On an algorithm for receiving Sudoku matrices

Krasimir Yordzhev
Faculty of Mathematics and Natural Sciences, South-West University
Ivan Mihaylov 66, Blagoevgrad, 2700, Bulgaria
E-mail: yordzhev@swu.bg

Abstract

This work examines the problem to describe an efficient algorithm for obtaining $n^{2} \times n^{2}$ Sudoku matrices. For this purpose, we define the concepts of $n \times n \Pi_{n}$-matrix and disjoint Π_{n}-matrices. The article, using the set-theoretical approach, describes an algorithm for obtaining n^{2}-tuples of $n \times n$ mutually disjoint Π_{n} matrices. We show that in input n^{2} mutually disjoint Π_{n} matrices, it is not difficult to receive a Sudoku matrix.

Keywords: Sudoku matrix; S-permutation matrix; Π_{n}-matrix; disjoint matrices; data type set

2010 Mathematics Subject Classification: 05B20, 68Q65

1 Introduction and notation

Let n be a positive integer. Throughout $[n]$ denotes the set

$$
\begin{gathered}
{[n]=\{1,2, \ldots, n\}} \\
\mathcal{U}_{n}=[n] \times[n]=\{\langle a, b\rangle \mid a, b \in[n]\}
\end{gathered}
$$

and \mathcal{V}_{n} denotes the set of all subsets of \mathcal{U}_{n}.
Let $P_{i j}, 1 \leq i, j \leq n$, be n^{2} square $n \times n$ matrices, whose entries are elements of the set $\left[n^{2}\right]=\left\{1,2, \ldots, n^{2}\right\}$. The $n^{2} \times n^{2}$ matrix

$$
P=\left[\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 n} \\
P_{21} & P_{22} & \cdots & P_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
P_{n 1} & P_{n 2} & \cdots & P_{n n}
\end{array}\right]
$$

is called a Sudoku matrix, if every row, every column and every submatrix $P_{i j}$, $1 \leq i, j \leq n$ comprise a permutation of the elements of the set $\left[n^{2}\right]$, i.e., every integer $s \in\left\{1,2, \ldots, n^{2}\right\}$ is found just once in each row, column, and submatrix $P_{i j}$. Submatrices $P_{i j}$ are called blocks of P.

This work is dedicated to the problem of finding an algorithm for getting all $n^{2} \times n^{2}$ Sudoku matrices for an arbitrary integer $n \geq 2$. This task is solved for
$n=2$ and $n=3[3]$. When $n>3$, according to our information, this problem is still open. Finding algorithm to obtain $n^{2} \times n^{2}, n \geq 4$ Sudoku matrices will lead to solving the problem of constructing Sudoku puzzle of higher order, which will increase the interest in this entertaining game. Here we not going to examine and compare different algorithms for solving any Sudoku puzzle. Here we will examine some algebraic properties of $n^{2} \times n^{2}$ Sudoku matrices, which are the basis for obtaining various Sudoku puzzles.

A binary (or boolean, or (0,1)-matrix) is a matrix all of whose elements belong to the set $\mathfrak{B}=\{0,1\}$. With \mathfrak{B}_{n} we will denote the set of all $n \times n$ binary matrices.

Two $n \times n$ binary matrices $A=\left(a_{i j}\right) \in \mathfrak{B}_{n}$ and $B=\left(b_{i j}\right) \in \mathfrak{B}_{n}$ will be called disjoint if there are not integers $i, j \in[n]$ such that $a_{i j}=b_{i j}=1$, i.e. if $a_{i j}=1$ then $b_{i j}=0$ and if $b_{i j}=1$ then $a_{i j}=0$.

A matrix $A \in \mathfrak{B}_{n^{2}}$ is called an S-permutation if in each row, in each column, and in each block of A there is exactly one 1 . Let the set of all $n^{2} \times n^{2} \mathrm{~S}$ permutation matrices be denoted by $\Sigma_{n^{2}}$.

A formula for calculating the number of all pairs of disjoint S-permutatiom matrices is given in [11.

