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Abstract

The concept of monochromatic connectivity was introduced by Caro and Yuster. A

path in an edge-colored graph is called a monochromatic path if all the edges on the path

are colored the same. An edge-coloring of G is a monochromatic connection coloring

(MC-coloring, for short) if there is a monochromatic path joining any two vertices in

G. The monochromatic connection number, denoted by mc(G), is defined to be the

maximum number of colors used in an MC-coloring of a graph G. In this paper, we

study the monochromatic connection number on the lexicographical, strong, Cartesian

and direct product and present several upper and lower bounds for these products of

graphs.

Keywords: Monochromatic path, MC-coloring, monochromatical connection num- ber,

Cartesian product, lexicographical product, strong product, direct product.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the

terminology and notation of Bondy and Murty [3]. For a graph G, we use V (G), E(G), n(G),

m(G), δ(G), κ(G), κ′(G), δ(G) and diam(G) to denote the vertex set, edge set, number

of vertices, number of edges, connectivity, edge-connectivity, minimum degree and diameter

of G, respectively. The rainbow connections of a graph which are applied to measure the

safety of a network are introduced by Chartrand, Johns, McKeon and Zhang [9]. Readers

can see [9, 10, 11] for details. Consider an edge-coloring (not necessarily proper) of a graph

G = (V,E). We say that a path of G is rainbow, if no two edges on the path have the same
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color. An edge-colored graph G is rainbow connected if every two vertices are connected by

a rainbow path. The minimum number of colors required to rainbow color a graph G is

called the rainbow connection number, denoted by rc(G). For more results on the rainbow

connection, we refer to the survey paper [21] of Li, Shi and Sun and a new book [22] of Li

and Sun.

Let G be a nontrivial connected graph with an edge-coloring f : E(G) → {1, 2, . . . , ℓ},

ℓ ∈ N , where adjacent edges may be colored the same. A path of G is a monochromatic path

if all the edges on the path are colored the same. An edge-coloring of G is a monochromatic

connection coloring (MC-coloring, for short) if there is a monochromatic path joining any

two vertices in G. How colorful can an MC-coloring be ? One can see that this question is

the natural opposite of the well-studied problem on rainbow connection number of graphs.

Let mc(G) denote the maximum number of colors used in an MC-coloring of a graph G,

which called the monochromatic connection number of G. Note that an MC-coloring does

not exist if G is not connected, and in this case we simply let mc(G) = 0.

These concepts were introduced by Caro and Yuster in [8]. For more results on monochro-

matic connection number, we refer to [4, 5, 8, 15]. The following observation is immediate.

Observation 1 [8] Let G be a connected graph with n(G) vertices and m(G) edges. Then

mc(G) ≥ m(G)− n(G) + 2.

Simply color the edges of a spanning tree with one color, and each of the remaining edges

may be assigned a distinct fresh color. Caro and Yuster gave some sufficient conditions for

graphs attaining this lower bound.

Theorem 1 [8] Let G be a connected graph with n > 3. If G satisfies any of the following

properties, then mc(G) = m− n+ 2.

(a) G (the complement of G) is 4-connected;

(b) G is triangle-free;

(c) ∆(G) < n − 2m−3(n−1)
n−3 ; In particular, this holds if ∆(G) ≤ (n + 1)/2, and this also

holds if ∆(G) ≤ n− 2m/n.

(d) Diam(G) ≥ 3;

(e) G has a cut vertex.

Product networks were proposed based upon the idea of using the cross product as a

tool for “combining” two known graphs with established properties to obtain a new one that

inherits properties from both [13]. Recently, there has been an increasing interest in a class of

interconnection networks called Cartesian product networks; see [2, 13]. The other standard

products (Direct, strong, and lexicographic) draw a constant attention of graph research

community, see some recent papers [1, 19, 24, 27].
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In this paper, we consider four standard products: the lexicographic, the strong, the

Cartesian and the direct with respect to the monochromatic connection number. Every

of these four products will be treated in one of the forthcoming sections. In Section 3, we

demonstrate the usefulness of the proposed constructions by applying them to some instances

of product networks.

2 Main results

In this section, we study the monochromatic connection number of four graph product.

Lemma 1 [8] Let G be a connected graph with n(G) vertices and m(G) edges. Then

mc(G) ≤ E(G)− V (G) + κ(G) + 1.

In [25], S̆pacapan obtained the following result.

Lemma 2 [25] Let G and H be two nontrivial graphs. Then

κ(G�H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G) + δ(H)}.

Yang and Xu [26] investigated the classical connectivity of the lexicographic product of

two graphs.

Lemma 3 [26] Let G and H be two graphs. If G is non-trivial, non-complete and connected,

then

κ(G ◦H) = κ(G)|V (H)|.

Let SG and SH be separating sets of connected graphs G and H, and let G′ and H ′ be

arbitrary connected components of G− SG and H − SH . Then the set of vertices

(SG × V (H ′)) ∪ (SG × SH) ∪ (V (G′)× SH)

is called a k-set of G⊠H; see [16].

