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Abstract

In this article we consider the problem of gathering information in a gateway in a radio
mesh access network. Due to interferences, calls (transmissions) cannot be performed simul-
taneously. This leads us to define a round as a set of non-interfering calls. Following the
work of Klasing, Morales and Pérennes, we model the problem as a Round Weighting Prob-
lem (RWP) in which the objective is to minimize the overall period of non-interfering calls
activations (total number of rounds) providing enough capacity to satisfy the throughput
demand of the nodes.

We develop tools to obtain lower and upper bounds for general graphs. Then, more
precise results are obtained considering a symmetric interference model based on distance
of graphs, called the distance-d interference model (the particular case d = 1 corresponds to
the primary node model).

We apply the presented tools to get lower bounds for grids with the gateway either in
the middle or in the corner. We obtain upper bounds which in most of the cases match
the lower bounds, using strategies that either route the demand of a single node or route
simultaneously flow from several source nodes. Therefore, we obtain exact and constructive
results for grids, in particular for the case of uniform demands answering a problem asked
by Klasing, Morales and Pérennes.

Keywords Radio networks, wireless networks, interference, grids, gathering, bounds,
approximation algorithms.

1 Introduction

Routing steady traffic demands has been extensively studied in the literature for wired networks,
but also for multi-hop radio networks where interferences have to be taken into account.

We consider the case where the information of the nodes must be gathered in a special node
called gateway (or base station) in order, for example, to access Internet. This problem was
asked by France Telecom R&D (now Orange Labs) under the name of “How to bring

∗This Research was partly supported by FACEPE/CNPq DCR-0007-1.03/13(Brazil) and by CONI-
CYT(Chile)/INRIA and by ANR program Investments for the Future under reference ANR-11-LABX-0031-01.
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Internet in the villages” [12] where there is no high speed access everywhere. In this context,
the gateway providing high speed access to the village (for example via an antenna) receives the
demand of the houses (equipped with radio devices). This creates a many-to-one communication.
The converse problem (personalized broadcasting) where the gateway acts as a source and sends
personalized information to each device is also of interest in this context and results obtained
here can be used for solving it by reversing the protocols.

The goal consists in minimizing the completion time for gathering. This problem is known
as the Round Scheduling Problem (RSP) (or Minimum Time Gathering problem) (see the survey
in [13]). The RSP is also important in sensor networks (see example in [19]) where the idea is
to collect data (alerts) in a Base Station. However, a major goal in sensor network protocols
is to minimize energy consumption and most research assumes that data can be combined (or
aggregated) to reduce transmission costs.

In [24], it was shown that if traffic demands are sufficiently steady, the problem can be relaxed
to the Round Weighting Problem (RWP) (to be defined precisely in the next subsection), where
we want to minimize the number of rounds; a round consists of non interfering calls. The RWP

and the RSP have similar behavior when the network links are completely “filled” from the
source to the destination (steady state). They differ by the additional time to “fill” and “drain”
the network (transient states) that is only taken into account by RSP.

Results and protocols depend on the way interferences are modeled. We consider a binary
model of interference based on distances in the communication graph, but differently from most
of the RSP works cited here, we consider a symmetrical interference model called distance-d. In
particular this model assumes that all message transmissions have a confirmation of reception.
That is motivated by reliable protocols in which the nodes answer with an acknowledgment
message. Although the model remains theoretical, it gives lower bounds on the gathering time
for real networks or equivalently upper bounds on the number of users (or on the traffic demand)
the network can accommodate, which is useful for an operator when planning their networks.
Indeed we can consider instead of rounds consisting of calls at distance-d, the subset of rounds
with acceptable signal-to-interference-plus-noise ratios (SINR) as the time to check if a round
has an acceptable SINR is very small.

1.1 Problem Statement

Fist of all, let us state precisely the problem and the interference model. Let G = (V,E) be the
communication graph where the vertices in V represent the nodes of the network. We suppose
that the communications are symmetric; so an edge {u, v} ∈ E means that vertex u is into the
communication area of vertex v and vice-versa. G is a symmetric digraph, but for simplicity’s
sake we use an undirected graph to represent it. We consider that a transmission between two
nodes u and v is done via a call, and it is represented by the activation of the edge {u, v} of G.

In radio networks, signals are subject to interference constraints and so, two calls which are
“too near” cannot be performed simultaneously. We suppose here a binary symmetric model of
interference. We define a round R as a set of pairwise non-interfering calls (calls which can be
performed simultaneously). A round is therefore a set of edges of G. The interference model
induces a set of possible rounds R ⊆ 2E (exponential in the size of E).

We consider a synchronous communication network (the nodes are time-synchronized) so all
the edges of a round can be activated at the same time. The weight of a round represents a
capacity assigned to the edges of this round. The rounds are activated one after the other. We
consider that the value assigned to the edge capacity is enough to support the same amount of
flow, e.g. a capacity of 1 supports a flow of 1 (see later about the round weight function w).

The Round Weighting Problem (RWP) has been formalized in [24] for general demands
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from any source node u to any destination v. We restrict ourselves to the gathering instances
where each node v ∈ V has to send a demand b(v) to the gateway node g. The demand of each
node v may be split over multiple paths to g.

The part sent through the path P is in fact a flow denoted φv(P ). When the demand is
satisfied, the following condition applies

(∀v ∈ V )
∑

P∈Pv,g

φv(P ) ≥ b(v), (1)

where Pv,g denotes the set of all paths between v and g. Therefore, the RWP consists in assigning
a weight w (real number representing the duration of the time slot) to the rounds in such a way
that the total weight of the rounds containing an edge is greater than the flow going through
this edge. More precisely, the function w induces a capacity over each edge e given by the sum
of the weights of the rounds containing the edge e. We denote cw(e) this induced capacity of the
edge e. In this way cw(e) =

∑

R∈R:e∈R w(R). We say that a solution w is admissible if there
exist a set of paths and flow φ satisfying the demand such that:

(∀e ∈ E)
∑

v∈V

∑

P∈Pv,g:e∈P

φv(P ) ≤ cw(e) =
∑

R∈R:e∈R

w(R). (2)

The goal is to find an admissible weight function w in such a way that the overall weight W =
∑

R∈R w(R) is minimized. Therefore, the Round Weighting Problem may be summarized
as follows.

Problem: Round Weighting for gathering instances.
Input: A graph G = (V,E), a gateway g ∈ V , a set of all rounds

R ⊆ 2E (exponential size), the sets of paths ∪v∈V Pv,g (ex-
ponential size) and a demand function b : V → R

+.
Solution: An admissible round weight function w defined over R.

Goal: Minimize the overall weight of w, i.e. W =
∑

R∈R w(R).

In some applications, the time slots are of fixed integer size and, consequently, the weight of
the rounds has to be integer (defined in number of time slots). The RWP with this integrality
assumption is called the Integer Round Weighting Problem (IRWP). Notice that if the demands
are integer, a solution of IRWP has integer flows. A more restricted problem is the mono-routing
problem (or unsplittable flow), that routes the demands of a node v using an unique path. It
avoids dealing with the packet-reordering problem, as the packets arrive at the destination in
the same order they were sent. Notice that, if b(v) is integer, the solution for the mono-routing
problem has necessarily integer rounds (and also integer flows).

1.2 Distance-d model of interference

Although the tools developed in this article apply for any binary interference model, in order to
give precise results, we use a model of interference based on distances (in number of edges) in
graphs. The model can be viewed as a (symmetric) variant of the interference model used for
example in [4, 24] where a node causes interference in all the nodes at distance at most dI from
it (nodes in its interference zone). In their model, two directed calls (s,r) and (s’,r’) interfere
if d(s, r′) 6 dI or d(s′, r) 6 dI where d(u, v) denotes the distance from u to v (asymmetrical
interference model).

Note that, if device u calls device v, it is desirable that v has a way to let u know that the
transmission has been successful sending an acknowledgment (confirmation of reception). Such
feedback is performed by a transmission from v to u. For this reason, most interference models

3



+

u v u v

Interfering arcs

u v u v

Interfering edges

u v u v

Interfering arcs

Symmetrical

Asymmetrical
Call (−→u, v), dI = 1
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(a) Call (u, v) in an asymmetrical and symmetrical model with, respec-
tively, dI = 1 and d = 2.

u v u v

Interfering arcsCall (−→u, v), dI = 2

(b) Call (u, v) in an asymmetrical model with dI = 2.

Figure 1: Relation between the symmetrical model (using distance-d model) and the asymmet-
rical model (with dI = d− 1).

assume that interferences are symmetrical. As this model is used in the protocol 802.11, some
authors named it the 802.11 interference model [32].

In this work, we consider a symmetrical interference model called distance-d model. In such
model, two calls interfere if there is an end vertex of one call at distance at most d− 1 from an
end vertex of the other call. More precisely, let the distance between two calls (edges) e = {u, v},
e′ = {u′, v′} be the minimum distance d(e, e′) = minx∈{u,v},y∈{u′,v′} d(x, y) between their end
vertices. Using this distance we get the following:

Definition 1 In the distance-d model, two calls (edges) e and e′ interfere if their distance
d(e, e′) < d.

Consequently, a round consists of edges which are pairwise at distance > d. The particular
case d = 1 is called the primary node interference model [18, 23] or node-exclusive interference
model [29]. In that case, a round is a matching. In the case d = 2, we obtain the so called
distance-2 interference model [27, 13, 32, 33]. In this case, a round is an induced matching.

One of the reasons to use d = dI − 1 (and not = dI) is to be coherent with these two
particular models. Furthermore, let the conflict graph be the graph whose vertices represent the
edges (possible calls) of G, two vertices being joined if the corresponding calls interfere. Then,
in the case d = 1, the conflict graph is nothing else than the line graph L(G) of G. (The vertices
of L(G) represent the edges of G and two vertices are joined in L(G) if their corresponding edges
in G intersect). More generally, for any d, the conflict graph is the d-th power of L(G). (The
k-th power of a graph being the graph with two vertices joined if their distance is less than or
equal to k).

A comparison between symmetrical (using distance-d model) and asymmetrical interference
model in a path-like network is depicted in Figure 1(a). The arcs which interfere with the
communication between the nodes u and v are indicated. For the asymmetrical model, the
figure shows first the case of a directed call −→u, v and then of the directed call −→v, u. We can see
that, for the symmetrical model, the edge call {u, v} corresponds to the activation of the arcs
−→u, v and −→v, u (in both directions). Consequently, the interfering edges correspond to the sum
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of all interfering arcs for the calls −→u, v and −→v, u (in the asymmetrical model) as illustrated in
Figure 1(a).

Observe that, the set of interfering arcs in the asymmetrical model is smaller than the set for
the symmetrical model with dI = d−1. Then, any solution for the RWP with the asymmetrical
model is a lower bound for the RWP with the symmetrical model.

Now, considering dI = d, the set of interfering arcs in the symmetrical model (see Figure 1(a)
for d = 2) is smaller than the corresponding set for the asymmetrical model. (Compare with the
set of arcs illustrated in Figure 1(b) for the asymmetrical model with dI = d = 2). Consequently,
any solution for the RWP using the symmetrical model corresponds to a lower bound for the
RWP using the asymmetrical model (with dI = d). So, as the RWP with symmetrical model
considers less constraints (interfering arcs) with dI = d, it can be considered as a “relaxation” of
the RWP with asymmetrical model.

As our problem deals with a gathering, the additional interference of the symmetrical model
with dI = d−1 makes some difference only if we need to use some paths backwards the gateway
(as there are more interfering backwards arcs in the symmetrical model). However, in general
the formulae that we obtain using the distance-d (symmetrical) model are similar (upper bound
with small gap) to that of [10] that uses the asymmetrical model considering dI = d− 1.

Note that our model is a simplification of reality in which a node can be subject to interference
from all of the other nodes, and models based on signal-to-interference-plus-noise ratios (SINR)
are more accurate. However, our model is more accurate than the classical half duplex model of
wired networks or the primary node model of interference. Furthermore, it is still tractable and
we can give precise results. Finally the general tools we have given can apply by considering
instead of rounds consisting of calls at distance-d, the subset of rounds with acceptable SINR;
indeed the time to check if a round has an acceptable SINR is very small.

1.3 Related Work

Given the importance of wireless networks, fundamental problems arises such as routing, schedul-
ing and gathering data under interference [1]. Thus, many models have been introduced and
studied as well as different variants of interference [13].

In [24], the authors introduced the Round Weighting Problem (RWP) for asymmetrical
interference in the general case, with demands between any pair of nodes. In this case of an
arbitrary traffic pattern (analogous to a multicommodity flow), they showed that the problem
is very difficult to approximate; indeed, to approximate the RWP within n1−ε is NP-Hard [24].
Even for the case of gathering, the problem was shown to be NP-hard. Furthermore, a 4-
approximation algorithm for general topologies was presented. For paths, the RWP was shown
to be polynomial. One of the open questions of the paper was to find simple efficient algorithms
for grids. This question will be answered in the following sections of this article. The approach
of [24] consisted in the study of the dual of the corresponding optimization problem. This method
was also used in [10] and also in [17], where the authors propose a Lagrangian relaxation and
then, they prove the convergence of their method towards the optimal solution.

As said at the beginning, the RWP can be seen as a relaxation of the Round Scheduling
Problem (RSP) (or Minimum Time Gathering problem). Many results have been obtained on
this problem but with hypothesis different from ours. We refer to the survey in [13]. The most
closed model uses a binary distance model of interference but asymmetric. In the case of asym-
metrical interference a protocol for general graphs with an arbitrary amount of information to
be transmitted from each vertex is presented in [4]. The protocol is an approximation algorithm
with performance ratio at most 4. It is also shown in [4] that there is no fully polynomial time
approximation scheme for gathering if dI > dT , unless P = NP, and the problem is NP-hard if
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dI = dT , where dT denotes the maximum distance of transmission (in our case dT = 1). If each
vertex has exactly one piece of information to transmit, the problem is NP-hard if dI > dT [4]
and if dI = dT = 1 [26]. A modified version of the problem in which messages can be released
over time is considered in [14] and a 4-approximation algorithm is presented. For specific topolo-
gies, polynomial or 1-approximation algorithms are also given for paths [3, 7] and trees [11] .
For grids, the problem has been solved in the unitary-traffic case (a variant of uniform demand
where each node has one unit of traffic to send to the gateway) and also in hexagonal grids
(see [10]).

Many other articles consider also a binary distance model of interference, but do not allow
buffering; in that case the tools and results are different. When no buffering is allowed, the
problem has been solved for trees for dI = 1 [6] and for general dI [5, 20] (where a closed-form
expression is given when all vertices have exactly one piece of information to transmit). For
square grids with the gateway in the center, a multiplicative 1.5-approximation algorithm is
given in [30] and an additive +1 approximation algorithm is given in [8].

In this article, we are considering a symmetrical interference model that has also been studied
in [16, 21]. The authors in [16] proved that RWP remains NP-hard even on a bipartite graph
with one source, for any d > 3 fixed. For d = 2, they also proved NP-hardness on a bipartite
graph with multiples sources. For d = 1, they show that the problem is polynomial in 3-
connected graphs and in bipartite graphs. Finally, they show that a list version of the problem
is inapproximable in polynomial time by a factor of O(log n) even on n-vertex paths, for any
d > 1. In [21], the authors perform simulations for the RWP in general graphs.

