways to place k

nonattacking rooks onto the forbidden positions of a board (that is, choose k of the forbidden

positions such that no two so chosen are in the same row or the same column). This theorem

follows from the Principle of Inclusion-Exclusion. We will investigate specifically the cases

where λ is rectangular.

Rook Coefficients for a Rectangular λ

We will prove the following result regarding the rook coefficients.

18



Proposition 4 Let rk be the kth rook coefficient as defined previously. Then,

rk =
k∑
i=0

(
r

i

)(
s

i

)
i!

(
n− 2i

k − i

)

Proof The two sections of the forbidden area, λ and σ, are disjoint, and so we may place

points on λ first, and then points on σ. Suppose that we place i points on λ and k− i points

on σ. The number of ways to place i points on λ is denoted riλ, analogously to the other rook

coefficients. Then, note that each of the i points on λ “attacks” two points of σ (they attack

a particular row and a particular column). Since no two of the i points on λ can be in the

same row or column, there are then 2i points on σ that are attacked. The number of ways

to choose k − i points on σ from n − 2i possible points is given by the binomial coefficient(
n−2i
k−i

)
. Hence, summing over all possible i, we have that

rk =
k∑
i=0

riλ

(
n− 2i

k − i

)

We now need to merely compute riλ. But this is easily done. Since λ = r × s is rectangular,

choose i of the r rows and i of the s columns on which to place points. If the rows are fixed,

then there are i! possible permutation of the columns with those rows. Hence, riλ =
(
r
i

)(
s
i

)
i!,

and so

rk =
k∑
i=0

(
r

i

)(
s

i

)
i!

(
n− 2i

k − i

)

as desired. �

We will now compute the generating function for the rook coefficients
n∑
k=0

rkx
k.
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Proposition 5 Let R(x) =
n∑
k=0

rkx
k be the ordinary generating function for the rook

coefficients as above. Then,

R(x) =
n∑
k=0

rkx
k = (1 + x)n

min(r,s)∑
i=0

(
r

i

)(
s

i

)
i!

(
x

(1 + x)2

)i

for sufficiently large n.

Proof Using the formula for the rook coefficients and some well-known generating func-

tions, we obtain

R(x) =
n∑
k=0

rkx
k

=
n∑
k=0

k∑
i=0

(
r

i

)(
s

i

)
i!

(
n− 2i

k − i

)
xk

=
n∑
i=0

(
r

i

)(
s

i

)
i!xi

n∑
k=i

(
n− 2i

k − i

)
xk−i

=
n∑
i=0

(
r

i

)(
s

i

)
i!xi(1 + x)n−2i

= (1 + x)n
n∑
i=0

(
r

i

)(
s

i

)
i!

(
x

(1 + x)2

)i

For i > min(r, s), note that
(
r
i

)(
s
i

)
= 0, so the sum is 0 for such i. Hence, the desired equality

is attained. �
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The Direct Computation of the Derangement Numbers for Rectangular λ

Let dn,r,s denote the number of derangements on a Ferrers board defined as n× n− (r× s).

By direct comparison to Theorem 2, it is easy to see that

dn,r,s =
n∑
k=0

k∑
i=0

(
r

i

)(
s

i

)
i!

(
n− 2i

k − i

)
(−1)k(n− k)!

Here dn,r,s is written out to emphasize that λ is rectangular. We will present an equivalent

form of this sum. However, to do so, we introduce a new kind of derangement, analogous to

the classical derangement.

For q ≤ p, let Dp,q denote the number of permutations of length p such that the first q

numbers satisfy the derangement property: i.e. 1 is not in the first position, 2 is not in the

second position, . . . , q is not in the qth position. Then, we have the following lemma:

Proposition 6 Dp,q =

q∑
i=0

(−1)i
(
q

i

)
(p− i)!

Proof This is a direct computation from the principle of inclusion-exclusion, and closely

resembles the computation for the classic derangement numbers. Let Pi be the property

that ai = i (where each permutation is written a1a2 . . . ap). Suppose that j of the Pi are

satisfied. Then, there are
(
q
j

)
ways to select j properties, and (p − j)! ways to permute the

other elements. Hence, by PIE, summing over all possible j, we obtain

Dp,q =
∑
j=0

(−1)j
(
q

j

)
(p− j)!

as desired. �

We will now establish an equivalent form of dn,r,s in terms of Dp,q.

Proposition 7 dn,r,s =

min(r,s)∑
i=0

(−1)ii!

(
r

i

)(
s

i

)
Dn−i,n−2i for sufficiently large n.

Proof We compare to the form given above and show the two are equivalent. To wit:
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dn,r,s =
n∑
k=0

k∑
i=0

(
r

i

)(
s

i

)
i!

(
n− 2i

k − i

)
(−1)k(n− k)!

=
n∑
i=0

(
r

i

)(
s

i

)
i!

n∑
k=i

(
n− 2i

k − i

)
(−1)k(n− k)!