Lemma 4 [16] Let G and H be connected graphs, at least one not complete. Set ℓ(G ⊠H)

be the minimum size of a k-set of G⊠H. Then

κ(G ⊠H) = min{κ(G)|V (H)|, κ(H)|V (G)|, ℓ(G ⊠H)}.

Lemma 5 [16] Let G and H be nonbipartite graphs. Then

κ′(G×H) = min{2κ′(G)|V (H)|, 2κ′(H)|V (G)|, δ(G)δ(H)}.
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Let dG(u, v) denote the distance between u and v in G. Denote by dG(u) the degree of

vertex u in G. The following lemma is from [16].

Lemma 6 [16] Let (g, h) and (g′, h′) be two vertices of G�H. Then

dG�H((g, h), (g′ , h′)) = dG(g, g
′) + dH(h, h′).

Corollary 1 Let G be a connected graph. Then

diam(G�H) = diam(G) + diam(H).

Lemma 7 [16] Let (g, h) and (g′, h′) be two vertices of G ◦H. Then

dG◦H((g, h), (g′ , h′)) =















dG(g, g
′), if g 6= g′;

dH(h, h′), if g = g′ and dG(g) = 0;

min{dH(h, h′), 2}, if g = g′ and dG(g) 6= 0.

Lemma 8 [16] Let (g, h) and (g′, h′) be two vertices of G�H. Then

dG⊠H((g, h), (g′ , h′)) = max{dG(g, g
′), dH (h, h′)}.

Corollary 2 Let G be a connected graph. Then

diam(G ⊠H) = max{diam(G), diam(H)}.

2.1 The Cartesian product

The Cartesian product of two graphs G and H, written as G�H, is the graph with

vertex set V (G) × V (H), in which two vertices (g, h) and (g′, h′) are adjacent if and only if

g = g′ and (h, h′) ∈ E(H), or h = h′ and (g, g′) ∈ E(G). Clearly, the Cartesian product is

commutative, that is, G�H is isomorphic to H�G. The Cartesian product is commutative,

that is, G�H ∼= H�G. Clearly, |E(G ◦H)| = |E(H)||V (G)| + |E(G)||V (H)|.

Theorem 2 Let G and H be a connected graph.

(1) If neither G nor H is a tree, then

max{|E(G)||V (H)|, |E(H)||V (G)|}+2 ≤ mc(G�H) ≤ |E(G)||V (H)|+(|E(H)|−1)|V (G)|+1.

(2) If G is not a tree and H is a tree, then

|E(H)||V (G)| + 2 ≤ mc(G�H) ≤ |E(G)||V (H)|+ 1.

(3) If both G and H are trees, then

|E(G)||E(H)| + 1 ≤ mc(G�H) ≤ |E(G)||E(H)| + 2.

Moreover, the lower bounds are sharp.
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Proof. (1) Since H is not a tree, it follows that |E(H)| ≥ |V (H)|. By Observation 1, we

have

mc(G�H) ≥ |E(G�H)| − |V (G�H)| + 2

= |E(G)||V (H)|+ |E(H)||V (G)| − |V (G)||V (H)|+ 2

≥ |E(G)||V (H)|+ 2.

From Lemma 2, κ(G�H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G)+δ(H)} ≤ κ(H)|V (G)| ≤

(|V (H)| − 1)|V (G)|. Furthermore, by Lemma 1, we have

mc(G�H)

≤ E(G�H)− V (G�H) + κ(G�H) + 1

= |E(G)||V (H)|+ |E(H)||V (G)| − |V (G)||V (H)|+ κ(G�H) + 1

≤ |E(G)||V (H)|+ |E(H)||V (G)| − |V (G)||V (H)|+ |V (G)|(|V (H)| − 1) + 1

= |E(G)||V (H)|+ |E(H)||V (G)| − |V (G)| + 1.

(2) Since G is not a tree and H is a tree, it follows that |E(G)| ≥ |V (G)| and |E(H)| =

|V (H)| − 1. By Observation 1, we have

mc(G�H) ≥ E(G�H)− V (G�H) + 2

= |E(G)||V (H)|+ |E(H)||V (G)| − |V (G)||V (H)|+ 2

≥ |V (G)||V (H)|+ |E(H)||V (G)| − |V (G)||V (H)|+ 2

= |E(H)||V (G)|+ 2.

From Lemma 2, κ(G�H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G)+δ(H)} ≤ κ(H)|V (G)| ≤

|V (G)|. By Lemma 1, we have

mc(G�H) ≤ E(G�H) − V (G�H) + κ(G�H) + 1

= |E(G)||V (H)|+ |E(H)||V (G)| − |V (G)||V (H)|+ κ(G�H) + 1

= |E(G)||V (H)|+ (|V (H)| − 1)|V (G)| − |V (G)||V (H)|+ κ(G�H) + 1

≤ |E(G)||V (H)| − |V (G)| + |V (G)| + 1

≤ |E(G)||V (H)|+ 1.