Within the same model another communication problem the distributed “link scheduling
problem” is considered in [9, 15, 22], but there the main objective is to insure the stability of
the system with random arrivals.

A related problem consists in finding the longest round satisfying the distance-2 (symmet-
ric) interference model. This problem is called maximum induced matching [31] and maximum
distance 2 matching(D2EMIS) [2]. D2EMIS is known to be APX-complete for regular graphs,
but admits a PTAS for disk graphs) [2]. The problem is generalized for arbitrary interference
distance in [29] by considering different weights to the edges.

1.4 Our Results

In this article, we study the Round Weighting Problem (RWP) with symmetrical interferences.
We first develop tools to obtain lower bounds in Section 3 for general graphs, in particular for
the distance-d interference model. Then, in Section 4, we propose routing strategies finding
upper bounds with the gateway placed anywhere.

Then we consider grids as they model well both access networks and also random networks
(see [25]). We answer the question asked in [24] of finding simple efficient algorithms and the
complexity of the problem for grids. For this purpose, we apply the tools presented in Section 3
to obtain in Section 5 precise lower bounds for grids with the gateway either in the middle or
in the corner. Then, in Section 6 and in Section 7 of this article, we use the general tools of
Section 4 and specific tools to obtain upper bounds both in the case of routing the demand of
a single node or of a combination of nodes. In most of the cases they match the lower bounds;
in particular we get exact and constructive results for grids for the case of uniform demands.

Our results are of theoretical nature, but they can be of interest for applications in particular
in designing such radio networks. Indeed they give an upper bound on the demand or on the
number of users the network can accommodate. Therefore, if the number of planned users is
near from or greater than this bound, the operator should for example implement more gateways
(or increase the bandwidth).
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2 Definitions

In this section, we present some definitions that are useful later.

Definitions related to the edges of G

• G(V,E): communication graph with V as set of nodes (vertices) and E as set of edges
(possible calls).

• g: a specific node g ∈ V called gateway.

• L(G): line graph of G, i.e. the graph whose vertices represent the edges of G and where
two vertices are joined in L(G) if their corresponding edges in G intersect.

• d(u, v) with u, v ∈ V : distance between u and v, that is the length of a shortest path
between them (e.g. the neighbors of g are at distance 1 of g).

• d(e, e′) with e, e′ ∈ E: distance between edges e = (u, v) and e′ = (u′, v′) which corresponds
to minx∈{u,v},y∈{u′,v′} d(x, y).

• El: set of edges at level l, i.e. edges joining a node at distance l from the gateway to a node
at distance l − 1. More precisely, El = {e = (u, v) ∈ E | d(g, u) = l and d(g, v) = l − 1}.
For example, E1 are all the edges incident to the gateway g.

• K0: set of edges from all levels l 6 ⌈d2⌉, with d as the interference parameter. That is,
K0 =

⋃

16l6⌈ d
2
⌉El.

• VK : set of nodes in G incident to the set of edges K. Usually K is a call-clique (see
definition below). For the case of K0, the set VK0 is VK0 = {v ∈ V \ g|d(v, g) 6 ⌈d2⌉}.
Notice that, according to the definition, the gateway g is not included in VK0 .

Definitions related to interferences and cliques

• d: interference distance. Sometimes, we use the auxiliary parameter k = ⌈d2⌉. So, d = 2k
for d even and, d = 2k − 1 for d odd.

• Distance-d model: binary model of interference where two edge calls e and e′ interfere if
d(e, e′) < d (see definition in Section 1.2).

• C(G): conflict graph of G, that is the graph whose vertices represent the edges of G,
two vertices are joined if the corresponding edges (which represent calls) interfere. Con-
sequently in the distance-d model, the conflict graph C(G) is the d-th power of the line
graph L(G).

• call-clique: set of pairwise interfering edges in G. In C(G), the corresponding vertices form
a clique. For example in the distance-d model, K0 is a call-clique, because the distance
between any pair of edges is less than d and therefore they interfere. Given that we are
dealing with grids, sometimes it is easy to describe the call-clique by means of its adjacent
vertices.

7



Definitions related to flows, rounds and the weight function

• b(v): demand of the node v ∈ V .

• Pv,g: the set of all paths between v and g in G (exponential size).

• φv(P ) with P ∈ Pv,g: flow from node v sent to g using path P . Notice that according to
Constraint 1 the demand must be completely satisfied.

• φv(e): flow sourced at node v traversing the edge e. More precisely φv(e) =
∑

P∈Pv,g; e∈P φv(P ).

• φ(e): flow traversing the edge e. φ(e) =
∑

v∈V φv(e).

• φv(E
′)=

∑

e∈E′ φv(e): sum of the flow from v on a set of edges E′.

• φ(E′)=
∑

v∈V φv(E
′): sum of the flow on a set of edges E′.

• R (Round): set of non-interfering edges, i.e. an independent set in C(G).

• R: set of all rounds of G (it has an exponential size).

• Re ⊂ R: set of all the rounds containing the edge e.

• w(R): round weight function w : R→ R
+ giving the weight of round R.

• cw(e): the capacity of the edge e induced by the weights of the rounds in Re. More
precisely, cw(e) =

∑

R∈Re
w(R) =

∑

R∈R w(R)|R ∩ {e}|.

• cw(E
′)=

∑

e∈E′ cw(e) =
∑

e∈E′

∑

R∈Re
w(R) =

∑

R∈R w(R)|R ∩ E′|, the capacity of the
edges E′ ⊆ E is a measure derived from the weights of the rounds covering these edges.

• Admissible solutions: let us recall first that, as seen in Section 1.1, a solution corresponds to
a function assigning weights to rounds. Therefore, we say that the weights w(R) assigned
to the rounds R ∈ R are admissible if there exist a set of paths and a flow φ satisfying
Equation 2.

• W : the overall weight W =
∑

R∈R w(R). Moreover, as seen in Section 1.1, W is the value
of the objective function in the RWP.

• Wmin: the minimum value of W over all the admissible weight functions w. Therefore, it
corresponds to the optimal solution of RWP (see Section 1.1).

Definitions related to grids

• Rectangular Grid: a rectangular p×q grid is the graph with N = pq vertices, denoted (x, y)
where −p1 6 x 6 p2 with p1+p2+1 = p and −q1 6 y 6 q2 with q1+q2+1 = q (p1, p2, q1, q2
being integers). Any vertex (x, y) is joined (if they exist) to its four neighboring vertices
(x + 1, y), (x − 1, y), (x, y + 1) and (x, y − 1). We assume that the gateway has the
coordinates (0, 0).

• Gateway Position: it is represented by a position (x, y) in the grid. We see later that
the results strongly depend on the position of the gateway. In the distance-d model, we
consider mainly two extremal places:

– gateway in the corner : g is the vertex (0, 0) and p1 = q1 = 0.

– gateway in the middle: g is far enough of the borders and min(p1, p2, q1, q2) > ⌈
d+1
2 ⌉.
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• Rotation function: we define also the Rotation function ρ as the one to one vertex mapping
ρ((x, y)) = (−y, x) which corresponds to a rotation in the plane of π

2 around the central
node (0, 0). Let the rotation of an edge e = (v1, v2) be ρ(e) = (ρ(v1), ρ(v2)) and let the
rotation of a path P = {e1, e2...} be ρ(P ) = {ρ(e1), ρ(e2)...}. This definition works well
when p1 = p2 = q1 = q2. We can extend it to any grid by doing the rotation in a super
grid with size (2p′ + 1, 2p′ + 1) with p′ = max(p1, p2, q1, q2) and ignoring the vertices not
in the original grid.

3 Lower bounds: general results

In this section, we show how to use call-cliques (see definition in Section 2) to obtain lower
bounds for the RWP in particular for the distance-d model. We give some illustrative examples
using grids (see more ingenious bounds for grids in Section 5).

3.1 Lower bounds using one call-clique

Recall that a call-clique is a set of edges pairwise interfering. So, two transmissions in a call-
clique cannot be performed simultaneously. Thus, the sum of the capacities of the edges in a
call-clique sets up a lower bound for the RWP as follows.

Lemma 1 Let K ⊆ E be a call-clique, then cw(K) 6 W .

Proof: We know that cw(K) =
∑

R∈R w(R)|R∩K|. As each round R is a set of non-interfering
edges, R contains at most one edge of K. Therefore, |R ∩K| 6 1 and consequently cw(K) 6
∑

R∈R w(R) = W . �

For F ⊆ E and a path P ∈ Pv,g (between v and g), let LB(P,F ) denote the number of edges
that P and F have in common. Therefore, LB(P,F ) = |P ∩ F |. We define LB(v, F ) as the
minimum LB(P,F ) over all the paths P ∈ Pv,g.

Lemma 2 Let F ⊆ E, then cw(F ) >
∑

v∈V b(v) LB(v, F ).

Proof: For any flow φ(F ), cw(F ) > φ(F ) =
∑

v∈V φv(F ) >
∑

v∈V b(v) LB(v, F ). �

The first idea consists in choosing particular sets F . A natural candidate is the set El (of
edges at level l). The paths from the nodes outside El, i.e. the nodes at distance at least l of
the gateway must cross at least one edge in El to reach the gateway. So, if d(v, g) > l, then
LB(v,El) > 1 and we have the following.

Corollary 1 cw(El) >
∑

v;d(v,g)>l b(v).

We use Corollary 1 to give a lower bound for cw(K0) in the distance-d model. The bound
uses the value S0 defined below. Recall that the call-clique K0 is the set of edges around the
gateway at level at most ⌈d2⌉.

Definition 2 S0 =
∑

v∈VK0
d(v, g)b(v) +

⌈

d
2

⌉
∑

v/∈VK0
b(v).

Lemma 3 In the distance-d model, cw(K0) > S0.

Proof: As K0 =
⋃

l6⌈ d
2
⌉El and the levels El for 1 6 l 6 ⌈d2⌉ are pairwise disjoints, then

cw(K0) =
∑

l6⌈ d
2
⌉ cw(El) >

∑

l6⌈ d
2
⌉

∑

v;d(v,g)>l b(v) = S0. �

Note that the value S0 is independent of the function w. Therefore,

9



g

Figure 2: Call-clique for d = 3 with g in the middle. It corresponds to K0 for the distance-3
model.

Proposition 1 In the distance-d model, Wmin > S0.

We see later that, in some cases, the lower bound S0 is attained. It happens for the grid
with the gateway in the middle and d odd (see Theorem 6). Recall that S0 uses the call-clique
K0. There may, however, be other call-cliques larger than K0 giving better lower bounds.

For example, Figure 2 shows an example of a call-clique K0 for the distance-3 model (d odd).
Notice that in this case, K0 is a maximal call-clique: if a new edge is added to K0, the resulting
set is not a call-clique. However, for some considered parameters of the problem, K0 may not
be a maximal call-clique (see Figure 9). In these cases, Lemma 2 is used with a maximum call-
clique K (containing K0) as the set F . For example, for the grid with d odd and the gateway in
the corner, the maximum call-clique is larger than K0 (see Figure 9 and 10) and gives a better
bound than S0 (see Theorem 4). We show later that the lower bound is optimal for uniform
demand. However, using only one call-clique does not necessarily give a tight bound.

3.2 Lower bounds using many call-cliques

We present a result similar to Lemma 2, but improved by using multiple sets of edges. Recall
that Pv,g is the set of all the paths between v and g.

Lemma 4 Given the sets of edges F1, . . . , Fq, then

q
∑

i=1

cw(Fi) >
∑

v

b(v) min
P∈Pv,g

(

q
∑

i=1

LB(P,Fi)

)

Proof: For any flow φ and any node v,

q
∑

i=1

φv(Fi) > b(v) min
P∈Pv,g

q
∑

i=1

LB(P,Fi).

�

Consider first the example of a grid with the gateway at the corner and the distance-2 model
depicted in Figure 3. Notice that in this model K0 = E1 and is not a maximal clique. In fact,
we have two maximum call-cliques containing K0: K1 and K2 which also contain the four edges
adjacent to vertex (1, 1). Furthermore, K1 contains the edge e1 = ((1, 0), (2, 0)) and K2 contains
the edge e2 = ((0, 1), (0, 2)).

Let us now calculate minP∈Pv,g(LB(P,K1)+LB(P,K2)) for each vertex v in the grid. First,
for any vertex v at distance 1 of g (vertices (0, 1) and (1, 0)), LB(v,K1) = LB(v,K2) = 1.
Similarly, for vertex v∗ = (1, 1) both LB(v∗,K1) = LB(v∗,K2) = 2. For any other vertex
v /∈ {(0, 1), (1, 0), (1, 1)}, a path between v and g use at least 3 edges in K1 ∪K2: one edge at
level 2 in at least one clique and 1 edge at level 1 in both cliques, so LB(P,K1)+LB(P,K2) > 3.

10



g = (0, 0)
e1

(a) Call-clique K1.

g = (0, 0)

e2

(b) Call-clique
K2.

Figure 3: Two maximum call-cliques K1 and K2 in the distance-d interference model (with
d = 2).

Using Lemma 4, we get that

cw(K1) + cw(K2) >
∑

v

b(v) min
P∈Pv,g

(LB(P,K1) + LB(P,K2))

> 2b((0, 1)) + 2b((1, 0)) + 4b((1, 1)) + 3
∑

v/∈{(0,1),(1,0),(1,1)}

b(v)

and so, one of these two call-cliques has capacity cw greater than or equal to one half of the
right side value. Therefore, we have the following bound.

Proposition 2 For the grid with g in the corner in the distance-2 model

Wmin > b(0, 1) + b(1, 0) + 2b(1, 1) +
3

2

∑

v/∈{(0,1),(1,0),(1,1)}

b(v)

As a remark, we can see that in this case the use of multiple call-cliques effectively improve
the lower bounds obtained in Proposition 1 which only gives that Wmin >

∑

v b(v). We see later
(in Proposition 17) that the lower bound given by Proposition 2 is not only better, but also
optimal. In general, we have the following.

Lemma 5 Let K1, . . . ,Kq be a family of call-cliques. Then one of the call-cliques, K∗, satisfies
cw(K

∗) > 1
q

∑

v∈V b(v)minP∈Pv,g

∑q
i=1 LB(P,Ki)

Proof: By Lemma 4,
∑q

i=1 cw(Ki) >
∑

v∈V b(v)minP∈Pv,g

∑q
i=1 LB(P,Ki) and so one of the

call-cliques, denoted K∗, has capacity cw(K
∗) greater than or equal to the average (the right

side value over q). �

Corollary 2 Let K1, . . . ,Kq be a family of call-cliques such that each edge of El appears at least
λl times in the call-cliques, then Wmin >

∑

l

∑

v;d(v,g)>l
λl

q b(v).

Proposition 3 Let G be the grid with g in the middle and d be even (d = 2k).