=
n∑
i=0

(
r

i

)(
s

i

)
i!
n−i∑
k=0

(
n− 2i

k

)
(−1)k+i(n− (k + i))!

=
n∑
i=0

(
r

i

)(
s

i

)
i!(−1)iDn−i,n−2i

As before, if i > min(r, s), then
(
r
i

)(
s
i

)
= 0, so the sum can be displayed in the desired form

if n ≥ min(r, s). �

This form is interesting because the numbers Dp,q have an easily computable exponential

generating function, similar to the classical derangement numbers.

A Recurrence for the Derangement Numbers

In this subsection, we present a linear recurrence and partial differential equation satisfied

by the derangements numbers dn,r,s associated with the Ferrers board B = (n×n)− (r× s).

Proposition 8 The derangement numbers dn,r,s satisfy the following linear recurrence:

dn,r,s = (n− r − s− 1)(dn−1,r,s + dn−2,r,s)

+ s(dn−1,r,s + dn−2,r,s−1)

+ r(dn−1,r−1,s + dn−2,r−1,s)

with dn,r,s = 0 if n ≤ 1 or r, s < 0 or n < r + s.
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Proof As λ is rectangular, by Corollary 2 the number of derangements from any starting

position on B is constant. Therefore, we are free to choose any permutation on B from

which to compute the derangement number, so we choose the permutation NCB. Let n be

sufficiently large so that dn,r,s 6= 0 (it is enough to take n ≥ r + s). In reference to Figure

III.1, we know that (rn, c1) ∈ NCB. By momentarily ignoring the row rn and the column

c1, we can reduce the board B to a board B′ = (n− 1)× (n− 1)− r× s, with the property

that NCB = NCB′ ∪ {(rn, c1)}. Let ρ be any derangement on B. From the definition of a

derangement, ρ necessarily has a point in the column c1 and a distinct point in the row rn.

The other n−2 points of ρ are located on B′. To establish the recurrence, we will proceed by

casework based on the location of the point in the c1 column. Again, from Figure III.1, note

that the noncrossing permutations NCB and NCB′ follow the same (definitional) pattern:

there are r points proceeding diagonally (corresponding to the side of length r of λ); directly

above the rows of these points are s points proceeding diagonally (corresponding to the side

of length s of λ); and the remaining points are again diagonal and to the left of the first r

points of the noncrossing permutations. Hence, when placing a point in the c1 column, we

may place the point in one of the first r rows; in one of the next s rows; or in one of the final

n− r − s− 1 rows. These are the three cases that we will now individually examine.

rn

n

n

X

X

X

X

X

X

r

s

c1

. . .

. . .

. . .

Fig. III.1.: NCB on a board with forbidden area r × s
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In the first case, suppose that the point in the c1 column is placed in one of the top n−r−s−1

rows, say rα. We perform a reduction similar to the one to produce B′. In this case, we

remove the c1 column and the rα row, leaving a B1 = (n− 1)× (n− 1)− r × s board with

n − 2 points of the permutation (see Figure III.2). We therefore have a Ferrers board of

side length n − 1 but n − 2 permutation points. In particular, there is a column ca which

does not contain as an element a point of the noncrossing permutation NCB1 , and we also

have that (rα, ca) ∈ NCB. We investigate the point (rn, ca). We can do one of two (disjoint)

things with this point: we can choose to place (rn, ca) in the derangement ρ (of B), or we

can choose not to do so. If we place (rn, ca) ∈ ρ, then we can perform a similar reduction

of the board, and attain a (n − 2) × (n− 2) − r × s board with a permutation containing

n − 2 points. In this case, there are (by hypothesis) a total of dn−2,r,s derangements. On

the other hand, should we choose to establish (rn, ca) /∈ ρ, then we can treat this point as

forbidden, and form a permutation with n − 1 points on B1. In this case, there are dn−1,r,s

derangements, so in total we have dn−1,r,s + dn−2,r,s derangements. As our initial choice rα

was arbitrary, and there are n− r− s− 1 possible rows that could be selected, we have that

there are (n− r − s− 1)(dn−1,r,s + dn−2,r,s) derangements in this case.

rn

n

n

X

X

X

X

X

X

r

s

c1

•

ca

rα

. . .

. . .

. . .

rn

X

X

X

X

r

s

ca

. . .

. . .

. . .

Fig. III.2.: The reduction described in the first case
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Now, suppose that the point in the c1 column is placed in one of the middle s rows, say rβ.