(3) Since both G and H are trees, it follows that |E(G)| = |V (G)| − 1 and |E(H)| =

|V (H)| − 1. By Observation 1, we have

mc(G�H) ≥ E(G�H)− V (G�H) + 2

= |E(G)||V (H)|+ |E(H)||V (G)| − |V (G)||V (H)|+ 2

= (|V (G)| − 1)|V (H)|+ (|V (H)| − 1)|V (G)| − |V (G)||V (H)|+ 2

= |E(G)||E(H)| + 1.
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From Lemma 2, κ(G�H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G)+δ(H)} ≤ δ(G)+δ(H) =

2. By Lemma 1, we have

mc(G�H) ≤ E(G�H) − V (G�H) + κ(G�H) + 1

= |E(G)||V (H)|+ |E(H)||V (G)| − |V (G)||V (H)|+ κ(G�H) + 1

= (|V (G)| − 1)|V (H)|+ (|V (H)| − 1)|V (G)| − |V (G)||V (H)|+ κ(G�H) + 1

= |E(G)||E(H)| + κ(G�H)

≤ |E(G)||E(H)| + 2.

To show the sharpness of the lower bounds in Theorem 2, we consider the following

example.

Example 1: (1) Let G be a cycle of order at least 3, and H be a cycle of order at least 4.

From Corollary 1, diam(G�H) = diam(G) + diam(H) ≥ 3. By Theorem 1, mc(G�H) =

|E(G�H)| − |V (G�H)| + 2 = |E(G)||V (H)|+ 2 = |E(H)||V (G)| + 2.

(2) Let G be a cycle of order at least 4, andH be a path of order at least 3. From Corollary

1, diam(G�H) = diam(G) + diam(H) ≥ 3. By Theorem 1, mc(G�H) = |E(G�H)| −

|V (G�H)| + 2 = |E(H)||V (G)| + 2.

(3) Let G = P2 and H be a path of order at least 3. From Corollary 1, diam(G�H) =

diam(G)+diam(H) ≥ 3. Therefore, mc(G�H) = |E(G�H)|−|V (G�H)|+2 = |E(G)||E(H)|+

1.

The following corollary is immediate from Theorem 2.

Corollary 3 Let G and H be a connected graph.

(1) If neither G nor H is a tree, then mc(G�H) ≥ max{mc(G)|V (H)|+2,mc(H)|V (G)|+

2}.

(2) If G is not a tree and H is a tree, then mc(G�H) ≥ mc(H)|V (G)| + 2.

(3) If both G and H are trees, then mc(G�H) ≥ mc(G)mc(H) + 1.

2.2 The lexicographical product

The lexicographic product G ◦ H of graphs G and H has the vertex set V (G ◦ H) =

V (G) × V (H). Two vertices (g, h), (g′, h′) are adjacent if gg′ ∈ E(G), or if g = g′ and

hh′ ∈ E(H). The lexicographic product is not commutative and is connected whenever G

is connected. Note that unlike the Cartesian Product, the lexicographic product is a non-

commutative product since G ◦H need not be isomorphic to H ◦ G. Clearly, |E(G ◦H)| =

|E(H)||V (G)| + |E(G)||V (H)|2.

Theorem 3 Let G and H be a connected graph.
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(1) If neither G nor H is a tree, then

|E(G)||V (H)|2 + 2 ≤ mc(G ◦H) ≤ |E(H)||V (G)| + |E(G)||V (H)|2 − |V (H)|+ 1.

(2) If G not a tree and H is a tree, then

|E(H)||V (G)|(|V (H)|+ 1) + 2 ≤ mc(G ◦H) ≤ |E(H)||V (G)|+ |E(G)||V (H)|2 − |V (H)|+ 1.

(3) If H not a tree and G is a tree, then

|E(H)||V (G)|2 + 2 ≤ mc(G ◦H) ≤ |E(H)||V (G)| + |E(G)||V (H)|2 − |V (H)|+ 1.

(4) If both G and H are trees, then

|E(H)||E(G)|(|V (H)|+ 1) + 1 ≤ mc(G ◦H)) ≤ |E(H)||E(G)|(|V (H)|+ 1) + |V (H)|.

Moreover, the lower bounds are sharp.

Proof. (1) Since H is not a tree, it follows that |E(H)| ≥ |V (H)|. By Observation 1, we

have

mc(G ◦H) ≥ |E(G ◦H)| − |V (G ◦H)|+ 2

= |E(H)||V (G)|+ |E(G)||V (H)|2 − |V (G)||V (H)|+ 2

≥ |E(G)||V (H)|2 + 2.

From Lemma 3, κ(G ◦H) = κ(G)|V (H)| ≤ (|V (G)| − 1)|V (H)|. By Lemma 1, we have

mc(G ◦H) ≤ |E(G ◦H)| − |V (G ◦H)|+ κ(G ◦H) + 1

= |E(H)||V (G)| + |E(G)||V (H)|2 − |V (G)||V (H)|+ κ(G ◦H) + 1

≤ |E(H)||V (G)| + |E(G)||V (H)|2 − |V (G)||V (H)|+ (|V (G)| − 1)|V (H)|+ 1

= |E(H)||V (G)| + |E(G)||V (H)|2 − |V (H)|+ 1.