Wmin > S0 +
1

4

∑

v;d(v,g)>k+1

b(v)

Proof: Consider the four following call-cliques (see Figure 4 for d = 4): they all contain the
edges of K0. Furthermore, K1 contains the edges at level k + 1 with positive coordinates:
((0, k+1), (0, k)), ((k+1− i, i), (k− i, i)) and ((k+1− i, i), (k+1− i, i− 1)) for 1 6 i 6 k. The
call-cliques K2, K3 and K4 are obtained by successive rotation of π

2 of the previously described
call-clique K1. In this way, the edges in El with 1 6 l 6 k are covered 4 times and the edges in
Ek+1 are covered once (we see later that this lower bound is optimal for several cases). �
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g

(a) call-clique K1.

g

(b) call-clique K2.

g

(c) call-clique K3.

g

(d) call-clique K4.

Figure 4: Case d even (d = 4) and g in the middle. The four call-cliques combined covers Ei,
1 6 i 6 k + 1 for d = 2k.

d = 4

g

(a) call-clique Ka

d = 4

g

(b) call-clique Kb

Figure 5: Example of grid with demand concentrated at node (3, 2) and d = 4. A lower bound
of 5

2b((3, 2)) is obtained using the two call-cliques Ka and Kb.

These symmetric call-cliques around the gateway (as in Figure 4) do not always give the
best bounds. In some cases, there are more complex call-cliques which can be used with the
Lemma 5. They may not be easy to find and furthermore, they do not necessarily contain the
gateway. An example can be seen in Figures 5 and 6 where the demand is concentrated in one
node (the node is (3, 2) and d = 4). The symmetrical call-cliques Ka and Kb in Figure 5 only
give a lower bound of 5

2 .
A better lower bound is obtained with more complex call-cliques. Notice that the solution

depicted in Figure 6 improves the solution of Figure 5. The call-clique K2 (see Figure 6(b)) is
used twice and K1 (see Figure 6(a)) and K3 (see Figure 6(c)) once. Figure 6(d) shows all the 4
call-cliques which overlap each other and the value in each edge e represents λ(e) (the number
of call-cliques using e).

A vertex vi represents a node at distance i of g with i ∈ {2 . . . 5}. Table 1 indicates, for each
vertex vi, the minimum number of edges of K1, K2 (repeated twice) and K3 used by a path from
(3, 2) to the gateway (0, 0). It follows that there is no path using less than 11 edges. Therefore,

d = 4

g

(a) call-clique K1

d = 4

g

(b) call-clique K2 (re-
peated 2x)

d = 4

g

(c) call-clique K3.

1

1 1 1

1 11

211

1

22

11

1 1

3

33

2

1

2

2

22

233
3

33

3 2

2 2

2

2

3

3

1 3

2

0 1 2 3 4 5 6

2

6

5

4

3

1

0g

(d) Covering of the edges by
K1, 2xK2 and K3.

Figure 6: Four call-cliques are needed to obtain a better (tight) lower bound of 11
4 b((3, 2)) for

the example in Figure 5.
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Table 1: Possible paths from (3, 2) to the gateway (0, 0) use at least 11 call-cliques edges.

v5 v4 v3 v2 K1 K2(×2) K3 Total

- (4, 0) (3, 0) - 3 4 - 11
- (3, 1) (3, 0) - 5 3 - 11
- - (2, 1) - 5 3 - 11
- (2, 2) (1, 2) (1, 1) 5 3 - 11
- (2, 2) (1, 2) (0, 2) 5 2 2 11
- (1, 3) (1, 2) (1, 1) 4 3 2 12
- (1, 3) (1, 2) (0, 2) 4 2 4 12
- (0, 4) (0, 3) - 2 2 5 11

(1, 4) (1, 3) (0, 3) - 2 2 5 11
(2, 3) (1, 3) (0, 3) - 3 2 4 11

 3
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 10  7 
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22

2
1

1 1

1

(a) A lower bound of 12
given by a call-clique.

2(b)

2(c)
2(d)

2(e)
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2
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2
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1
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(b) Wmin = 12.5 with frac-
tional round weights.

1(g)

1(f) 1(g)

2(a) 2(b)

2(c)2(e)
1(h)

1(f)

2(d)

 3

 2

 6

 8

 10  7 
 5

 1

 9

 0

 4

(c) Wmin = 13 with integer
round weights.

Figure 7: Example of lower bound calculation (d = 2).

minP∈P(3,2),g
(LB(P,K1) + 2LB(P,K2) + LB(P,K3)) > 11. Furthermore, one of the call-cliques,

K∗, satisfies cw(K
∗) > 11

4 b((3, 2)). The mathematical model in [21] showed that this bound is
optimal.

3.3 Lower bounds using Critical Edges

Lemma 5 (or Corollary 2) does not attain the best lower bounds in all cases. Consider the
example of Figure 7, where d = 2. We have 5 maximal call-cliques all containing the edges
at level 1 plus two edges at level 2. Then, noting that each edge at level 2 appears exactly in
two call-cliques, we apply Corollary 2 to obtain Wmin >

∑

v;d(v,g)>1 b(v) +
2
5

∑

v;d(v,g)>2 b(v). In

the particular case where b(v) = 1 for the 10 vertices, we obtain Wmin > 10 + 2
5 · 5 = 12 (see

Figure 7(a)). In the next paragraphs, we show that the lower bound can be increased for the
cases where it is not already optimal.

At level 1, each round R can contain at most 1 edge (they are a,b,c,d and e in Figure 7(b)).
So, a flow of 10 (from the 10 nodes) contributes with a weight of 10 to cross this level as in
Corollary 2. At level 2, each round R can contain at most 2 edges.

Then, the contribution to W from the 5 vertices at level 2 is, in fact, at least 5
2 . We need a

weight of 2.5 to transfer a flow of 5, so Wmin > 10 + 5
2 = 12.5. Figure 7(b) shows a fractional

solution with Wmin = 12.5, that uses 5 rounds (f,g,h,i and j) with a weight of 1
2 each.

In the IRWP, the weight of the rounds can not be fractional. So, we need at least ⌈52⌉ = 3
rounds (f, g and h) with a weight of 1 each, as shown in Figure 7(c). An integer solution for
IRWP with Wmin = 13 is depicted in this figure.

This result is not surprising if we consider the conflict graph. Indeed, the conflict graph

13



induced by the edges at level 2 is a cycle of length 5. Even though it contains a maximal
independent set of size 2, we need 3 labels (with integer weight equals to 1 each) to color the
whole cycle. It gives a weight of 3 to cross this level, therefore Wmin > 13. In the fractional case,
it is known that we can use a fractional coloring with 5

2 labels, so Wmin > 12.5. For information,
the Wmin for the IRWP can be different of the round up of the Wmin for the RWP (e.g. the
instance in Figure 6 has Wmin = 2.75b((3, 2)) for RWP and Wmin = 5b((3, 2)) for IRWP).

For a set of edges F , let us denote by α(F ) the maximum number of non-interfering edges
(it corresponds to the size of an independent set of the conflict graph generated by F ).

Definition 3 Let K be a call-clique. An edge e /∈ K is said to be critical for K if K ∪ {e} is a
call-clique.

Lemma 6 Let K be a call-clique and F a set of critical edges for K, then W > cw(K)+ cw(F )
α(F ) .

Proof: As K ∪ {e} is a call-clique, for any e in F , a round can contain at most one edge of
K ∪ {e}. Then,

W =
∑

R∈R

w(R) >
∑

R;|R∩K|6=0

w(R) +
∑

R;|R∩F |6=0

w(R) (3)

First, as K is a call-clique, |R∩K| is either 0 or 1 for any round R, then
∑

R;|R∩K|6=0w(R) =
cw(K). By definition, R contains non-interfering edges, so |R ∩ F | 6 α(F ) and cw(F ) =
∑

R w(R)|R ∩F | =
∑

R;|R∩F |6=0w(R)|R ∩F | 6 α(F )
∑

R;|R∩F |6=0w(R). Finally, by (3), we have

that W > cw(K) + cw(F )
α(F ) .

�

Consider the specific case where K = K0 and F=E⌈ d
2
⌉+1 (the set of edges at level ⌈d2⌉+ 1).

Notice that, any path towards g from a vertex at distance at least ⌈d2⌉+ 1 must use an edge of
E⌈ d

2
⌉+1. Consequently, we obtain the following result.

Corollary 3 If all the edges of E⌈ d
2
⌉+1 are critical for K0, then

W > S0 +
1

α
(

E⌈ d
2
⌉+1

)

∑

v;d(v,g)>⌈ d2⌉+1

b(v)

For example, if we apply Corollary 3 for the grid with the gateway in the middle and d = 2k,
we have a new proof for Proposition 3. It is due to the fact that all the edges of Ek+1={(k +
1, 0), (k, 0)), ((0, k + 1), (0, k)), ((0,−k − 1), (0,−k)), ((−k − 1, 0), (−k, 0)} are critical for K0

and furthermore, they are non-interfering.

3.4 Relationship with duality

In the following, we show how our method to compute lower bounds is related to the dual of
the RWP. The dual formulation of RWP has been studied in [24]. A dual version of the RWP

for gathering instances can be described as follows.

Definition 4 ([24]) The dual problem of the RWP consists of finding a metric l : E → R
+

satisfying the constraint that the maximum length of a round is 1 (i.e.
∑

e∈R l(e) ≤ 1,∀R ∈
R). The goal consists of maximizing the total distance that the traffic needs to travel Λ =
∑

v∈V dl(g, v)b(v), where dl(v, g) 6
∑

e∈P l(e),∀P ∈ Pv,g.

14



Shortly, the problem defines dual values (the l(e) variables) maximizing the path of minimum
length (note that the l(e) variables are limited by the constraints

∑

e∈R l(e) ≤ 1,∀R ∈ R that
prevent dl goes to infinity).

Now, we show that it is possible to construct a feasible dual solution for RWP starting
from the call-cliques. In fact, the result given by Corollary 2 can be obtained by defining the
appropriate dual solution. Recall that, according to Corollary 2, K = {K1, . . . ,Kq} is a family
of call-cliques and, λe is the number of call-cliques using the edge e (see Figure 6). Defining the
metric l : E → R

+ as l(e) = λe

q , we can verify that l is a feasible dual solution. For that, we

should verify that
∑

e∈R
λe

q 6 1,∀R ∈ R, that is
∑

e∈R λe 6 q,∀R ∈ R. It is true, as a round
can not use a call-clique more than once (so touching at most q call-cliques), or it would have
interfering edges which contradicts the round definition.

Moreover, the lower bound given by lemma 6 can also be obtained by the dual approach
defining the metric l as: 1 for the edges in K; 1/α(F ) for the edges in F and 0 for the remaining
edges.

4 Upper bounds: general results

In this section, we deal with finding upper bounds for the RWP in a general graph with the
gateway g placed anywhere. The interference model is the distance-d model with any d (odd or
even), unless specified differently.

To find upper bounds, we propose routing strategies giving a small total weight W . For that,
to each vertex v, we associate some paths from v to g carrying the demand b(v). Furthermore,
we assign labels (or colors) cj to these paths. Each label cj corresponds to a round Rj and so
we have to ensure that the edges with the same label do not interfere. Therefore, we introduce
the notion of interference free γ-labeled paths.

4.1 Interference free γ-labeled paths

Definition 5 (Interference free γ-labeled paths) A set of paths (or cycles) are said to be
interference free γ-labeled if we can assign to the edges γ labels such that two edges with the same
label do not interfere.

In order to obey the inequalities in (2), cw(e) > φ(e), we give to each round Rj a weight
w(Rj) equal to the maximum φ(e) among all edges e labeled cj . With this strategy, we obtain
the following proposition.

Proposition 4 Let G be a general graph with the gateway g placed anywhere and let V ′ =
{v1, ..., vπ} be a family of nodes (not necessarily different, but a node v can be repeated at most
b(v) times in V ′) with g /∈ V ′. For any binary interference model, if there exist π pairwise
interference free γ-labeled paths, each one connecting one element of V ′ to g, then we can satisfy
a demand of 1 from each vi ∈ V ′ with a total weight W = γ.

Proof: We send a flow of 1 in each path. After that, each edge labeled with one of the γ labels
cj is associated with a round Rj of weight 1. The set of edges used by Rj are non-interfering,
as the paths are interference free γ-labeled. Furthermore, the inequalities in (2) are respected
as cw(e) = φ(e) = 1. �

We use Proposition 4 mainly in two cases: all the v in V ′ are different or all the v in V ′

correspond to the same vertex. In the latter case, Proposition 4 gives the following.
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(a) One node using 2 paths. (b) Two nodes using 2 paths.

Figure 8: Main routing strategies.

Corollary 4 If there exist π pairwise interference free γ-labeled paths from v to g, then we can
route the demand b(v) with γ rounds with a total weight W = γ

π b(v).

Proof: By Proposition 4, with all vi = v, we can route a flow of π in γ rounds of weight 1 and
so a flow of b(v) in γ rounds of weight b(v)

π each. �

We use two main routing strategies. Either we route the total demand b(v) of a vertex v
by finding interference free paths from v to g and applying Corollary 4 (see Figure 8(a)); or we
combine paths issued from v with paths issued from other nodes (see Figure 8(b)). We have to
do different combinations to be able to route all the demands.

4.2 Distance-d model of interference and the Width

Here we present upper bound results concerning the distance-d model of interference. In some
applications, we need to route the demand from v via a single path. If we use a shortest path
and we give to each edge a different label, we obtain:

Proposition 5 For any binary model of interference, we can route the demand b(v) of a node
v using a single path with a weight W 6 b(v)d(v, g).

The particular case of a node v ∈ VK0 has W > b(v)d(v, g) by Corollary 1, then we obtain:

Corollary 5 In the distance-d model of interference, the total demand B = b(v) with v ∈ VK0

can be satisfied with Wmin = b(v)d(v, g) with a single shortest path.

If v /∈ VK0 , by proposition 1 the lower bound is W >
⌈

d
2

⌉

b(v) and so it cannot be attained

using Proposition 5, (as d(v, g) >
⌈

d
2

⌉

for all v /∈ VK0). Indeed, in the case of a single path of
length > d+ 1, we need at least d+ 1 labels due to d+ 1 consecutive edges always interfere. If
we want to have an interference free path with d+1 labels, the only way is to repeat a sequence
of d+ 1 different labels in order such that d+ 1 consecutive edges have different labels. We use
this notion of repeated sequences many times, so we introduce the following definition:

Definition 6 (C-labeling) Let C = (c1, c2, . . . , ck) be an ordered sequence of k labels a C-
labeling of a path (or a cycle) consists of repeated sequences of C. More precisely if an edge is
labeled cj then the next edge is labeled cj+1 (where ck+1 = c1). Note that if we give the label of
an edge, then all the labels of the path are uniquely determined. We use the sentence “we C-label
a path” for short to mean that we use a C-labeling for this path.

This construction does not always work (see later an example in Figure 12 in which the path
in a grid turns back at distance shorter than d making a “short U ”). In that case, there are
two edges far away (that are at distance > d on the path), but at distance < d in the graph.
Thus, the path can not be interference-free d+1-labeled if these two edges have the same label.
Therefore, we introduce the following definition:
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Definition 7 (Width d) A path (or a cycle) has width d, if two edges at distance > d in the
path (or cycle) are also at distance > d in the graph.

Proposition 6 In the distance-d model of interference, a path of width d can be interference
free (d+ 1)-labeled.