We can again perform a reduction on the c1 column and the rβ row, leaving a board B2 =

(n− 1)× (n− 1)− r× s with n− 2 points of the permutations. As above, if (rβ, cb) ∈ NCB,

then we locate the point (rn, cb). The cb column is one of the s columns placed on top of

λ. We again consider two cases: those where (rn, cb) ∈ ρ, where ρ is a derangement of B,

and those derangements ρ where (rn, cb) /∈ ρ. If we let (rn, cb) ∈ ρ, then we can apply a

similar reduction, with one additional caveat: we are also removing one of the s columns of

λ, leaving a new forbidden area r× (s− 1) (and a Ferrers board of side length n− 2 with a

permutation of n−2 points contained in it). Hence, there are dn−2,r,s−1 derangements in this

subcase. On the other hand, if we choose (rn, cb) /∈ ρ, then we can treat (rn, cb) as forbidden

(and part of the permutation), leaving B2 with a permutation of n − 1 points, or dn−1,r,s

derangements in this case. Combining the subcases, we have a total of dn−2,r,s−1 + dn−1,r,s

derangements for the row rβ, and since we are allowed to choose one of s rows, we have a

total of s(dn−2,r,s−1 + dn−1,r,s) derangements for this case.

Finally, suppose that the point in the c1 column is placed in one of the bottom r rows,

say rγ. When we perform the standard reduction to a board B3 of side length n − 1,

we also remove one of the r rows of λ, leaving a forbidden section (r − 1) × s, so that

B3 = (n − 1) × (n− 1) − (r − 1) × s, with a permutation of n − 2 points placed on B3.

If (rγ, cc) ∈ NCB, then we locate the point (rn, cc). The cc is one of the r columns to the

immediate left of the forbidden section (r − 1)× s, so this case proceeds much like the first

one. For derangements ρ of B, we have two choices: either (rn, cc) ∈ ρ, or (rn, cc) /∈ ρ. If

(rn, cc) ∈ ρ, then we can perform the standard reduction to a Ferrers board of side length

n−2, with a forbidden section (r−1)×s and a permutation of n−2 points, giving dn−2,r−1,s

derangements in this case. Similarly, if we choose (rn, cc) /∈ ρ, then we can treat (rn, cc) as a

forbidden point, and thus as the (n−1)th point of the permutation on B3. In this case, there

are dn−1,r−1,s possible derangements, for a total of dn−2,r−1,s + dn−1,r−1,s derangement for the

row rγ. Hence, since there are r choices for the row, we have a total of r(dn−2,r−1,s+dn−1,r−1,s)

derangements in this case.
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Combining these three cases gives the desired recurrence. �

Although the linear recurrence has been established, there does not seem to be a simple

formula for the ordinary multivariate generating function D(x, y, z) =
∑
n,r,s≥0

dn,r,sx
nyrzs.

Nevertheless, there is a partial differential equation which such a generating function would

have to satisfy.

Proposition 9 Let D(x, y, z) be defined as above. Then, D(x, y, z) satisfies the following

partial differential equation:

D(x, y, z) =

(
x2 +

1

xy
+

1

x2y
+

1

x2z

)
D(x, y, z)

+

(
1

x2
+

1

x3

)
∂D

∂x

+

(
1

xy2
+

1

x2y2
− 1

xy
− 1

xy2

)
∂D

∂y

+

(
1

x2z2
− 1

x2z

)
∂D

∂z

Sketch of Proof Rewrite the recurrence from Lemma 8 so that there are terms with the

coefficients n− 1, r and s. From the initial values of dn,r,s, we compute

∂D

∂x
=
∑
n,r,s≥0

ndn,r,sx
n−1yrzs =

∑
n,r,s≥0

(n− 1)dn−1,r,sx
n−2yrzs

∂D

∂y
=
∑
n,r,s≥0

rdn,r,sx
nyr−1zs =

∑
n,r,s≥0

(r − 1)dn,r−1,sx
nyr−2zs

∂D

∂z
=
∑
n,r,s≥0

sdn,r,sx
nyrzs−1 =

∑
n,r,s≥0

(s− 1)dn,r,s−1x
nyrzs−2

We also have that D(x, y, z) =
∑
n,r,s≥0

dn,r,sx
nyrzs =

∑
n,r,s≥0

dn−2,r,sx
n−2yrzs.
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For each term in the recurrence from Lemma 8, we can then derive a corresponding value

from among the four equations used above. The final result is equivalent to the desired form

above. �
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CHAPTER IV

CONCLUSIONS AND FUTURE DIRECTIONS

In the course of this document, we have proven some interesting properties of derangements

on Ferrers Board with a well-defined missing section λ. Specifically, we have been able

to enumerate the derangement numbers in several interesting ways in the case that λ is

rectangular, and to provide a well-defined bound that, in any case, describes the variation of

the derangement numbers on a Ferrers board. This bound is very interesting, as it defines

the extremal cases for the derangement numbers very well, with notions that are widely

applicable and understood in the literature.

In the future, we may consider the permutations on the Ferrers board as a Markov process,

or a process where new permutations may be created depending on the current permutation

on the Ferrers board. Using this notion, we can compute the stationary distribution of the

permutations, or specifically, the probability of a particular permutation being present on

the Ferrers board at some time in the future. The stationary distribution of the classic case

of permutations on an n × n board is already known in [2]; I hope to find an extension of

the results in the case of a Ferrers board.
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