(2) Since G is not a tree and H is a tree, it follows that |E(G)| ≥ |V (G)| and |E(H)| =

|V (H)| − 1. By Observation 1, we have

mc(G ◦H) ≥ |E(G ◦H)| − |V (G ◦H)|+ 2

= |E(H)||V (G)|+ |E(G)||V (H)|2 − |V (G)||V (H)|+ 2

= (|V (H)| − 1)|V (G)| + |E(G)||V (H)|2 − |V (G)||V (H)|+ 2

≥ |E(H)||V (G)|(|V (H)|+ 1) + 2.
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From Lemma 3, κ(G ◦H) = κ(G)|V (H)| ≤ (|V (G)| − 1)|V (H)|. By Lemma 1, we have

mc(G ◦H)

≤ |E(G ◦H)| − |V (G ◦H)|+ κ(G ◦H) + 1

= |E(H)||V (G)| + |E(G)||V (H)|2 − |V (G)||V (H)|+ κ(G ◦H) + 1

= |E(H)||V (G)| + |E(G)||V (H)|2 − |V (G)||V (H)|+ κ(G ◦H) + 1

≤ |E(H)||V (G)| + |E(G)||V (H)|2 − |V (G)||V (H)|+ (|V (G)| − 1)|V (H)|+ 1

= |E(H)||V (G)| + |E(G)||V (H)|2 − |V (H)|+ 1.

(3) Since H is not a tree, it follows that |E(H)| ≥ |V (H)|. By Observation 1, we have

mc(G ◦H) ≥ |E(G ◦H)| − |V (G ◦H)|+ 2

= |E(H)||V (G)|+ |E(G)||V (H)|2 − |V (G)||V (H)|+ 2

≥ |E(G)||V (H)|2 + 2.

From Lemma 3, κ(G ◦H) = κ(G)|V (H)| = |V (H)|. By Lemma 1, we have

mc(G ◦H) ≤ |E(G ◦H)| − |V (G ◦H)|+ κ(G ◦H) + 1

= |E(H)||V (G)|+ |E(G)||V (H)|2 − |V (G)||V (H)|+ κ(G ◦H) + 1

= |E(H)||V (G)|+ |E(G)||V (H)|2 − |V (G)||V (H)|+ κ(G ◦H) + 1

= |E(H)||V (G)|+ |E(G)||V (H)|2 − |V (G)||V (H)|+ |V (H)|+ 1.

(4) Since both G and H are trees, it follows that |E(G)| = |V (G)| − 1 and |E(H)| =

|V (H)| − 1. By Observation 1, we have

mc(G ◦H) ≥ |E(G ◦H)| − |V (G ◦H)|+ 2

= |E(H)||V (G)|+ |E(G)||V (H)|2 − |V (G)||V (H)|+ 2

= (|V (H)| − 1)|V (G)|+ (|V (G)| − 1)|V (H)|2 − |V (G)||V (H)|+ 2

= |E(H)||E(G)|(|V (H)|+ 1) + 1.

From Lemma 3, κ(G ◦H) = κ(G)|V (H)| = |V (H)|. By Lemma 1, we have

mc(G ◦H)

≤ |E(G ◦H)| − |V (G ◦H)|+ κ(G ◦H) + 1

= |E(H)||V (G)| + |E(G)||V (H)|2 − |V (G)||V (H)|+ κ(G ◦H) + 1

= (|V (H)| − 1)|V (G)|+ (|V (G)| − 1)|V (H)|2 − |V (G)||V (H)|+ κ(G ◦H) + 1

= |E(H)||E(G)|(|V (H)|+ 1) + κ(G ◦H)

= |E(H)||E(G)|(|V (H)|+ 1) + V (H).
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To show the sharpness of the lower bounds in Theorem ??, we consider the following

example.

Example 2: (1) Let G be a cycle of order at least 6, andH be a cycle of order at least 3. From

Lemma 7, diam(G◦H) ≥ diam(G) ≥ 3. Therefore, mc(G◦H) = |E(G◦H)|−|V (G◦H)|+2 =

|E(G)||V (H)|2 + 2.

(2) Let G be a cycle of order at least 6, and H = Pn, n ≥ 4. By Lemma 7, diam(G◦H) ≥

diam(G) ≥ 3. Therefore, mc(G ◦H) = |E(H)||V (G)|(|V (H)|+ 1) + 2.

(3) Let G be a path of order at least 4, and H be a cycle of order at least 3. By Lemma

7, diam(G ◦H) ≥ diam(G) ≥ 3. Therefore, mc(G ◦H) = |E(H)||V (G)|2 + 2.

(4) Let G be a path of order at least 4, and H = P2. By Lemma 7, diam(G ◦ H) ≥

diam(G) ≥ 3. Therefore, mc(G ◦H) = |E(H)||E(G)|(|V (H)|+ 1) + 1.

The following corollary is immediate from Theorem 3.

Corollary 4 Let G and H be a connected graph.

(1) If neither G nor H is a tree, then mc(G ◦H) ≥ mc(G)|V (H)|2 + 2.

(2) If G not a tree and H is a tree, then mc(G ◦H) ≥ mc(H)|V (G)|(|V (H)|+ 1) + 2.

(3) If H not a tree and G is a tree, then mc(G ◦H) ≥ mc(H)|V (G)|2 + 2.