Proof: We C-label the path with an ordered sequence C of d+ 1 labels. If two edges have the
same label, then they are necessarily at distance > d in the path and, by definition of the width,
they are also at distance > d in the graph and so they do not interfere. �

Proposition 7 In the distance-d model of interference, a shortest path between any pair of
points of the graph can be interference free (d+ 1)-labeled.

Proof: By Proposition 6, it suffices to prove that a shortest path has width d. Two edges at
distance > d in a shortest path are also at distance > d in G; otherwise, we have a shortcut
creating a shorter path, that is a contradiction. �

Corollary 6 Considering the distance-d model of interference and a general graph, we can route
a demand of b(v) using a shortest path with weight W 6 (d+ 1)b(v).

Consequently, if we route the demand of each node with a shortest path, we obtain the
following approximation.

Theorem 1 In the distance-d model with d > 1, there exists a d+1
⌈ d
2
⌉
-approximation for the RWP

problem.

Proof: We have, by Proposition 1 (for the nodes v /∈ VK0), a lower bound of ⌈d2⌉b(v) and by
Corollary 6, an upper bound of d+ 1. �

Note that it gives a 2-approximation for d odd and, for d even, an 2
d + 2-approximation and

so in the worst case (d = 2) a 3-approximation.
We can also use Proposition 7 to design 2 interference free d+1-labeled paths in the following

case.

Corollary 7 If d(v1, v2) = d(v1, g) + d(g, v2) then we can send a flow of 1 from v1 and a flow
of 1 from v2 with d+ 1 rounds.

Proof: The path formed by the union of a shortest path from v1 to g and the shortest path
from v2 to g is a shortest path between v1 and v2, then it can be d+1-labeled by Proposition 7.
�

Theorem 2 Let G be a general graph with the gateway g placed anywhere and let d be odd
(d = 2k − 1). In the distance-d model of interference, if we can associate to v a family of nodes
Vv such that

• d(v, vj) = d(v, g)+ d(g, vj), for all vj in Vv (there exists a path with width d between v and
vj containing g), and

•
∑

j b(vj) > b(v),

then the demand b(v) from v and a demand b(v) from nodes in Vv can be satisfied with a weight
W = (d + 1)b(v). Summarizing, a demand of 2b(v) can be satisfied with a weight (d + 1)b(v)
obtaining a ratio of d+1

2 per unit of demand.
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Proof: We start choosing a node vj in Vv. Corollary 7 guarantees that we can send to g
a flow of min{b(v), b(vj)} from vj and the same quantity of flow min{b(v), b(vj)} from v using
d + 1 rounds. Then, we have used a weight of (d + 1)min{b(v), b(vj)}. We repeat the process
choosing a node from Vv with positive remaining demand. The process is repeated until all the
demand b(v) from v has been routed. �

Cycles play an important role and are used by the routing strategies as illustrated in Figure 8.
Indeed, a cycle containing g induces for any vertex v (of the cycle) two paths from v to g. For
any pair of vertices v1 and v2, it induces two paths, one from v1 to g and another from v2 to g.

Proposition 8 In the distance-d model of interference, a cycle of width d can be interference
free (d+ 1)-labeled if and only if its length is a multiple of d+ 1.

Proof: Let C-label the cycle with C = c1...cd+1 an ordered sequence of d + 1 labels. Notice
that this labeling pattern is the only interference-free candidate using only d+ 1 labels.

If the length of the cycle is a multiple of d + 1, then the edges labeled ci are at a distance
multiple of d on the cycle, and so by definition of width at distance > d in the graph. If the
length is not a multiple of d+ 1 then the last edge of the path labeled c1 is at distance < d of
the first edge e1 also labeled c1, therefore these edges interfere. �

Corollary 8 In the distance-d model of interference, if there exists a cycle containing v and g
of width d and of length multiple of d+1 then the demand b(v) of a node v can be satisfied with
a weight W 6 d+1

2 b(v).

Proof: By Proposition 8, we have two interference free (d+1)-labeled paths from v to g. Then,
we can route half of the demand on each path obtaining, by Corollary 4, W 6 d+1

2 b(v). �

If d is odd, we have a lower bound of d+1
2 b(v) (see Proposition 1) so, by Corollary 8, we

obtain:

Theorem 3 In the distance-d model of interference with d odd (d = 2k − 1), if there exists a
cycle containing v /∈ K0 and g (two paths from v to g) of width d and length multiple of d + 1,
then the demand b(v) of v can be satisfied with a weight Wmin = d+1

2 b(v) = kb(v).

Special results for the IRWP in the Primary Node Model

We can also use two paths interference free (d+1)-labeled issued from two different vertices. In
the following, we show applications of Corollary 4.

Corollary 9 Let d = 1 (primary node model) and let G be a 3-connected graph. If
∑

v b(v) is
even then Wmin =

∑

v b(v) is solution for IRWP.

Proof: As the graph is 3-connected, there exists an even cycle from any node v to g. In this
way, for all v, we first route a demand of ⌊ b(v)2 ⌋ by each one of the two paths of its even cycle
(see Corollary 8). After this step, there are an even number of nodes with demand 1 and the
remaining nodes with demand 0. More precisely, it remains b(v) = 0 for all nodes with b(v)
even; otherwise, b(v) = 1. For this remaining demand, which keeps satisfying the condition
(
∑

v b(v) even), we route it by using a pair of disjoint paths (so interference free as d = 1, that
is 2-labeled) from u to g and from v to g where u and v are two nodes with demand 1. �

The hypothesis of Corollary 9 may be weakened. Instead of requiring a 3-connected graph,
it is only needed that there exists an even cycle from g to any node with demand. As is true for
2-connected bipartite graphs (e.g. grids), we obtain the following.
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Corollary 10 Let d = 1 (primary node model) and let G be a 2-connected bipartite graph. In
the distance-d model of interference, if

∑

v b(v) is even then Wmin =
∑

v b(v) is solution for
IRWP.

Corollary 11 Let d = 1 (primary node model) and let G be a 2-connected graph. In the distance-
d model of interference, if

∑

v b(v) is even and for each v, b(v) is integer such that b(v) 6
1
2

∑

u b(u), then Wmin =
∑

v b(v) is solution for IRWP.

Proof: We can always route together a flow of 1 from each of the two greatest demands, as
b(v) 6 1

2

∑

u b(u). That is done by using a pair of disjoint paths (so interference free as d = 1)
from u to g and from v to g, which exists as G is 2-connected [28]. Then, we repeat this process
on the remaining demands, which keep satisfying the conditions. �

Note that the condition in Corollary 11 can be weakened. For example, if there exists only
one node with positive integer demand, which is a neighbor of g, its demand can be directly
routed to g and so the condition

∑

v b(v) being even is not necessary. Similarly, if G is bipartite,
we can route in two rounds a demand of two for any vertex using an even cycle (by Corollary 8).
So condition b(v) 6 1

2

∑

u b(u) is not needed, as we can first route for each vertex v the maximum
even integer 6 b(v).

In some cases, we also need more complicated routing protocols (like 4 paths or 2 cycles).
In the Sections 6 and 7 of this article, we give solutions for the case of grids as an application
of the presented methodology.

5 Lower bounds for grids

In the next sections, we answer the question asked in [24] of finding simple efficient algorithms
for grids. For this purpose, we apply the tools presented in Section 3 to obtain lower bounds for
grids. We consider the gateway placed either in the middle or in the corner. In both cases, the
results depend on the parity of d.

In Sections 6 and 7, we give upper bounds which in most of the cases match the lower bounds
given in the following section, therefore obtaining tight results.

5.1 Gateway in the middle: a lower bound

As shown before, in Proposition 1, a lower bound for the RWP with the distance-d model is
S0 =

∑

v∈VK0
d(v, g)b(v) +

⌈

d
2

⌉
∑

v/∈VK0
b(v). When d is even (d = 2k), this lower bound can be

improved to S0 +
1
4

∑

v;d(v,g)>k b(v) as shown in Proposition 3. We present now specific results
for grids when the demand is uniform and the gateway is in the middle. Propositions 9 and 10
present closed formulas for d odd and d even respectively. In Theorems 7 and 16, we prove that
these formulas give the optimal solution.

In the following we consider a grid of size p × q with N vertices. Any node in the grid
is represented by coordinates (x, y) with −p1 6 x 6 p2 and −q1 6 y 6 q2. The gateway
corresponds to coordinate (0, 0). (Refer to Section 2 for more details about the coordinate
system). Recall that by definition, gateway in the middle means a gateway far from the borders
with min(p1, p2, q1, q2) > ⌈d+1

2 ⌉ (see Section 2). We denote by Ni the number of vertices at
distance i of the gateway. For i 6 min(p1, p2, q1, q2) (in particular for i 6 k + 1), we have
Ni = 4i.

Proposition 9 Let d = 2k− 1 be odd and let G be a grid p× q with min(p1, p2, q1, q2) > ⌈
d+1
2 ⌉,

N vertices and the gateway in the middle. Considering uniform demand (b(v) = b,∀v), then
Wmin > b(k(N − 1)− 4

6k(k + 1)(k − 1)).
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Proof: By Proposition 1, Wmin > S0 =
∑

v∈VK0
d(v, g)b(v) +

⌈

d
2

⌉
∑

v/∈VK0
b(v). As b(v) = b, we

obtain
∑

v∈VK0
d(v, g)b(v) = b

∑

i6k iNi and
⌈

d
2

⌉
∑

v/∈VK0
b(v) = kb((N − 1) −

∑

i6k Ni). Then

we have:
Wmin > b

∑

i6k

iNi + kb((N − 1)−
∑

i6k

Ni)

= b
∑

i6k

4i2 + kb(N − 1)− kb
∑

i6k

4i

= kb(N − 1)− 4b[k
k(k + 1)

2
−

k(k + 1)(2k + 1)

6
]

= kb(N − 1)− b
4k(k + 1)(k − 1)

6

�

Proposition 10 Let d = 2k be even and G be a grid p × q with min(p1, p2, q1, q2) > ⌈
d+1
2 ⌉, N

vertices, gateway in the middle and uniform demand (b(v) = b,∀v). Then Wmin > b((k+ 1
4)(N−

1)− k(k+1)(4k−1)
6 ).

Proof: By Proposition 3, Wmin > S0 +
1
4

∑

v;d(v,g)>k b(v) = S0 +
1
4b((N − 1)−

∑

i6k Ni). From

Proposition 9, S0 = kb(N − 1)− 4
6kb(k + 1)(k − 1) and

Wmin > b(k +
1

4
)(N − 1)− b

k(k + 1)(4k − 1)

6
.

�

5.2 Gateway in the corner: a lower bound

Using the same technique as above, we now present lower bounds when the gateway is placed
in the corner of the grid. Similar to the case with the gateway in the middle, the results depend
on the parity of d.

Notice that, when the gateway is placed at the corner, we can construct call-cliques bigger
than K0. We define Kmax as the call-clique composed by the edges delimited by the vertices
VK0 ∪S where S = {v | d(v, g) 6 d+1 and d(v∗, v) 6 ⌈d2⌉} and v∗ denotes the node (⌈d2⌉, ⌈

d
2⌉) =

(k, k). An example of Kmax for d = 9 (k = 5) is depicted in Figure 9. Another example for
d = 15 (k = 8) is depicted in Figure 10 where the values of the lower bound, given in the next
lemma, are also indicated.

In the following, we introduce the individual lower bound called lb(v) which is a lower bound
for routing the demand of v and is reached in many cases (see Subsection 6.2). The value
depends on the zone of the grid to which v belongs (see Figure 21).

lb(v) =



















d(v, g) for v ∈ VK0

min
{

3 (d+1)
2 − d(v, g); d + 1− d(v, v∗)

}

for v ∈ S

d+1
2 otherwise.

(4)
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g = (0, 0)

v∗

⌈

d
2

⌉

(0, k)

(k, 0)

Figure 9: Call-clique Kmax for d odd with g at the corner (d = 9, then k = 5). The call-clique
K0 consists in all the bold edges.
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Figure 10: Lower bound per node in uniform demand case. The black nodes indicate the nodes
whose lower bound corresponds to their distance to the gateway (d = 15, then k = 8).
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5.2.1 Case d odd

In this section, we study the case when d is odd (d = 2k − 1). We use Kmax, the maximum
call-clique containing K0, to obtain better lower bounds. (We see later that this bound is already
optimal). In this section, we suppose that the grid is large enough to contain the vertices of
Kmax, that is min(p, q) > ⌊3k2 ⌋.

Lemma 7 Let d = 2k−1 be odd and let G be a grid p×q with min(p, q) > ⌊3k2 ⌋ and the gateway
at the corner, then LB(v,Kmax) = lb(v)

Proof: If v ∈ VK0 , any shortest path from v to g uses d(v, g) edges in K0 (and so in Kmax).
Note that, in that case, d+ 1 − d(v, v∗) = d(v, g) as d(v∗, g) = d+ 1. Otherwise, any path has
to use k edges in K0 giving the lower bound for v /∈ S. In the remaining part of the proof, we
deal with the case when v ∈ S. If v ∈ S any path from v to g use k edges in K0 plus certain
edges connecting nodes in S. This number of used edges is either d(v, g) − k needed to attain
a vertex of K0; or 2k − d(v, g) to attain the diagonal bordering S composed by the vertices at
distance 2k from g (the vertices v = (x, y) such that x+ y = 2k) ; or k − d(v, v∗) to attain the
diagonals bordering S below (y = x+ k) or above (x = y + k). Depending on the position of v
in S, the minimum is attained by one of the values as summarized in Statement 4. �

Theorem 4 Let d = 2k − 1 be odd and let G be a grid p × q with min(p, q) > ⌊3k2 ⌋ and the
gateway at the corner, then

Wmin >
∑

v

b(v) lb(v).

Proof: W > cw(Kmax) > φ(Kmax) >
∑

v φv(Kmax) >
∑

v b(v) lb(v). �

Using Theorem 4, we can derive an explicit formula for the lower bound when the demand
is uniform.

Proposition 11 Let d = 2k− 1 be odd and G be a grid p× q with min(p, q) > ⌊3k2 ⌋, N vertices
and the gateway at the corner. Assuming uniform demand (i.e. b(v) = b,∀v), then

W > b

(

d+ 1

2
(N − 1) + f(d)

)

where f(d) = d+1
192 (d − 3)(d − 19) if d = 4λ − 1 (k even); and f(d) = d+1

192 (d − 1)(d − 21) if
d = 4λ+ 1 (k odd).

Proof: We have to count
∑

v lb(v). For all the vertices not in VK0 ∪ S, lb(v) = k. (Recall that
S is defined as {v | d(v, g) 6 2k and d(v, v∗) 6 k}). For the other vertices, we compute the
value | lb(v) − k|. We obtain W > b

(

d+1
2 (N − 1) +Bk −Ak

)

, where Ak =
∑

v∈VK0
(k − lb(v))

and Bk =
∑

v∈S(lb(v)− k).
For the vertices in VK0 , lb(v) = d(v, g) 6 k. We have i + 1 vertices at distance i. So,

Ak =
∑k−1

i=1 (i+ 1)(k − i) = (k−1)k(k+4)
6 .