S-permutation matrices and their algebraic properties have an important part in the description of the discussed in [6] algorithm.

The concept of S-permutation matrix was introduced by Geir Dahl [2] in relation to the popular Sudoku puzzle. It is well known that Sudoku matrices are special cases of Latin squares. It is widespread puzzle nowadays, which presents in the entertaining pages in most of the newspapers and magazines and in entertaining web sites. Sudoku, or Su Doku, is a Japanese word (or phrase) meaning something like Number Place.

Obviously a square $n^{2} \times n^{2}$ matrix M with elements of $\left[n^{2}\right]=\left\{1,2, \ldots, n^{2}\right\}$ is a Sudoku matrix if and only if there are matrices $A_{1}, A_{2}, \ldots, A_{n^{2}} \in \Sigma_{n^{2}}$, each two of them are disjoint and such that P can be given in the following way:

$$
\begin{equation*}
M=1 \cdot A_{1}+2 \cdot A_{2}+\cdots+n^{2} \cdot A_{n^{2}} \tag{1}
\end{equation*}
$$

Thus, the problem to describe an efficient algorithm for obtaining all n^{2} tuples of mutually disjoint S-permutation matrices naturally arises. This work is devoted to this task. For this purpose, in the next section using the settheoretical approach, we define the concepts of Π_{n}-matrix and disjoint Π_{n} matrices. We will prove that so defined task can be reduced to the task of receiving all n^{2}-tuples of mutually disjoint Π_{n}-matrices.

In section 3 we will describe an algorithm for obtaining n^{2}-tuples of $n \times$ n mutually disjoint Π_{n} matrices and we will show that in input n^{2} mutually disjoint Π_{n} matrices, it is not difficult to receive a Sudoku matrix. Described in this article algorithm essentially differs from the algorithm described in [3].

2 A representation of S-permutation matrices

Let n be a positive integer. If $z_{1} z_{2} \ldots z_{n}$ is a permutation of the elements of the set $[n]=\{1,2, \ldots, n\}$ and let us shortly denote σ this permutation. Then in this case we will denote by $\sigma(i)$ the i-th element of this permutation, i.e. $\sigma(i)=z_{i}, i=1,2, \ldots, n$.

Definition 1 Let Π_{n} denotes the set of all $n \times n$ matrices, constructed such that $\pi \in \Pi_{n}$ if and only if the following three conditions are true:
i) the elements of π are ordered pairs of integers $\langle i, j\rangle$, where $1 \leq i, j \leq n$;
ii) if

$$
\left[\begin{array}{llll}
\left\langle a_{1}, b_{1}\right\rangle & \left\langle a_{2}, b_{2}\right\rangle & \cdots & \left.\left\langle a_{n}, b_{n}\right\rangle\right]
\end{array}\right.
$$

is the i-th row of π for any $i \in[n]=\{1,2, \ldots, n\}$, then $a_{1} a_{2} \ldots a_{n}$ in this order is a permutation of the elements of the set $[n]$;
iii) if

$$
\left[\begin{array}{c}
\left\langle a_{1}, b_{1}\right\rangle \\
\left\langle a_{2}, b_{2}\right\rangle \\
\vdots \\
\left\langle a_{n}, b_{n}\right\rangle
\end{array}\right]
$$

is the j-th column of π for any $j \in[n]$, then $b_{1}, b_{2}, \ldots, b_{n}$ in this order is a permutation of the elements of the set $[n]$.

The matrices of the set Π_{n} we will call Π_{n}-matrices.
From Definition 1, it follows that we can represent each row and each column of a matrix $M \in \Pi_{n}$ with the help of a permutation of elements of the set $[n]$.