(4) If both G and H are trees, then mc(G ◦H)) ≥ mc(G)mc(H)(|V (H)|+ 1) + 1.

Moreover, the lower bounds are sharp.

2.3 The strong product

The strong product G ⊠ H of graphs G and H has the vertex set V (G) × V (H). Two

vertices (g, h) and (g′, h′) are adjacent whenever gg′ ∈ E(G) and h = h′, or g = g′ and

hh′ ∈ E(H), or gg′ ∈ E(G) and hh′ ∈ E(H). Clearly, |E(G ⊠ H)| = |E(H)||V (G)| +

|E(G)||V (H)| + 2|E(G)||E(H)|.

Theorem 4 Let G and H be a connected graph, and at least one of G and H is not a

complete graph.

(1) If neither G nor H is a tree, then

mc(G⊠H) ≥ max{|E(G)||V (H)|+ 2|E(H)||E(G)| + 2, |E(H)||V (G)|+ 2|E(H)||E(G)| + 2}

and

mc(G⊠H) ≤ |E(G)||V (H)|+ |E(H)||V (G)| + 2|E(H)||E(G)| −min{|V (H)|, |V (G)|} + 1.

(2) If G not a tree and H is a tree, then

|E(H)||V (G)| + 2|E(H)||E(G)| + 2 ≤ mc(G⊠H) ≤ |E(G)||V (H)| + 2|E(H)||E(G)| + 1.
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(3) If both G and H are trees, then

3|E(H)||E(G)| + 1 ≤ mc(G⊠H) ≤ 3|E(H)||E(G)| +min{|V (G)|, |V (H)|}.

Moreover, the lower bounds are sharp.

Proof. (1) Since H is not a tree, it follows that |E(H)| ≥ |V (H)|. By Observation 1, we

have

mc(G ⊠H)

≥ |E(G ⊠H)| − |V (G⊠H)|+ 2

= |E(G)||V (H)|+ |E(H)||V (G)| + 2|E(H)||E(G)| − |V (G)||V (H)|+ 2

≥ |E(G)||V (H)|+ 2|E(H)||E(G)| + 2.

From Lemma 4, κ(G⊠H) = min{κ(G)|V (H)|, κ(H)|V (G)|, ℓ(G ⊠H)} ≤ min{(|V (G)| −

1)|V (H)|, (|V (H)| − 1)|V (G)|} = |V (G)||V (H)| − min{|V (H)|, |V (G)|}. By Lemma 1, we

have

mc(G⊠H)

≤ E(G⊠H)− V (G⊠H) + κ(G⊠H) + 1

= |E(G)||V (H)|+ |E(H)||V (G)| + 2|E(H)||E(G)| − |V (G)||V (H)|+ κ(G ⊠H) + 1

≤ |E(G)||V (H)|+ |E(H)||V (G)| + 2|E(H)||E(G)| −min{|V (H)|, |V (G)|} + 1.

(2) Since G is not a tree, it follows that |E(G)| ≥ |V (G)|. Since H is a tree, we have

|E(H)| = |V (H)| − 1. By Observation 1, we have

mc(G ⊠H)

≥ |E(G ⊠H)| − |V (G⊠H)|+ 2

= |E(G)||V (H)|+ |E(H)||V (G)| + 2|E(H)||E(G)| − |V (G)||V (H)|+ 2

= |E(G)||V (H)|+ (|V (H)| − 1)|V (G)| + 2|E(H)||E(G)| − |V (G)||V (H)|+ 2

≥ |E(H)||V (G)| + 2|E(H)||E(G)| + 2.

From Lemma 4, κ(G ⊠H) = min{κ(G)|V (H)|, κ(H)|V (G)|, ℓ(G ⊠H)} ≤ κ(H)|V (G)| =

|V (G)|. By Lemma 1, we have

mc(G⊠H)

≤ |E(G⊠H)| − |V (G⊠H)|+ κ(G⊠H) + 1

= |E(G)||V (H)|+ |E(H)||V (G)| + 2|E(H)||E(G)| − |V (G)||V (H)|+ κ(G ⊠H) + 1

= |E(G)||V (H)|+ (|V (H)| − 1)|V (G)| + 2|E(H)||E(G)| − |V (G)||V (H)| + κ(G ⊠H) + 1

= |E(G)||V (H)| − |V (G)|+ 2|E(H)||E(G)| + κ(G ⊠H) + 1

≤ |E(G)||V (H)|+ 2|E(H)||E(G)| + 1.

10



(3) Since both G and H are trees, it follows that |E(G)| = |V (G)| − 1 and |E(H)| =

|V (H)| − 1. By Observation 1, we have

mc(G⊠H)

≥ |E(G ⊠H)| − |V (G⊠H)|+ 2

= |E(G)||V (H)|+ |E(H)||V (G)|+ 2|E(H)||E(G)| − |V (G)||V (H)|+ 2

= (|V (G)| − 1)|V (H)|+ (|V (H)| − 1)|V (G)| + 2|E(H)||E(G)| − |V (G)||V (H)|+ 2

= 3|E(H)||E(G)| + 1.