For v ∈ S, lb(v) > k. Consider the 4 diagonals delimiting S namely x+ y = k; x + y = 2k;
x = y + k; y = x+ k. For the vertices (x, y) in S at distance i > 0 of one of the 4 diagonals, we
have lb(v) = k + i. In order to compute Bk, we distinguish two cases depending on the parity
of k. We use an auxiliary parameter λ to make the calculation clear. For the case even, k = 2λ,
the number of vertices in S with value of lb(v) = k + i is 3k − 4i for 1 6 i 6 λ − 1, and λ+ 1
for i = λ. For the case odd, k = 2λ+ 1, they are in number 3k − 4i for 1 6 i 6 λ. Altogether,
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for the case k = 2λ, Bk =
∑λ−1

i=1 i(3k − 4i) + λ(λ + 1) = k
6 (5λ

2 + 1). For the case k = 2λ + 1,

Bk =
∑λ

i=1 i(3k − 4i) = k
6 (5λ(λ + 1)).

Finally, the value of Bk −Ak to be added to d+1
2 (N − 1) is: for the case k = 2λ, Bk −Ak =

k
6 (λ− 1)(λ− 5) and for the case k = 2λ+ 1, Bk −Ak = k

6λ(λ− 5). �

5.2.2 Case d even.

Let us now consider the case when d is even, d = 2k. As we have seen in the example of Figure 3,
we have to consider in that case two cliques K1 and K2. These two cliques contain a clique Kmax.
The clique Kmax is the set of edges connected by the vertices of VK0 ∪ S. In addition to Kmax,
K1 contains the ⌊k2⌋+ 1 vertices v = (x, y) such that x+ y 6 2k + 1 and x = y + k + 1. In the

same way, K2 contains the ⌊k2⌋ + 1 vertices v such that x+ y 6 2k + 1 and y = x+ k + 1 (see
example in Figure 11).

Theorem 5 Let d = 2k be even and let G be a grid p × q with min(p, q) > 3k
2 and the gateway

at the corner. Then

Wmin >
∑

v

b(v) lb(v).

Proof: We use Lemma 5 with the two cliques K1 and K2. If v ∈ VK0 , any path from v to
g uses d(v, g) edges in Kmax. If v /∈ VK0 ∪ S, any path from v to g use k edges in Kmax and at
least one in K1 or one in K2 giving a lower bound of k + 1/2 = d+1

2 . If v ∈ S, we distinguish 3
cases depending on the number of edges needed to attain the border of S:

• d(v, g)− k to attain a vertex v = (x, y) such that x+ y = k of K0, and so d(v, g) edges in
Kmax;

• 2k + 1 − d(v, g) to attain the diagonal composed by the vertices at distance 2k + 1 (i.e,
x+ y = 2k + 1), but then it is needed d+1

2 (as seen before) to attain the gateway;

• k − d(v, v∗) to attain the diagonal below (i.e, x = y + k) or above (y = x+ k). Then it is
needed k edges in Kmax and either 2 in K1 (vertices below) or 2 in K2 (vertices above) or
1 in both K1 and K2, so altogether 2k − d(v, v∗) + 1/2 · 2 = d+ 1− d(v, v∗).

According to the position of v, the minimum is attained by one of the values summarized in
Statement 4. We conclude using the same proof as in Theorem 4.

�

Note that the formula is identical to that of the case d odd. When the demand is uniform
and the grid is large enough to contain the vertices in K1 and K2 (that is min(p, q) > 3k

2 + 1),
calculations similar to those in Proposition 11 give the following result.

Proposition 12 Let d = 2k be even and let G be a grid p× q with min(p, q) > 3k
2 and g at the

corner. Considering uniform demand (i.e. b(v) = b,∀v), then

W > b

(

d+ 1

2
(N − 1) + f(d)

)

where f(d) = λ
12 (4λ

2 − 21λ− 1) if d = 4λ; and f(d) = −1
2 +

λ
12(λ+ 1)(4λ− 19) if d = 4λ+ 2.

Proof: The proof is the same than Proposition 11 except for the values of Bk and Ak. Now
Bk =

∑λ
i=1(i−

1
2)(3(k+1)−4i)+(λ+ 1

2)(λ+1)+ 1
2

∑λ
i=1(k− i+1) = 1

12 (6+31λ+45λ2+20λ3)

if d = 4λ + 2 and Bk =
∑λ

i=1(i −
1
2)(3(k + 1) − 4i) + 1

2

∑λ
i=1(k − i) = λ

12(1 + 15λ + 20λ2) if
d = 4λ.
So, as Ak =

∑k
i=1(i−

1
2)(k − i+ 2) then f(d) = Bk −Ak and the result follows. �
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Figure 11: Two overlapped cliques for d even with g at the corner (d = 8). Dotted edges belong
exclusively to K1 and dashed edges belong exclusively to K2.

6 Upper bounds for grids with single source routing

In a grid the paths or cycles have a specific structure. Indeed, they are formed by a succession of
horizontal and vertical subpaths. To describe such a path or cycle, we only give the vertices where
there is a change of direction. So between two vertices (x, y0)−−(x

′, y0), we have an horizontal
path consisting of all vertices (u, y0) with x 6 u 6 x′ if x < x′, or x′ 6 u 6 x if x > x′. Similarly
between two vertices (x0, y)(x0, y

′), we have a vertical path (x0, y) −−(x0, y
′) (see examples of

paths in Figure 13(a)). We introduce the following definitions that are necessary to describe
our methods of routing.

Definition 8 (Monotonic path) We say that a path is monotonic (has a “stair” shape), if the
first and second coordinates of the vertices where there is a change of direction are ordered in a
monotonic way.

We have 2 types of monotonic paths according to xi and yi vary in the same way or not. For
example, a monotonic path P = (x0, y0)−−(x1, y0)−−(x1, y1)−−(x1, y2)−−(x2, y2)−−(x2, y3)...−
−(xm, yn) −−(xm, yn+1) is a monotonic of negative type +- (or -+), if the xi are increasing
x0 6 x1 < x2... < xm and the yi are decreasing y1 > y2... > yn > yn+1 (as the path is
undirected by considering the vertices in the opposite order we have decreasing x and increasing
y). See Figure 13(b) for an example of this case. When the vertices have both increasing (resp.
decreasing) x and y, the path is said to be monotonic of positive type ++ (resp. --).

Proposition 13 Let G be a monotonic path in a 2-dimensional grid. It can be interference free
(d+ 1)-labeled.

Proof: The x and y in this path are monotonic, then it has width d as the distance in the path
is exactly that in the graph. Thus, Proposition 6 says it can be interference free (d+1)-labeled.
See Figure 12 for an example of non monotonic path that interferes itself (“short U”). �

Definition 9 (Path distance d(P,Q)) The distance d(P,Q) between two paths P and Q is the
minimum of the distance between any edge of P and any edge of Q, d(P,Q) = mine1∈P,e2∈Q d(e1, e2).

Proposition 14 In the distance-d model of interference, two monotonic paths, P and Q, at
distance > d do not interfere. So they are d+ 1-interference free labeled.
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Figure 13: Interference free (d+ 1)-labeled paths.
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Proof: As d(P,Q) > d, we can apply directly the Proposition 13 for each path. �

Definition 10 (Diagonal of an edge) The positive (resp. negative) diagonal of an edge e,
denoted S+

e (resp. S−e ) consists of the edges of a monotonic positive (resp. negative) path where
all the subpaths are of length 1 (stairs of step 1).

Figure 13(a) shows the negative diagonal associated with the edges labeled 2 and Figure 13(b),
positive diagonal associated with the edges labeled 4. Now, we define relations between mono-
tonic paths.

Definition 11 (d-Parallel paths) Two monotonic paths P and Q are said d-parallel, if they
are of the same type negative (respectively positive) and, if e′ ∈ Q and e′ ∈ S+

e (respectively S−e )
with e ∈ P , then d(e, e′) > d. See Figure 13(b) for an example with two parallel negative paths.

Proposition 15 Given two d-parallel paths P and Q in a 2-dimensional grid G, they can be
interference free (d+ 1)-labeled.

Proof: We start labeling the path P with d + 1 labels. Each edge of Q, that is in a diagonal
set Se of an edge e in P , receives the same label of e. If there exist edges in Q that are not
in a diagonal set of P , they receive the continuation of the sequence of labels derived from the
edges in diagonal sets of P . There is no interference between the edges with the same label as,
by definition of d-parallel paths, two edges in the same diagonal are at distance > d. �

In Figure 13, we illustrate the Proposition 15 with two pair of parallel paths. In particular
two horizontal (or vertical) paths P and Q at distance d(P,Q) > ⌈d+1

2 ⌉ are d-parallel. In that
case, the distance between two edges of P and Q in the same diagonal is 2d(P,Q) − 1 > d (see
Figure 13(a) for d = 3). Similarly, if two general monotonic paths have their horizontal and
vertical sub-paths at distance > ⌈d+1

2 ⌉, the distance between two edges at the same diagonal is >

d. It is the case when one path is obtained from the other by translation of vector (⌈d+1
2 ⌉,⌈

d+1
2 ⌉),

see Figure 13(b). Note that, paths uniquely horizontal or vertical can be considered of any type,
either ++ or +- (see example in Figure 13(a)).

6.1 Gateway in the middle: routing each node separately

We consider here a strategy where the demands of each single node are routed separately, one
at a time, that we call single routing.

Definition 12 (Regions of the grid) We split the grid in 4 regions: RA,RB,RC and RD, as
shown in Figure 14.

Notice that we could chose different splittings. The results are valid as soon as the regions
are obtained by the rotation ρ of π

2 of the first one. In this article, let the first region be RA,

and let it be composed by the vertices (x, y) with x > 0, y > 1 and x+ y > ⌈d+1
2 ⌉ (to exclude

the vertices of K0). Indeed, for a vertex of v ∈ K0, we can route its demand b(v) in b(v)d(v, g)
rounds by using a shortest path with d(v, g) different labels (see Corollary 5). For a vertex
v /∈ VK0 , we have:

Proposition 16 Let d be odd or even, and let G be a 2-dimensional grid with min(p1, p2, q1, q2) >
d, and with gateway g in the middle. If v /∈ VK0, then there exists a cycle C containing v and g
that can be interference free (d+ 1)-labeled.
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Figure 15: Routing method for a node v with a cycle and d odd (d=3).

Proof: We consider only the nodes v = (x, y) of region RA. For the nodes of other regions, we
consider the cycle obtained by applying the rotation ρ to cycle C.

We construct, for any x0 > 0, a generic cycle containing all the vertices of column x0 with
y > 0 and satisfying the hypothesis of Proposition 8 (length multiple of d + 1 and width > d).
Therefore, it can be interference free (d+1)-labeled. The reader can see Figure 15 for an example
with d = 3 (k = 2), x0 = 5 and q2 = 5. The cycle C consists of the following subdipaths (we
indicate only the vertices where there is a change of direction).

(0, 0) −−(x0, 0)−−(x0, q2)−−(−d, q2)−−(−d,−α)−−(0,−α)−−(0, 0).

The length of the cycle is 2(x0 + d+ q2 +α). Le us choose α as the smallest possible integer
such that 2(x0+d)+2(q2+α) ≡ 0 (mod d+1). Therefore the cycle has a length multiple of d+1.
In the example the length of the cycle is 26 + 2α; so we choose α = 1 (length 28 ≡ 0 (mod 4)).
Note that 0 6 α 6 d and therefore the cycle fits in the grid as q1 > d. As q2 > d, the horizontal
paths are at distance > d. As we chose the vertical line at −d (choice possible, as we have
p1 > d), the vertical paths are also at distance > d. So, the cycle has width > d. �

6.1.1 Case d odd

In the case d odd with non-uniform demand, we obtain a complete solution for our problem in
Theorem 6.

Theorem 6 Let d be odd and let G be a 2-dimensional grid with the gateway in the middle and
with min(p1, p2, q1, q2) > d. Then Wmin = S0 =

∑

v∈VK0
d(v, g)b(v) + d+1

2

∑

v/∈VK0
b(v).
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Proof: The lower bound follows from Proposition 1. The upper bound follows by applying
Corollary 5 for the vertices v ∈ VK0 and Proposition 16 and Corollary 8 for the other vertices.
�

In the particular case of an uniform demand, we obtain a closed formula in Theorem 7 by
using Proposition 9.

Theorem 7 Let d = 2k− 1 be odd and let G be a grid p× q with min(p1, p2, q1, q2) > d, with N
vertices and with the gateway in the middle. Considering uniform demand (b(v) = b,∀v) then
Wmin = b(k(N − 1)− 4

6k(k + 1)(k − 1)).

6.1.2 Case d even

We already know that, for vertices in K0, a lower bound of d(v, g) is attained by using a shortest
path. But for v /∈ VK0 , we have only a lower bound of k + 1

4 by Proposition 3. Proposition 16
and Corollary 8 give for these vertices an upper bound of k+ 1

2 and therefore we get the following
approximation.

Theorem 8 Let d be even (d = 2k) and let G be a 2-dimensional grid with the gateway in
the middle and with min(p1, p2, q1, q2) > d. Then there exists a 1 + 1

4k+1 -approximation for the
RWP.

Determining precisely the value of Wmin for the single routing of any vertex is a difficult task.
However, we will see later that for most of the vertices we can reach the lower bound of k + 1

4 .
Based on Corollary 4, the only way to reach the lower bound is to find 4 pairwise interference free
(4k+1)-labeled paths from v to g. These paths have to cross the k+1-th level Ek+1 using the 4
non-interfering edges (0, k+1)(0, k), (k+1, 0)(k, 0), (0,−(k+1)(0,−k) and (−(k+1), 0)(−k, 0).
As the end part of these 4 paths, we consider the shortest path from (0, k) to g and its rotations
(from (−k, 0), (0,−k) and (k, 0) to g). Let us call the set containing the edges of these 4 shortest
paths a cross centered in g. More generally, a cross centered in v = (x, y) consists of the 4k+ 4
edges (x, y + i)(x, y + i+1), (x− i, y)(x− i− 1, y), (x, y − i)(x, y − i− 1),(x+ i, y)(x+ i+ 1, y)
for 0 6 i 6 k. The cross in v represent the beginning of the 4 paths going to v.

A cross centered in (x, y) requires 4k+1 labels, with the same label being given for the 4 edges
(x+k, y)(x+(k+1), y), (x−k, y)(x−(k+1), y), (x, y+k)(x, y+(k+1) and (x, y−k)(x, y−(k+1)).
If v is “too close” from g, it may not be possible to label the two crosses with only 4k+1 labels
(see Figure 16). That happens if d(v, g) 6 d + 1 and v = (x, y) with x 6= 0, y 6= 0. But when
x = 0 (or y = 0), we can label the 4 paths (the two crosses and the connection edges between
them) with 4k+1 labels, then reaching the lower bound (see example of Figure 20(b)). Similarly,
if v is too near from the boarder of the grid we cannot have a cross centered in v and so cannot
reach the lower bound.

In order to obtain better results, the grid is divided into several zones. We distinguish three
disjoint zones of region RA = XA ∪ YA ∪ ZA (see Figure 17):

• XA: zone composed by all nodes at distance 6 d+ 1 of the gateway, with x 6= 0 that are
not in K0.