Conversely for every ($2 n$)-tuple

$$
\left\langle\left\langle\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right\rangle,\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\rangle\right\rangle
$$

where

$$
\begin{gathered}
\rho_{i}=\rho_{i}(1) \rho_{i}(2) \ldots \rho_{i}(n), \quad 1 \leq i \leq n \\
\sigma_{j}=\sigma_{j}(1) \sigma_{j}(2) \ldots \sigma_{j}(n), \quad 1 \leq j \leq n
\end{gathered}
$$

are $2 n$ permutations of elements of $[n]$ (not necessarily different), then the matrix

$$
\pi=\left[\begin{array}{cccc}
\left\langle\rho_{1}(1), \sigma_{1}(1)\right\rangle & \left\langle\rho_{1}(2), \sigma_{2}(1)\right\rangle & \cdots & \left\langle\rho_{1}(n), \sigma_{n}(1)\right\rangle \\
\left\langle\rho_{2}(1), \sigma_{1}(2)\right\rangle & \left\langle\rho_{2}(2), \sigma_{2}(2)\right\rangle & \cdots & \left\langle\rho_{2}(n), \sigma_{n}(2)\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle\rho_{n}(1), \sigma_{1}(n)\right\rangle & \left\langle\rho_{n}(2), \sigma_{2}(n)\right\rangle & \cdots & \left\langle\rho_{n}(n), \sigma_{n}(n)\right\rangle
\end{array}\right]
$$

is matrix of Π_{n}. Hence

$$
\begin{equation*}
\left|\Pi_{n}\right|=(n!)^{2 n} \tag{2}
\end{equation*}
$$

Definition 2 We say that matrices $\pi^{\prime}=\left[p^{\prime}{ }_{i j}\right]_{n \times n} \in \Pi_{n}$ and $\pi^{\prime \prime}=\left[p^{\prime \prime}{ }_{i j}\right]_{n \times n} \in$ Π_{n} are disjoint, if $p^{\prime}{ }_{i j} \neq p^{\prime \prime}{ }_{i j}$ for every $i, j \in[n]$.

Definition 3 Let $\pi^{\prime}, \pi^{\prime \prime} \in \Pi_{n}, \pi^{\prime}=\left[p^{\prime}{ }_{i j}\right]_{n \times n}, \pi^{\prime \prime}=\left[p^{\prime \prime}{ }_{i j}\right]_{n \times n}$ and let the integers $i, j \in[n]$ are such that $p^{\prime}{ }_{i j}=p^{\prime \prime}{ }_{i j}$. In this case we will say that $p^{\prime}{ }_{i j}$ and $p^{\prime \prime}{ }_{i j}$ are component-wise equal elements.

Obviously two Π_{n}-matrices are disjoint if and only if they do not have component-wise equal elements.

Example 1 We consider the following Π_{3}-matrices:

$$
\begin{aligned}
& \pi^{\prime}=\left[p_{i j}^{\prime}\right]=\left[\begin{array}{lll}
\langle 3,1\rangle & \langle 2,1\rangle & \langle 1,2\rangle \\
\langle 2,3\rangle & \langle 3,2\rangle & \langle 1,1\rangle \\
\langle 3,2\rangle & \langle 1,3\rangle & \langle 2,3\rangle
\end{array}\right] \\
& \pi^{\prime \prime}=\left[p_{i j}^{\prime \prime}\right]=\left[\begin{array}{lll}
\langle 3,2\rangle & \langle 1,3\rangle & \langle 2,1\rangle \\
\langle 3,3\rangle & \langle 1,1\rangle & \langle 2,2\rangle \\
\langle 2,1\rangle & \langle 1,2\rangle & \langle 3,3\rangle
\end{array}\right] \\
& \pi^{\prime \prime \prime}=\left[p_{i j}^{\prime \prime \prime}\right]=\left[\begin{array}{lll}
\langle 3,1\rangle & \langle 1,3\rangle & \langle 2,2\rangle \\
\langle 2,2\rangle & \langle 3,1\rangle & \langle 1,1\rangle \\
\langle 2,3\rangle & \langle 1,2\rangle & \langle 3,3\rangle
\end{array}\right]
\end{aligned}
$$

Matrices π^{\prime} and $\pi^{\prime \prime}$ are disjoint, because they do not have component-wise equal elements.