From Lemma 4, κ(G⊠H) = min{κ(G)|V (H)|, κ(H)|V (G)|, ℓ(G⊠H)} ≤ min{κ(G)|V (H)|,

κ(H)|V (G)|} ≤ min{|V (H)|, |V (G)|}. By Lemma 1, we have

mc(G⊠H)

≤ |E(G⊠H)| − |V (G⊠H)|+ κ(G⊠H) + 1

= |E(G)||V (H)|+ |E(H)||V (G)| + 2|E(H)||E(G)| − |V (G)||V (H)|+ κ(G ⊠H) + 1

= |V (G)| − 1)|V (H)|+ (|V (H)| − 1)|V (G)| + 2|E(H)||E(G)| − |V (G)||V (H)|+ κ(G ⊠H) + 1

= 3|E(H)||E(G)| + κ(G⊠H)

≤ 3|E(H)||E(G)| +min{|V (H)|, |V (G)|}).

To show the sharpness of the lower bounds in Theorem 4, we consider the following

example.

Example 3: (1) Let G be a cycle of order at least 6, and H be a cycle of order at least 3.

By Corollary 2, diam(G ⊠ H) = max{diam(G), diam(H)} ≥ 3. Therefore, mc(G ⊠ H) =

|E(G)||V (H)| + 2|E(H)||E(G)| + 2 = |E(H)||V (G)| + 2|E(H)||E(G)| + 2.

(2) Let G be a cycle of order at least 3, and H be a cycle of order at least 4. By

Corollary 2, diam(G ⊠ H) = max{diam(G), diam(H)} ≥ 3. Therefore, mc(G ⊠ H) =

|E(H)||V (G)| + 2|E(H)||E(G)| + 2.

(3) Let G = P2 and H be a cycle of order at least 4. By Corollary 2, diam(G ⊠ H) =

max{diam(G), diam(H)} ≥ 3. Therefore, mc(G⊠H) = 3|E(H)||E(G)| + 1.

The following corollary is immediate from Theorem 4.

Corollary 5 Let G and H be a connected graph.

(1) If neither G nor H is a tree, then

mc(G⊠H) ≥ max{|mc(G)||V (H)|+2|mc(H)||mc(G)|+2, |mc(H)||V (G)|+2|mc(H)||mc(G)|+2}.

(2) If G not a tree and H is a tree, then

mc(G⊠H) ≥ |mc(H)||V (G)| + 2|mc(H)||mc(G)| + 2.

11



(3) If both G and H are trees, then

mc(G⊠H) ≥ 3|mc(H)||mc(G)| + 1.

Moreover, the lower bounds are sharp.

2.4 The direct product

The direct product G × H of graphs G and H has the vertex set V (G) × V (H). Two

vertices (g, h) and (g′, h′) are adjacent if the projections on both coordinates are adjacent,

i.e., gg′ ∈ E(G) and hh′ ∈ E(H). Clearly, |E(G ×H)| = 2|E(G)||E(H)|.

Theorem 5 Let G and H be nonbipartite graphs. Then

|E(H)||E(G)| + 2 ≤ mc(G×H) ≤ 2|E(H)||E(G)| + 1.

Moreover, the lower bounds are sharp.

Proof. Since H is not a tree, it follows that |E(H)| ≥ |V (H)|. By Observation 1, we have

mc(G×H) ≥ |E(G×H)| − |V (G×H)|+ 2

= 2|E(H)||E(G)| − |V (G)||V (H)|+ 2

≥ |E(H)||E(G)| + 2.

From Lemma 5, κ(G×H) ≤ κ′(G×H) = min{2κ′(G)|V (H)|, 2κ′(H)|V (G)|, δ(G)δ(H)} ≤

δ(G)δ(H) ≤ |V (G)||V (H)|. By Lemma 1, we have

mc(G×H) ≤ E(G×H)− V (G×H) + κ(G ×H) + 1

= 2|E(H)||E(G)| − |V (G)||V (H)|+ κ(G ×H) + 1

= 2|E(H)||E(G)| + 1.

To show the sharpness of the lower bounds in Theorem 5, we consider the following

example.

Example 4: Let G be a cycle of order at least 3, and H be a cycle of order at least 6.

By Lemma 2, diam(G × H) = max{diam(G), diam(H)} ≥ 3. Therefore, mc(G × H) =

|E(H)||E(G)| + 2.

The following corollary is immediate from Theorem 5.

Corollary 6 Let one of G and H be a non-bipartite connected graph. Then

mc(G×H) ≥ |mc(H)||mc(G)| + 2.

12



3 Applications

In this section, we demonstrate the usefulness of the proposed constructions by applying

them to some instances of Cartesian and lexicographical product networks.

3.1 Two-dimensional grid graph

A two-dimensional grid graph is an m×n graph Gn,m that is the graph Cartesian product

Pn�Pm of path graphs on m and n vertices. See Figure 1 (a) for the case m = 3. For more

details on grid graph, we refer to [6, 17]. The network Pn ◦ Pm is the graph lexicographical

product Pn ◦ Pm of path graphs on m and n vertices. For more details on Pn ◦ Pm, we refer

to [23]. See Figure 1 (b) for the case m = 3.