• YA: zone composed by all nodes that are at distance at most k of the vertical or horizontal
borders.

• ZA: zone composed by all nodes that are not in XA, YA or K0. There exist special
sub-zones in ZA, they are:
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Figure 16: Routing the demand of node (1, 8) in SA, it is impossible to assign a label to the
bold edge using only 4k + 1 labels (d = 8).

– Z ′A: the first part of Z ′A corresponds to the nodes of ZA with 1 6 x 6 k + 1 ; the
second part of Z ′A corresponds to the nodes with 1 6 y 6 k + 1.

– Z ′′A: the nodes v ∈ ZA that are on the axes (x = 0).

YA

ZA

K0

k + 1

k + 1

XA

Z
′

A

d+ 1

g

Figure 17: Subzones of RA.

For nodes in XA, and YA, as indicated before the lower bound (> k+ 1
4) can not be reached

as it is not possible to construct a cross (4k + 1)-labeled, but it is not easy to give a precise
value. However, the following theorem shows that the lower bound can be reached for nodes in
ZA by considering the single routing of a node in that region. Note that the zone ZA contains
the majority of the nodes in grids with large p1,p2,q1 and q2.
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Theorem 9 Let d be even (d = 2k) and G be a 2-dimensional grid with the gateway g in the
middle and with min(p1, p2, q1, q2) > 2d and let v ∈ ZA. There exist 4 paths from v to g that can
be interference free (4k + 1)-labeled. Therefore, Wmin = 4k+1

4 b(v) for the single routing of v.

Proof: We distinguish three cases according to the node position:

• Case 1 (see scheme in Figure 18(a) and example in Figure 18(b)): node v ∈ ZA\{Z
′
A∪Z

′′
A},

that is a node with coordinates satisfying k+1 < x < p1− k and k+1 < y < q1− k. The
4 paths from g to v are:

– (0, 0) −−(x, 0)−−(x, y);

– (0, 0) −−(0, y)−−(x, y);

– (0, 0) −−(0,−(k + 1)) −−(x+ (k + 1),−(k + 1)) −−(x+ (k + 1), y) −−(x, y)

– (0, 0) −−(−(k + 1), 0) −−(−(k + 1), y + (k + 1)) −−(x, y + (k + 1))−−(x, y).

We use an ordered set of 4k + 1 labels partitioned into two disjoint ordered sequences
C and C ′ of 2k + 1 and 2k labels, respectively. For example C = 1, 2, . . . , 2k + 1 and
C ′ = 2k + 2, 2k + 3, . . . , 4k + 1. In the example d = 8, k = 4 and C = 1, 2, . . . , 9 and
C ′ = 10, 11, . . . , 17. We have to be careful that the paths are interference free labeled and
that the end edges of the crosses in g and v get the same label.

We first C-label (see Definition 6) the following 4 subpaths (drawn in blue in Figures 18(a)
and 18(b)):

– P1: (−(k + 1), y + (k + 1))−−(x, y + (k + 1))−−(x, y + k);

– P2: (x+ k, y)−−(x+ (k + 1), y) −−(x+ (k + 1),−(k + 1));

– P3: (0, y) −−(x, y)−−(x, 0);

– P4: (−k, 0) −−(0, 0)−−(0,−k).

We first C-label P1 starting with label 1 for the first edge (−(k+1), y + (k+1)), (−k, y +
(k + 1)). Let ℓ be the label of edge (x, y + k + 1)(x, y + k). In the example, ℓ = 7 In
order to get the same label on the end edges of the cross in v, we also label ℓ the edges
(x+ k, y)(x+ k + 1, y), (x− (k + 1), y)(x− k, y) and (x, y − k)(x, y − (k + 1)).

Now we C-label P2 using the label ℓ for the first edge (x + k, y)(x + k + 1, y) (the other
labels are then determined). Then we C-label P3 using the label ℓ for the edge (x− (k +
1), y)(x − k, y) (or the edge (x, y − k)(x, y − (k + 1)), as these two labels are compatible
the distance between the edges being d).

It remains to label P4. Let ǫ be the label assigned to the edge in P3 on the positive diagonal
of (0, 1)(0, 0). In the example ǫ = 2. We use a C − {ǫ}-labeling for the subpath P4 of
length 2k in such a way the edge (−1, 0)(0, 0) gets label ǫ − 1 (so edge (0, 0)(0,−1) gets
label ǫ+ 1).

There is no interference as the paths P1∪P2, P3 and P4 are by construction d-parallel and
the labels are those given in the proof of Proposition 15.

We label now the other subpaths (in green in the Figures) which are in fact reflected paths
of the preceding ones:

– P ′1: (0,−k) −−(0,−(k + 1))−−(x+ (k + 1),−(k + 1));
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(a) Labeling paths for the nodes in ZA \ {Z′
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A}.
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(b) Routing the demand of node (10, 10) in ZA. In this example, d = 8.

Figure 18: Case 1: node v ∈ ZA \ {Z
′
A ∪ Z ′′A}.
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– P ′2: (−(k + 1), y + (k + 1))−−(−(k + 1), 0) −−(−k, 0);

– P ′3: (0, y) −−(0, 0)−−(x, 0);

– P ′4: (x, y + k)−−(x, y)−−(x+ k, y).

We first give a (C ′ ∪ ǫ)-labeling to P ′3 in such a way the edge (0, 1)(0, 0) gets the label ǫ
(defined above for the labeling of P4). So we avoid interference with P4 as the label ǫ is not
used for P4. Doing so, it might be that the first edge on the path P ′3 labeled ǫ interferes
with some edge of P3 in that case we change its label to ǫ2 = j − 1 where j is the label
of the first edge of P3 (0, y), (1, y). Similarly, if the last edge on the path P ′3 labeled ǫ
interferes with some edge of P3, we relabel it ǫ3 = j′ + 1 where j′ is the label of the last
edge of P3 (x, 1), (x, 0). In the example ǫ = 2 and so we have to change the label ǫ of edge
(0, 10), (0, 9) to the label j − 1 = 1, as the label of the first edge of P3 (0, 10), (1, 10) is
j = 2. We have also to change the label ǫ of edge (8, 0), (9, 0) to 4 as the label of the last
edge of P3 (10, 1), (10, 0) is j′ = 3.

Let ℓ′ be the label of edge (0, k)(0, k + 1) ; it is also by construction the label of edge
(k, 0), (k +1, 0). To respect the labeling of the cross in g = (0, 0), we give also the label ℓ′

to the edges (−(k+1), 0)(−k, 0) and (0,−k)(0,−(k+1)). Now we give a (C ′ ∪ ǫ)-labeling
to P ′2 in such a way the edge (−(k + 1), 0)(−k, 0) gets the label ℓ′. It might be that the
first edge of P ′1 labeled ǫ interferes with some edge of P1 in that case we change its label
to ǫ4 = 2k+1 as the label of the first edge of P1 is 1. In the example ℓ′ = 14 and we have
to change the label of edge (−5, 14), (−5, 13) to 9.

We also give a (C ′ ∪ ǫ)-labeling to P ′1 in such a way the edge (0,−k)(0,−(k +1)) gets the
label ℓ′. If the last edge on the path P ′2 labeled ǫ interferes with some edge of P2 we relabel it
ǫ5 = j′′+1 where j′′ is the label of the last edge of P2 (x+(k+1),−k), (x+(k+1),−(k+1)).
In the example we have to change the label of edge (12,−5), (13,−5) to j′′ + 1 = 5 as the
label of the last edge of P3 (15,−4), (15,−5) is j′′ = 4.

Finally we use a C ′-labeling for P ′4 which is possible as P ′4 is of length 2k. Doing so all the
subpaths are interference free.

• Case 2 (see scheme in Figure 19(a) and example in Figure 19(b)): node v in the first part
of Z ′A (the case where v is in the second part of can be solved similarly by exchanging the
role of the coordinates). The proof is similar to the case 1. We consider the following 4
paths between g and v:

– (0, 0) −−(x+ (k + 1), 0) −−(x+ (k + 1), y − (k + 1))−−(x, y − (k + 1))−−(x, y);

– (0, 0) −−(0, k + 1)−−(−(k + 1), k + 1)−−(−(k + 1), y) −−(x, y);

– (0, 0) −−(0,−k)−−(x+ 2(k + 1),−(k + 1))−−(x+ 2(k + 1), y)−−(x, y)

– (0, 0) −−(−2(k + 1), 0) −−(−2(k + 1), y + (k + 1)) −−(x, y + (k + 1))−−(x, y).

We similarly use an ordered set of 4k + 1 labels partitioned into two disjoint ordered
sequences C and C ′ of 2k + 1 and 2k labels, respectively.

Then we use a (C ′ ∪ ǫ)-labeling for the reflected paths indicated in green in the figures
(doing some changes of the ǫ when there is an interference); in the example ℓ = 3, ǫ = 8
and ℓ′ = 10.
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• Case 3 (see scheme in Figure 20(a) and example in Figure 20(b)): node v ∈ Z ′′A (x = 0).

We first C-label the following 4 subpaths (in blue in Figures 19(a) and 19(b)).

– P1: (−2(k + 1), y + (k + 1)) −−(x, y + (k + 1)) −−(x, y + k);

– P2: (x+ k, y)−−(x+ 2(k + 1), y) −−(x+ 2(k + 1),−(k + 1));

– P3: (−(k+1), y)−−(x, y)−−(x, y−(k+1))−−(x+(k+1), y−(k+1))−−(x+(k+1), 0);

– P4: (−k, 0) −−(0, 0)−−(0,−k).

The construction presented below is simpler than that for the case 1 but we need a little
more space in the grid). We consider the following 4 paths between g and v = 0, y):

– (0, 0) −−(0, y);

– (0, 0) −−(d, 0) −−(d, y)−−(0, y);

– (0, 0) −−(−d, 0)−−(−d, y)−−(0, y);

– (0, 0)−−(0,−(k+1))−−(2d,−(k+1))−−(2d, y + (k+1))−−(0, y+ (k+1))−−(0, y).

We use again two disjoint ordered sequences C and C ′ of 2k+1 and 2k labels, respectively.
We first C-label the following 2 subpaths (drawn in blue in Figures 20(a) and 20(b)).

– P1: (0, y + k)−−(0, y + (k + 1)−−(2d, y + (k + 1))−−(2d,−(k + 1));

– P2: (−d, y) −−(x, y)−−(0, 0)−−(d, 0).

We first C-label P1, starting with label 1 to edge (0, y+k)(0, y+(k+1). Then, we C-label
P2 in such a way edge −((k + 1), y)(−k, y) receives label 1 to respect the labeling of the
cross in v = (0, y) (edge (0, y − k)(0, y − (k + 1) gets also label 1). Then we (C ′ ∪ ǫ)-label
the reflected path P ′1 = (−d, y)−−(−d, 0)−−(0, 0)−−(0,−(k +1))−−(2d,−(k+1)) in such
a way the edge (−(k + 1), 0)(−k, 0) receives the same label ǫ as the edge (0, k)(0, k + 1)
(to respect the labeling of the cross in (0, 0). We also (C ′ ∪ 1)-label the reflected path P ′2
in such a way the edge (k, y)(k + 1, y) receives label 1.

�

6.2 Gateway in the corner: routing the demand of a single node

Now, we consider the case where the gateway is in the corner. Recall that we suppose that
the gateway g is placed at vertex (0, 0) and we consider a p × q grid with vertices (x, y) where
0 6 x 6 p and 0 6 y 6 q. In view of the example in Figure 5 and Figure 6 (vertex (3, 2) for
d = 4), determining Wmin when the demand is concentrated in a node can be very difficult for
specific vertices. However, we show later that for most of the vertices we can determine it.

In Section 5.2, we define the individual lower bound lb(v) of a node v, and proves that
Wmin > lb(v)b(v). Now we give a routing with Wmin = lb(v)b(v) for the following subregions
of the grid where we recall that v∗ = (k, k) (see Figure 21):

• ZSP the vertices for which the lower bound is the distance of a shortest path (lb(v) =
d(v, g)). This zone includes the vertices of K0. They are according the proofs in Section 5.2
the vertices (x, y) such that x 6 k, y 6 k and d(v, g) 6 3k

2 . Indeed, in that case d + 1 −
d(v, v∗) = d(v, g) as d(g, v∗) = d+ 1.
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(b) Routing the demand of node (1, 9) in Z′

A. In this example, d = 8.

Figure 19: Case 2: node v in the first part of Z ′A.
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(b) Routing the demand of node (0, 6) in Z′′

A. In this example, d = 8.

Figure 20: Case 3: node v ∈ Z ′′A (x = 0).
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Figure 21: Zones of the grid.

• ZExt the nodes not in the square {0, d− 1}× {0, d− 1}, plus those on the axis at distance
> d+1

2 . For them the lower bound is lb(v) = d+1
2 .

• ZE the nodes contained in the square delimited by the nodes ⌈d+1
2 ⌉, ⌈

d+1
2 ⌉ and (d−1, d−1)

(in the case d odd the first node is v∗). For them the lower bound is lb(v) = d+1
2 .

• ZC (in the case d odd) the vertices (x, y) such that x 6 k, y 6 k and d(v, g) > 3k
2 . For

them the lower bound is lb(v) = d(v, v∗) + lb(v∗)

By Proposition 5 the lower bound is attained for the vertices of ZSP for the single routing of
v. In the next Theorem, we show that for the vertices of ZExt the lower bound d+1

2 is attained.

Theorem 10 Let G be a 2-dimensional grid p × q with p > 3d, q > 2d and gateway g in the
corner. If v ∈ ZExt, there exists a cycle containing both v and g that can be interference free
(d+ 1)-labeled, therefore Wmin = d+1

2 b(v) for the single routing of the demand b(v).

Proof: If v /∈ {0, d − 1} × {0, d − 1}, the lower bound is d+1
2 b(v) by Theorems 4 and 5. We

construct a generic cycle for all the vertices not in {0, d−1}×{0, d−1}, satisfying the hypothesis
of Corollary 8 (length multiple of d+ 1 and width > d). So W 6 d+1

2 b(v) for all these nodes.
We distinguish three cases according to the node position: in all the cases the conditions

insure that the cycle is inside the grid and that its length is a multiple of d + 1 and its width
> d.

1. y 6 d (and so x > d). Let q′ be the smallest integer > d such that q′+x ≡ 0 (mod (d+1));
so q′ 6 2d 6 q. We use the cycle (note that this cycle contains the vertical axis):

(0, 0) −−(x, 0)−−(x, y)−−(x, q′)−−(0, q′)−−(0, 0).

2. y > d and x 6 2d. Let p′ be the smallest integer > 2d such that p′ + y ≡ 0 (mod (d+ 1));
so p′ 6 3d 6 p. We use the cycle (note that this cycle contains the horizontal axis):

(0, 0) −−(p′, 0)−−(p′, y))−−(x, y)−−(0, y)−−(0, 0).
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Figure 22: Routing method for a node v with a cycle of width d (d = 8, x > 2d = 16, y = 14,
p = 24 > 3d, q = 17 > 2d).