(a) (b)

(u1, v1)

(u1, v3) (un, v3)

(un, v1)(u1, v1)

(u1, v3)

(un, v1)

(un, v3)

Figure 1: (a) Two-dimensional grid graph Gn,3; (b) The network Pn ◦ P3.

Proposition 1 (i) For network Pn�Pm (n ≥ 3,m ≥ 2),

mc(Pn�Pm) = nm− n−m+ 2.

(ii) For network Pn ◦ Pm (n ≥ 4,m ≥ 3),

mc(Pn ◦ Pm) = m2n−m2 − n+ 2.

Proof. (i) From Corollary 1, diam(G�H) = diam(G) + diam(H) ≥ 3. Therefore, From

Theorem 1, we have

mc(Pn�Pm) = |E(Pn�Pm)| − |V (Pn�Pm)|+ 2

= (|V (Pn)| − 1)|V (Pm)|+ (|V (Pm)| − 1)|V (Pn)| − |V (Pn)||V (Pm)|+ 2

= (n− 1)m+ (m− 1)n − nm+ 2

= nm− n−m+ 2.

13



(2) From Lemma 7, diam(G ◦H) ≥ diam(G) ≥ 3. From Theorem 1, we have

mc(Pn ◦ Pm) = E(Pn ◦ Pm)− V (Pn ◦ Pm) + 2

= |E(Pm)||V (Pn)|+ |E(Pn)||V (Pm)|2 − |V (Pn)||V (Pm)|+ 2

= (m− 1)n + (n− 1)m2 −mn+ 2

= m2n−m2 − n+ 2.

3.2 n-dimensional mesh

An n-dimensional mesh is the Cartesian product of n linear arrays. By this definition,

two-dimensional grid graph is a 2-dimensional mesh. An n-dimensional hypercube is a special

case of an n-dimensional mesh, in which the n linear arrays are all of size 2; see [18].

Proposition 2 (i) For n-dimensional mesh PL1
�PL2

� · · ·�PLn
(n ≥ 4),

mc(PL1
�PL2

� · · ·�PLn
) ≥ (2ℓ1ℓ2 − ℓ1 − ℓ2)(ℓ3ℓ4 · · · ℓn) + 2.

(ii) For network PL1
◦ PL2

◦ · · · ◦ PLn
,

mc(PL1
◦ PL2

◦ · · · ◦ PLn
) ≥ (ℓ1ℓ

2
2 + ℓ1ℓ2 − ℓ1 − ℓ22)(ℓ3ℓ4 · · · ℓn)

2 + 2.

Proof. (i) By Lemma 2, we have diam((PL1
�PL2

� · · ·�PLn
) =

∑n
i=1 diam(PLi

) ≥ 3. Set

G = PL1
�PL2

and H = PL2
� · · ·�PLn

. Since both G and H are not trees, it follows from

Theorem 2 that mc(G�H) ≥ max{|E(G)||V (H)|, |E(H)||V (G)|} + 2 ≥ |E(G)||V (H)| + 2.

From Theorem 1, we have

mc(PL1
�PL2

� · · ·�PLn
)

≥ |E(PL1
�PL2

)||V (PL3
� · · ·�PLn

)|+ 2

= |E(PL1
)||V (PL2

)|+ |E(PL2
)||V (PL1

)|)(|V (PL3
)| · · · |V (PLn

)|) + 2

= (2ℓ1ℓ2 − ℓ1 − ℓ2)ℓ3ℓ4 · · · ℓn + 2.

(ii) By Lemma 7, we have diam((PL1
◦ PL2

◦ · · · ◦ PLn
) = max{diam(Ri)} ≥ 3. Set

G = PL1
◦ PL2

and H = PL2
◦ · · · ◦ PLn

. Since both G and H are not trees, it follows from

Theorem 3 that mc(G ◦H) ≥ |E(G)||V (H)|2 + 2. From Theorem 1, we have

mc(PL1
◦ PL2

◦ · · · ◦ PLn
)

≥ |E(PL1
◦ PL2

)||V (PL3
◦ · · · ◦ PLn

)|2 + 2

= (|E(PL2
)||V (PL1

)|+ |E(PL1
)||V (PL2

)|2)(|V (PL3
)| · · · |V (PLn

)|)2 + 2

= (ℓ1ℓ
2
2 + ℓ1ℓ2 − ℓ1 − ℓ22)(ℓ3ℓ4 · · · ℓn)

2 + 2.
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3.3 n-dimensional torus

An n-dimensional torus is the Cartesian product of n rings R1, R2, · · · , Rn of size at least

three. (A ring is a cycle in Graph Theory.) The rings Ri are not necessary to have the same

size. Here, we consider the networks constructed by R1�R2� · · ·�Rn and R1 ◦R2 ◦ · · · ◦Rn.

Proposition 3 (i) For network R1�R2� · · ·�Rn, n ≥ 4

mc(R1�R2� · · ·�Rn) ≥ r1r2 · · · rn + 2.

where ri is the order of Ri and 3 ≤ i ≤ n.