3. y > d and x > 2d. We use the cycle C:
(0, 0)−−(p, 0)−−(p, y)−−(2d, y)−−(2d, y−β)−−(d, y−β)−−(d, y+α)−− (0, y+α)−−(0, 0).
In this case, the cycle has a detour as presented in Figure 22. To obtain a cycle of width
d, the variable β has to respect the constraint β 6 y − d and, to respect the grid size,
α 6 q− y. The length of the cycle is |C| = 2(p+ y+α+ β). Let γ be the smallest integer
such that p+y+γ ≡ 0 (mod (d+1)), therefore 0 6 γ 6 d. The cycle has a length multiple
of d + 1 if we choose α+ β = γ, with α and β satisfying the constraints. Such a possible
choice is:

• if q − y > γ, then choose α = γ and β = 0.

• if q − y 6 γ, then choose α = q − y and β = γ − α = γ − q + y. Here, as γ 6 d and
q > 2d, then γ − q 6 −d and so β 6 y − d as wanted.

For the example in Figure 22, we have: d = 8, x > 2d = 16, y = 14, p = 24 > 3d,
q = 17 > 2d). So, γ = 7 and the constraints are β 6 y− d = 6 and α 6 q− y = 3. We are
in the second subcase and so, we choose α = 3 and β = 4.

�

In the case d = 2, we get the following Proposition using Proposition 2 for the lower
bound and Theorem 10 for the upper bound (as in this case ZExt consists of the vertices
v /∈ {(0, 1), (1, 0), (1, 1)}).

Proposition 17 For the grid with g in the corner in the distance-2 model (d = 2)

Wmin = b(0, 1) + b(1, 0) + 2b(1, 1) +
3

2

∑

v/∈{(0,1),(1,0),(1,1)}

b(v).

The next Theorem shows that the lower bound d+1
2 is also attained for the vertices v = (x, y)

with ⌊d2⌋+ 1 6 x 6 d− 1 and ⌊d2⌋+ 1 6 y 6 d− 1 (vertices in ZE , see Figure 21).

Theorem 11 Let G be a 2-dimensional grid p × q with p, q > 6k if d = 2k − 1 or p, q > 7k if
d = 2k and gateway g in the corner. If v = (x, y) ∈ ZE, then Wmin = d+1

2 b(v) for the single
routing of the demand b(v).
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Proof: We exhibit 2 interference free 2(d+1)-labeled cycles containing v and g (that is 4 paths

from v to g each one carrying a flow of b(v)
4 ). For that we use an ordered set of 2(d + 1) labels

partitioned into two disjoint ordered sets C = (1, 2, . . . , d + 1) and C ′ = (d + 2, . . . , 2(d + 1)).
Therefore, W > d+1

2 b(v) by Corollary 4 and Wmin = d+1
2 b(v) by Theorems 4 and 5.

We first give the solution for d odd (d = 2k − 1). The first cycle consists of

• P1 = (0, 6k) −−(0, 0)−−(5k, 0) −−(5k, 2k),

• P2 = (k, 6k) −−(k, 2k − 2) −−P (x, y) −−(2k − 2, k) −−(4k, k) −−(4k, 2k) where P (x, y)
denotes a shortest path from (k, 2k − 2) to (2k − 2, k) going through vertex (x, y),

• plus the two segments (0, 6k) −−(k, 6k) and (5k, 2k) −−(4k, 2k).

We C-label P1, with label 1 given to the edge (0, 6k)(0, 6k − 1) (or (0, 0)(1, 0)). We also
C-label P2, with label k + 1 for the edge (k, 6k)(k, 6k − 1). By Proposition 15 there is no
interference. Then we we use a C ′-labeling for the segment (0, 6k) −−(k, 6k) with label 2k + 1
for the edge (0, 6k)(1, 6k) and a C ′-labeling for the segment (5k, 2k)−−(4k, 2k) with label 3k+1
for the edge (5k, 2k)(5k − 1, 2k).

P1 ↓ ↓ P2

C ↑C ↑

g = (0, 0)

v

3

4

1

2

3

3

4

1

2

3

3

4

3 4 14 1 231 2

3

4

1

2

3

4

1 3 42 1

2

2

1

4

2

78

2

3
1

5 6

(3)

(4)

(2)

(1)

C ↓

−→
C

−→
C′

4

3 1

4

2

3

−→
C

C ↓

←−
C′

(a) First cycle.

C ↓

←−
C′

←−
C′

C′ ↑

C ↑

C′ ↑

−→
C′

−→
C′

←−
P ′1

←−
P ′255 8 7 68 7 657 6

7 5 86 7 6 85 7

1

2

6

5

8

7

5

5

8

7

6

5

8

6

7 8 5 6

3

4

8

5

6

7

8

5

6
7

8

(8) (7)

g = (0, 0)

(6)(5)

(b) Second cycle.

Figure 23: Example of routing with 2 cycles for v ∈ ZE (d =3, k=2).

The second cycle is obtained by symmetry through the first diagonal as follows.

• P ′1 = (6k, 0)−−(0, 0)−−(0, 5k)−−(2k, 5k) C ′-labeled with label 2k+1 for the edge (6k, 0)(6k−
1, 0),

• P ′2 = (6k, k) −−(2k − 2, k) −−P (x, y) −−(k, 2k − 2) −−(k, 4k) −−(2k, 4k) C ′-labeled with
label 3k + 1 for the edge (6k, k)(6k − 1, k),

• plus the two segments (6k, 0)−−(6k, k) C-labeled with label 1 for the edge (6k, 0)(6k, 1) and
the segment (2k, 5k)−−(2k, 4k) C-labeled with label k+1 for the edge (2k, 5k)(2k, 5k−1).

The construction has been done in order to avoid interference. The reader can see an ex-
ample for d = 3 (k = 2), C = (1, 2, 3, 4) and C ′ = (5, 6, 7, 8) in Figure 23. To show that cycles
are interference free we have furthermore indicated in the first figure in parenthesis the C-labels
used in the second cycle and similarly in the second figure the C ′-labels used in the first cycle.

The solution for d even is obtained similarly. The first cycle consists of
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• P1 = (0, 7k) −−(0, 0) −−(6k − 1, 0) −−(6k − 1, 2k + 2) C-labeled with label 1 for the edge
(0, 7k)(0, 7k − 1)),

• P2 = (k+1, 7k)−−(k+1, 2k−1)−−P (x, y)−−(2k−1, k+1)−−(4k−1, k+1)−−(4k−1, 2k+2)
C-labeled with label k + 2 for the edge (k + 1, 7k)(k + 1, 7k − 1) where P (x, y) denotes a
shortest path from (k + 1, 2k − 1) to (2k − 1, k + 1) going through vertex (x, y),

• plus the two segments (0, 7k) −−(k + 1, 7k) C ′-labeled with label 4k − 4 if k > 3 (9 for
k = 2) for the edge (0, 7k)(1, 7k) and the segment (6k − 1, 2k + 2) −−(4k − 1, 2k + 2),
C ′-labeled with label 3k + 4 for the edge (6k − 1, 2k + 2)(6k − 2, 2k + 2).

The second cycle is obtained by symmetry to the first diagonal. �

Theorem 12 Let G be a 2-dimensional grid p×q with p, q > 6k and let d be odd. If v = (x, y) ∈
ZC , then Wmin = (d+1

2 + 2k − x− y)b(v) for the single routing of the demand b(v).

Proof: In that case v∗ belongs to ZE. We can first route the demand of v ∈ ZC to v∗ via a
shortest path in d(v, v∗) = 2k − (x+ y) rounds and then apply Theorem 11 for v∗ to route the
demand in d+1

2 b(v) rounds. �

7 Upper bounds for grids with simultaneous source routings

7.1 Gateway in the middle: routing the demand of a combination of nodes

In this article, we present a routing strategy which enables to route simultaneously the same
flow (less than or equal to the smallest demand) from 2 (for d odd) or 4 vertices (for d even).

7.1.1 Case d odd

This case is solved for the demand of a single node with a cycle (see Proposition 16). That is,
we can attain the lower bound for the problem, but not necessarily with integer round weights.
Here, we present a solution which deals with this requirement. In this solution, we pair the
vertices and find for each pair of vertices two interference free (d+ 1)-labeled paths connecting
each vertex to g. The vertices can be in the same region, in two adjacent regions, or in two
opposite regions of the grid.

Theorem 13 Let d be odd (d = 2k−1) and let G be a 2-dimensional grid with min(p1, p2, q1, q2) >
d+1, and with the gateway g in the middle. For any pair of vertices v1 and v2 not in K0, there
exist 2 paths that can be interference free (d+1)-labeled, one path from the node v1 to g and the
other path from v2 to g.

Proof: To prove that, we use the splitting in 4 regions (see Definition 12) and distinguish 3
cases:

1. The two nodes are in opposite regions RA and RC (or RB and RD). Let v1 = (x1, y1)
with x1 > 0, y1 > 0; and v2 = (x2, y2) with x2 6 0, y2 < 0. In that, we use Corollary 7 as
d(v1, v2) = d(v1, g)+d(g, v2). The shortest paths are for example (x1, y1)−−(0, y1)−−(0, 0)
and (0, 0) −−(0, y2)−−(x2, y2).

2. The two nodes v1 = (x1, y1) and v2 = (x2, y2) are in the same region (we suppose it is
RA).

39



• Subcase 1: In this case x1 = x2 (or y1 = y2), so we can use the cycle presented in the
proof of Proposition 16 which contains the column x1 and so both v1 and v2. Then it
suffices to take the disjoint paths on the cycle joining v1 and v2 to the gateway which
are (d + 1)-labeled. The case y1 = y2 can be done by interchanging the role of the
coordinates.

• Subcase 2: Otherwise, we can suppose w.l.o.g that x1 < x2. We distinguish two cases
in accordance with the values of d1 = x2 − x1 and d2 = |y2 − y1|.

• Subcase 2.1: d1 6 d2: we use the following strategy; we consider the cycle obtained
in the proof of Proposition 16 for the node v1. We use one part of the cycle as the
path from g to v1. We use the other part as a path from g to (x1, y2) and add the
horizontal subpath from (x1, y2) to (x2, y2) of length d1. More precisely the two paths
are

– if y1 < y2: (0, 0)−−(x1, 0)−−v1 and v2−−(x1, y2)−−(x1, q2)−−(−d, q2)−−(−d,−α)−
−(0,−α) −−(0, 0)

– if y1 > y2: (0, 0)−−(x1, 0)−−(x1, y2)−−v2 and v1−−(x1, q2)−−(−d, q2)−−(−d,−α)−
−(0,−α) −−(0, 0)

Doing so, we have not used the subpath of the cycle between (x1, y1) and (x1, y2) of
length d2. We can use the labels of this subpath to label without interference the
subpath from (x1, y2) to (x2, y2) (see Figure 24(a) for an example).

• Subcase 2.2: d1 > d2: in that case, we use a cycle containing the horizontal line y1 if
y1 < y2 (see Figure 24(b)), or the line y2 if y1 > y2. We delete the part between v1
and (x2, y1) (resp. (x1, y2) and v2) and use the labels of its edges to label the added
path from (x2, y1) to v2 (resp. (x1, y2) to v1). More precisely the two paths are

– if y1 < y2: (0, 0)−−(0, y1)−−v1 and v2−−(x2, y1)−−(p2, y1)−−(p2,−d)−−(−α,−d)−
−(−α, 0) −−(0, 0)

– if y1 > y2: (0, 0)−−(0, y2)−−(x1, y2)−−v1 and v2−−(p2, y2)−−(p2,−d)−−(−α,−d)−
−(−α, 0) −−(0, 0)

g = (0, 0)

(−d, q2)

(x1, 0)

(0,−α)(−d,−α)

(x2, y2)

(x1, q2)

(x1, y1)
d2

d1

(a) Paths for the case d1 6 d2.

g = (0, 0)

(x1, y1)

(x2, y2)

(0, y1)

d1

(−α, 0)

(−α,−d) (p2,−d)

d2(p2, y1)

(b) Paths for the case d1 > d2.

Figure 24: Subcase 2.1 (x1 < x2 and y1 < y2). The labels on the gray line are removed from the
cycle and used to label the dotted line.

3. The two nodes are in adjacent regions like RA and RB (or RB and RC ,or RC and RD, or
RD and RA). Let v1 = (x1, y1) ∈ RA; and v2 = (x2, y2) ∈ RB .
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Figure 25: Routing strategy with d(v1, g) > d(v2, g) (d = 9).

We suppose that d(v1, g) > d(v2, g) as in Figure 25; otherwise, we invert the routings of
the two nodes. The node v2 (with the smallest distance to the gateway) uses the shortest
path P2 = (x2, y2)−−(0, y2)−−(0, 0).

If x1 > d or y1 = 0, the node v1 also uses a shortest path, P1 = (x1, y1)−−(x1, 0)−−(0, 0)
and we can interference free label P1 ∪ P2 with d + 1 labels. Otherwise, we use a longer
path P1 = (0, 0) −−(0,−α) −−(d+ 1,−α)−−(d+ 1, y1)−−(x1, y1).

P1 is a part of the cycle C = (0, 0) −−(0,−α) −−(d + 1,−α) −−(d + 1, y1) −−(x1, y1) −
−(0, y1)−−(0, 0). The length is |C| = 2(d+1)+ 2y1 +2α. Let us choose α as the smallest
integer such that y1 + α ≡ 0 (mod d + 1). As y1 > 1, then 0 6 α 6 d. With this choice,
the cycle is in the grid (as we have by hypothesis q1 > d + 1) and has length multiple of
d+1. To insure its width is > d, we need to verify that y1+α > d; that is clearly satisfied
if y1 > d, but also if y1 6 d as in this case α = d + 1 − y1. Therefore the cycle C can be
d + 1-labeled and we can use the labels of the unused subpath (0, 0) −−(0, y1) −−(x1, y1)
to label the path from g to v2 of length smaller by hypothesis (d(v1, g) > d(v2, g)).

�

Theorem 14 Let d be odd (d = 2k − 1) and let G be a 2-dimensional grid with gateway g in
the middle, and with min(p1, p2, q1, q2) > d + 1. If

∑

v/∈VK0
b(v) is even, then Wmin = S0 =

∑

v∈VK0
d(v, g)b(v) + d+1

2

∑

v/∈VK0
b(v) is solution for IRWP.

Proof: For vertices in K0, we use Corollary 5. For v /∈ VK0 , if b(v) is even, we send the demand
in d+1

2 b(v) rounds by Proposition 16. If b(v) is odd, we send a flow of b(v)−1 using d+1
2 (b(v)−1)

rounds by Proposition 16. An even number of vertices remains with a demand of 1, as the total
demand

∑

v/∈VK0
b(v) is even. Then, by Theorem 13, these nodes can be grouped two by two

and the demand of each pair of nodes can be sent using d+ 1 rounds. �

7.1.2 Case d even

When d is even, we have a lower bound of k + 1
4b(v) = 4k+1

4 b(v), ∀v /∈ VK0 by Proposition 3.
To reach a global bound, we exhibit for any set of 4 vertices (one in each region) 4 pairwise
interference free (4k + 1) labeled paths and then apply Corollary 4. It is depicted in Figure 26
for d = 10.
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Proposition 18 Let d be even, d = 2k. Let G be a 2-dimensional grid with the gateway in
the middle and with min(p1, p2, q1, q2) > k + 1. For any set of 4 nodes vA ∈ RA, vB ∈ RB,
vC ∈ RC , vD ∈ RD, there exist 4 pairwise interference free (4k + 1)-labeled from vA,vB,vC ,vD
to the gateway.