(ii) For network R1 ◦R2 ◦ · · · ◦Rn, n ≥ 4

mc(R1 ◦R2 ◦ · · · ◦Rn) ≥ r1(r2 · · · rn)
2 + 2.

Proof. (i) By Lemma 2, we have diam((R1�R2� · · ·�Rn) =
∑n

i=1 diam(Ri) ≥ 3. Set

G = R1 and H = R2� · · ·�Rn. Since both G and H are not trees, it follows from Theorem 2

thatmc(G�H) ≥ max{|E(G)||V (H)|, |E(H)||V (G)|}+2 ≥ |E(G)||V (H)|+2. From Theorem

1, we have

mc(R1�R2� · · ·�Rn) ≥ |E(R1)||V (R2� · · ·�Rn)|+ 2

= r1r2 · · · rn + 2.

(ii) By Lemma 7, we have diam((R1 ◦R2 ◦ · · · ◦Rn) = max{diam(Ri)} ≥ 3. Set G = R1

and H = R2 ◦ · · · ◦ Rn. Since both G and H are not trees, it follows from Theorem 3 that

mc(G ◦H) ≥ |E(G)||V (H)|2 + 2. From Theorem 1, we have

mc(R1 ◦R2 ◦ · · · ◦Rn) ≥ |E(R1)||V (R1 ◦R2 ◦ · · · ◦Rn)|
2 + 2

= r1(r2 · · · rn)
2 + 2.

3.4 n-dimensional generalized hypercube

Let Km be a clique of m vertices, m ≥ 2. An n-dimensional generalized hypercube [13, 14]

is the Cartesian product of m cliques. We have the following:

Proposition 4 (i) For network Km1
�Km2

� · · ·�Kmn
(mi ≥ 2, n ≥ 3, 1 ≤ i ≤ n)

mc(Km1
�Km2

� · · ·�Kmn
) ≥

(

m1

2

)

m2 · · ·mn + 2.

(ii) For network Km1
◦Km2

◦ · · · ◦Kmn
,

mc(Km1
◦Km2

◦ · · · ◦Kmn
) =

(

m1m2 · · ·mn

2

)

.
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Proof. (i) By Lemma 2, we have diam(Km1
�Km2

� · · ·�Kmn
) =

∑n
i=1 Kmi

≥ 3. Set

G = Km1
and H = Km2

� · · ·�Kmn
. Since both G and H are not trees, it follows from

Theorem 2 that mc(G�H) ≥ max{|E(G)||V (H)|, |E(H)||V (G)|} + 2 ≥ |E(G)||V (H)| + 2.

From Theorem 1, we have

mc(Km1
�Km2

� · · ·�Kmn
) ≥ |E(Km1

)||V (Km2
�Km3

� · · ·�Kmn
)|+ 2

=

(

m1

2

)

m2 · · ·mn + 2.

(ii) Note that Km1
◦Km2

◦· · ·◦Kmn
is a complete graph of order

∏n
i=1 mi. From Theorem

1, we have

mc(Km1
◦Km2

◦ · · · ◦Kmn
) =

(

m1m2 · · ·mn

2

)

.

3.5 n-dimensional hyper Petersen network

An n-dimensional hyper Petersen network HPn is the Cartesian product of Qn−3 and

the well-known Petersen graph [12], where n ≥ 3 and Qn−3 denotes an (n − 3)-dimensional

hypercube. The cases n = 3 and 4 of hyper Petersen networks are depicted in Figure 2. Note

that HP3 is just the Petersen graph (see Figure 2 (a)).

The network HLn is the lexicographical product of Qn−3 and the Petersen graph, where

n ≥ 3 and Qn−3 denotes an (n − 3)-dimensional hypercube; see [23]. Note that HL3 is just

the Petersen graph, and HL4 is a graph obtained from two copies of the Petersen graph by

add one edge between one vertex in a copy of the Petersen graph and one vertex in another

copy. See Figure 2 (c) for an example (We only show the edges v1ui (1 ≤ i ≤ 10)).

(a) (b) (c)

v1
v2

v3

v5

v4

v6

v7

v8
v9

v10

u6
u7

u8

u9u10

u1 u2

u3

u4

u5

v1 v2

v3

v4

v5

v6
v7

v8
v9

v10

v4

v5v9
v3v10 v8

v1
v2

v6
v7

u1 u2

u3

u7
u6

u8
u5

u9
u10

u4

Figure 2: (a) Petersen graph; (b) The network HP4; (c) The structure of HL4.
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Proposition 5 (1) For network HP3 and HL3, mc(HP3) = mc(HL3) = 7;

(2) For network HL4 and HP4, mc(HP4) = 22 and 112 ≤ mc(HL4) ≤ 121.

Proof. (1) By Theorem 1, we have mc(HP3) = mc(HL3) = |E(HL3)| − |V (HL3)|+ 2 = 7.

(2) By Lemma 1, we have mc(HP4) = |E(HL4)|−|V (HL4)|+2 = 22 and 121 ≥ E(HL4)−

V (HL4) + κ(HL4) + 1 ≥ mc(HL4) ≥ E(HL4)− V (HL4) + 2 = 112.
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