Proof: We use a set of 4k + 1 labels a1, . . . , ak,b1, . . . , bk,c1, . . . , ck,d1, . . . , dk and ǫ. We give
a path for each vertex in RA and the labels associated to the edges used by these paths. The
paths for the other regions RB , RC , RD are obtained by rotation. The labels associated to the
edges in the other regions are obtained by applying the bijection ω where ω(ai) = bi, ω(bi) = ci,
ω(ci) = di, ω(di) = ai and ω(ǫ) = ǫ. So ω2(ai) = ci and ω3(ai) = di. If an edge e of RA is
labeled l, the rotated edge ρ(e) in RB is labeled ω(l), the edge ρ2(e) in RC ω2(l) and the edge
ρ3(e) in RD ω3(l). We use three different types of paths from vA ∈ RA to g according to the
position of vertex vA:

• Paths of type 1: for vA = (0, y) (on the vertical axis x = 0 and y > 1), we use the vertical
path (0, y) −−(0, 0);

• Paths of type 2: for vA = (x, y) with x > 0 and y > k + 1, we use a shortest path going
first horizontally and then vertically (x, y)−−(0, y)−−(0, 0).

• Paths of type 3: for vA = (x, y) with x > 0 and 1 6 y 6 k, we do not use a shortest path.
The path goes first vertically till (x, k + 1) then horizontally till (0, k + 1) and vertically
till g. So the path is (x, y)−−(x, k + 1)−−(0, k + 1)−−(0, 0).

We associate one of the 4k + 1 labels to each edge in these paths. In fact, we associate
a chain of labels to each set of consecutive edges in a path. Let the chain A+ represent the
sequence of labels a1, a2, . . . , ak (in this order) and A−, the inverted chain ak, ak+1, . . . , a1. We
define similarly B+,B−,C+,C−,D+,D−. To label the whole path, we use concatenations of these
chains (for example, A+, ǫ, C− represents the sequence a1, a2, . . . , ak, ǫ, ck, ck−1, . . . , c1) and to
go further, we use subsequent repetitions of concatenations. The main idea consists in doing a
labeling which gives the labels A+ (resp. B+,C+,D+) to the edges of the cross in g on the axis
in RA (resp. RB , RC , RD) starting from g. The 4 end edges of the cross get all the same label
ǫ. The other labels are given to avoid interferences. Notice that the paths defined above use
only 3 types of edges:

• Edges of type 1: edges on the vertical axis (0, y)(0, y + 1). We label them starting from
vertex (0, 0) using repetitions of the sequence A+, ǫ, C−. Doing so, for 1 6 i 6 k and
λ > 0, edges (0, i− 1 + λ(d+1))(0, i+ λ(d+1)) are labeled ai; edges (0,−i+ (λ+ 1)(d+
1))(0,−i + 1 + (λ+ 1)(d + 1)) are labeled ci. Edges (0, k + λ(d+ 1))(0, k + 1 + λ(d+ 1))
are labeled ǫ for λ > 0.

• Edges of type 2: edges on the horizontal lines (x, y)(x + 1, y) with x > 0 and y > k + 1.
We label them starting from the vertex (0, y) and using the repetition of the sequence
B−,D+, ǫ. So for 1 6 i 6 k and λ > 0, edges (k − i+ λ(d+ 1), y)(k + 1− i+ λ(d+ 1), y)
are labeled bi and edges (k− 1 + i+ λ(d+ 1), y)(k + i+ λ(d+ 1), y) are labeled di. Edges
(2k + λ(d+ 1), y)(2k + 1 + λ(d+ 1), y) are labeled ǫ for λ > 0.

• Edges of type 3: the remaining vertical edges (x, y)(x, y + 1) with x > 0 and 1 6 y 6 k
((x, y) not in VK0). We label them using the chain C−. If x > k, we label the edges starting
from vertex (x, 1) using the chain C−. So for x > k, 1 6 i 6 k, edges (x, k+1−i)(x, k+2−i)
are labeled ci. If 1 6 x 6 k − 1, we start from vertex (x, k + 1− x) using part of C−. So
only for k + 1− x 6 i 6 k, edges (x, 2k + 1− x− i)(x, 2k + 2− x− i) are labeled ci.
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For the vertex ρ(vA) ∈ RB (resp. ρ2(vA) ∈ RC and ρ3(vA) ∈ RD), we use the rotated
path ρ(PvA) (resp. ρ2(PvA), ρ

3(PvA)) where PvA corresponds to the path from vA to g described
above. Notice that each path use only edges of its region, for example a path PvA use only edges
of RA. Recall also that we label a path using bijection ω (if an edge e of RA is labeled l, ρi(e)
is labeled ωi(l)).

Now consider any 4 vertices vA,vB ,vC ,vD one in each region. We have to show that the 4
paths associated are pairwise interference free. So we have to show that two edges with the same
label are at distance d. If the two edges are on the same path, that follows from the fact we are
using repetitions of chains of length d+ 1.

For example, we use repetitions of the chain A+, ǫ, C− in a path of type 1. It is also the case
for a path of type 2 where we use first repetitions of chain A+, ǫ, C− on the vertical subpath
then B+,D−, ǫ on the horizontal line. Note that the edges labeled ǫ on the horizontal line are
at distance > d from the vertical axis and so do not interfere with the edges also labeled ǫ in the
vertical subpath. For a path of type 3, we use A+, ǫ (reaching (0, k+1)) followed by repetitions
of B−,D+, ǫ and then part of the chain C+. So here again, there is no interference.

Now consider two edges on two different paths. If both are labeled ǫ, they are at distance
> d, the nearest ones being these of the cross centered in g which are at distance exactly d
(and form an independent set in the conflict graph). For the other labels, due to the symmetry
(rotation and bijection ω), it suffices to prove that two edges labeled ai are at distance > d.

The edges labeled ai in each of the 4 paths are of the following form:

• Form A: those in region RA, (0, i − 1 + λ1(d+ 1))(0, i + λ1(d+ 1)), λ1 > 0;

• Form B: those in region RB obtained by rotation of edges (x, y) labeled di in region RA

as ai = ω(di). They are of the form (−y, k− 1+ i+ λ2(d+1))(−y, k + i+ λ2(d+1)) with
y > k + 1, λ2 > 0;

• Form C or C’: those in region RC obtained by symmetry ρ2 of an edge (x, y) labeled ci in
RA. They are of the form C (if the original edge is on the vertical axis) (0, i− (λ3 +1)(d+
1))(0, i − 1− (λ3 + 1)(d+ 1)), λ3 > 0;
Form C’ (−x, i− k− 1)(−x, i− k− 2) if x > k and (−x, x+ i− 2k− 1)(−x, x+ i− 2k− 2)
if 1 6 x 6 k − 1 (k + 1− x 6 i 6 k);

• Form D: those in region RD obtained by rotation ρ3 of an edge (x, y) labeled bi in RA.
They are of the form (y, i− k−λ4(d+1))(y, i− 1− k−λ4(d+1)) with y > k+1, λ4 > 0.

Now we compute the distance between two edges in two different paths, so in two different
regions and so of two different forms, and verify that in all the cases the distance is > d.

• A and B: if λ2 > λ1, then distance = y + k − 1 + (λ2 − λ1)(d + 1) > y + k − 1 > 2k = d,
as y > k + 1;
if λ2 < λ1, then distance = y + k + (λ1 − λ2 − 1)(d + 1) > y + k − 1 > 2k + 1 = d, as
y > k + 1;

• A and C: distance = d+ (λ1 + λ3)(d+ 1) > d;

• A and C’: if x > k, distance = x+ k + λ1(d+ 1) > 2k as (x > k);
if 1 6 x 6 k − 1, distance = 2k + λ1(d+ 1) > 2k;

• A and D: distance = y + k − 1 + (λ1 + λ4)(d+ 1) > y + k − 1 > 2k, as (y > k + 1);
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• B and C: distance = y + 3k + (λ2 + λ3)(d + 1) > 4k + 1 > 2k, as (y > k + 1);

• B and C’: if x > k, distance = |y − x|+ 2k + λ2(d+ 1) > 2k ;
if (1 6 x 6 k − 1), distance = y − 2x+ 3k + λ2(d+ 1) > 2k + 3;

• B and D: distance > d (the labels are separated by K0);

• C and D: if λ3 > λ4, then distance = y−k+d+1+(λ3−λ4)(d+1) > 2k+2, as y > k+1;
if λ3 < λ4, then distance =y − k − 1 + (λ4 − λ3 − 1)(d + 1) > 2k, as y > k + 1;

• C’ and D: if x > k, distance > y + x > 2k + 1;
if 1 6 x 6 k − 1, then if λ4 = 0 distance = y + k > 2k + 1 and λ4 > 0 distance
= y + 2x+ k − 1 + (λ4 − 1)(d + 1) > 2k + 2.

�

Theorem 15 Let d be even and G be a 2-dimensional grid with the gateway in the middle.
If the regions are balanced (

∑

v∈RA
b(v) =

∑

v∈RB
b(v) =

∑

v∈RC
b(v) =

∑

v∈RD
b(v)) then

Wmin =
∑

v∈VK0
d(v, g)b(v) + d

2

∑

v/∈VK0
b(v) + 1

4

∑

v/∈VK0
b(v). Furthermore, if the b(v) are

integers, Wmin is also a solution to IRWP.

Proof: A lower bound has been presented in Proposition 3. For the vertices in VK0 , we apply
Corollary 5. For the other vertices, we group them 4 by 4 and apply Theorem 9, that works
because the regions are balanced. If the b(v) are integers, we send an integer flow on each path.
�

Theorem 16 Let d be even (d = 2k) and G be a (2p + 1 × 2p + 1)-dimensional grid with
the gateway in the middle, p > k + 1. Let the demand be uniform (b(v) = b,∀v), Wmin =

b[(k + 1
4)(N − 1)− k(k+1)(4k−1)

6 ].

Proof: It follows from Proposition 10 and the fact that the 4 regions have, in this case, the
same number of vertices. �

Note that the lower bound of S0 +
1
4

∑

v/∈K0
b(v) is attained in many other cases. Indeed for

the vertices in Zα (α = A,B,C,D) (see Figure 21) we can do a single routing and so it suffices
to be able to group the vertex in the subregions Xα ∪ Yα by groups of 4. That is possible if
maxα

∑

v∈Xα∪Yα
b(v) 6 minα

∑

v∈Zα
b(v) (α = A,B,C,D). Indeed suppose the maximum is

attained for α = A, we group 4 by 4 the vertices of XA ∪ YA with the same number of vertices
in RB ,RC ,RD using all vertices of XB ∪ YB , XC ∪ YC , XD ∪ YD. For the remaining vertices
(which are all in Zα) we use Theorem 9. In particular, we have equality in Proposition 10 for
any (p× q)-grid (with p and q large enough) with uniform demand.

7.2 Gateway in the corner: routing the demand of a combination of nodes

Note that for some nodes the lower bound lb(v) cannot be attained via a single routing because
these nodes are too near and also in some cases the lower bound for the demand in a single
node is strictly greater than lb(v) like in the example at the end of Subsection 3.2. However, we
can route the demand of such nodes together (sharing rounds) with the demand of some other
nodes. That can be done as soon as the demands are somewhat balanced in particular it is the
case when the demand is uniform where we can obtain the following theorem.
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Theorem 17 Let G be a 2-dimensional grid p× q with p, q > 4d, and gateway g in the corner.
The lower bounds given in Propositions 11 and 12 are attained.

We do not give the proof which is very tedious and uses many subcases. The idea consists
in pairing the vertices according the subregions to which they belong. We have to define more
regions like ZA, Z ′A, ZB , Z ′B, ZD, Z ′D (see Figure 21). To illustrate the idea, we show how to
pair the vertices of ZA and Z ′A where ZA consists of the vertices (x, y) such that x > k, y 6 k

2

and x 6 y + d
2 and Z ′A is obtained by symmetry through the first diagonal. More precisely we

route together v = (x, y) via the path (x, y)−−(x, 0)−−(0, 0) and v′ = (y, d+1+ y− x) via the
path (y, d+1+y−x)−−(0, d+1+y−x)−−(0, 0). Note that lb(v) = d+1−d(v, v∗) = d+1+y−x
and lb(v′) = d+1+x′− y′ = x; therefore lb(v) + lb(v′) = d+1+ y. We use the d+1+ y labels
as follows. We label the path (x, 0)−−(0, 0) −−(0, d+ 1 + y − x) with a sequence of d+1 labels
and then use the remaining y labels in increasing order for the subpath (x, 0) −−(x, y) and in
decreasing order for the subpath (0, d+1+ y − x)−−(y, d+ 1+ y − x). One can check that the
edges with the same label are at distance > d. In the example of Figure 27, d = 11, v = (8, 3)
and v′ = (3, 7).
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Figure 26: Routing 4 nodes (one in each region) with 4 paths.
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Figure 27: Example for ZA and Z ′A with d odd.
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8 Conclusion

We studied the problem of finding the minimum number of rounds needed to gather informa-
tion in a radio mesh access network where interference constraints are present. We presented
tools to obtain lower and upper bounds on general graphs giving several tight results. For the
asymmetrical interference, a 4-approximation is given in [24]. We show that, considering sym-
metrical interference, we can obtain a 2-approximation for d odd and a 2

d +2 6 3-approximation
for d even. We then apply our tools to give precise values for the grids; in particular we give
closed formulae when the demand is uniform.

Table 2 summarizes the known results and our main contributions presented according the
following categories:

• Problem: RWP or IRWP (that assumes integer round weights);

• Demand: Any, Even (when
∑

v/∈VK0
b(v) is even), Uniform (i.e. every node has the same

demand), Balanced (when the “partitions” contain the same amount of demands); or from
a specific zone Z.

• Interference: Asymmetrical interference model (see Section 1.2) or d (any, even or odd)
for the distance-d interference model.

• graph: General, Grid-M (a grid with the gateway in the middle) or Grid-C (a grid with
the gateway in the corner).

Table 2: Results.

Problem Demand Interference Graph Complexity Reference

RWP Any Asymmetrical General 4-approx. [24]
IRWP Any d odd General 2-approx. Theorem 1
IRWP Any d even General 2/d+ 2-approx. Theorem 1

RWP Any d odd Grid-M Polynomial Theorem 6
IRWP Even d odd Grid-M Polynomial Theorem 14
RWP ZA Any d even Grid-M Polynomial Theorem 9
IRWP Balanced d even Grid-M Polynomial Theorem 15
RWP Uniform d any Grid-M Closed Form. Theorems 7, 16
RWP ZExt, ZE Any d any Grid-C Polynomial Theorem 10
RWP ZC Any d odd Grid-C Polynomial Theorem 10
RWP Uniform d any Grid-C Closed Form. Theorem 17

An attractive challenge is to consider multiple gateways. Our methods can be applied if they
are far enough and evenly distributed; but if the gateways are near the problem becomes very
difficult.
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