Matrices π^{\prime} and $\pi^{\prime \prime \prime}$ are not disjoint, because they have two component-wise equal elements: $p_{11}^{\prime}=p_{11}^{\prime \prime \prime}=\langle 3,1\rangle$ and $p_{23}^{\prime}=p_{23}^{\prime \prime \prime}=\langle 1,1\rangle$.

Matrices $\pi^{\prime \prime}$ and $\pi^{\prime \prime \prime}$ are not disjoint, because they have three componentwise equal elements: $p_{12}^{\prime \prime}=p_{12}^{\prime \prime \prime}=\langle 1,3\rangle, p_{32}^{\prime \prime}=p_{32}^{\prime \prime \prime}=\langle 1,2\rangle$, and $p_{33}^{\prime}=p_{33}^{\prime \prime}=$ $\langle 3,3\rangle$.

The relationship between S-permutation matrices and the matrices from the set Π_{n} are given by the following theorem:

Theorem 1 Let n be an integer, $n \geq 2$. Then there is one to one correspondence $\theta: \Pi_{n} \leftrightarrows \Sigma_{n^{2}}$.

Proof. Let $\pi=\left[p_{i j}\right]_{n \times n} \in \Pi_{n}$, where $p_{i j}=\left\langle a_{i}, b_{j}\right\rangle, i, j \in[n], a_{i}, b_{j} \in[n]$. Then for every $i, j \in[n]$ we construct a binary $n \times n$ matrices $A_{i j}$ with only one 1 with coordinates $\left(a_{i}, b_{j}\right)$. Then we obtain the matrix

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \tag{3}\\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right]
$$

According to the properties i), ii) and iii), it is obvious that the obtained matrix A is $n^{2} \times n^{2}$ S-permutation matrix.

Conversely, let $A \in \Sigma_{n^{2}}$. Then A is in the form shown in (3) and for every $i, j \in[n]$ in the block $A_{i j}$ there is only one 1 and let this 1 has coordinates $\left(a_{i}, b_{j}\right)$.

For every $i, j \in[n]$ we obtain ordered pairs of integers $\left\langle a_{i}, b_{j}\right\rangle$ corresponding to these coordinates. As in every row and every column of A there is only one 1 , then the matrix $\pi=\left[p_{i j}\right]_{n \times n}$, where $p_{i j}=\left\langle a_{i}, b_{j}\right\rangle, 1 \leq i, j \leq n$, which is obtained by the ordered pairs of integers is matrix of Π_{n}, i.e. matrix for which the conditions i), ii) and iii) are true.

Corollary 1 Let $\pi^{\prime}, \pi^{\prime \prime} \in \Pi_{n}$ and let $A^{\prime}=\theta\left(\pi^{\prime}\right)$, $A^{\prime \prime}=\theta\left(\pi^{\prime \prime}\right)$, where θ is the bijection defined in Theorem 1. Then A^{\prime} and $A^{\prime \prime}$ are disjoint if and only if π^{\prime} and $\pi^{\prime \prime}$ are disjoint.

Proof. It is easy to see that with respect of the described in Theorem 1 one to one correspondence, every pair of disjoint matrices of Π_{n} will correspond to a pair of disjoint matrices of $\Sigma_{n^{2}}$ and conversely every pair of disjoint matrices of $\Sigma_{n^{2}}$ will correspond to a pair of disjoint matrices of Π_{n}.

Corollary 2 2] The number of all $n^{2} \times n^{2} S$-permutation matrices is equal to

$$
\begin{equation*}
\left|\Sigma_{n^{2}}\right|=(n!)^{2 n} \tag{4}
\end{equation*}
$$

Proof. It follows immediately from Theorem 1 and formula (2).

3 Description of the algorithm

Algorithm 2 Receive n^{2} mutually disjoint Π_{n}-matrices.
Input: Integer n
Output: $P_{1}, P_{2}, \ldots, P_{n^{2}} \in \Pi_{n}$ such that P_{i} and P_{j} are disjoint when $i \neq j$

1. Construct $n \times n$ arrays $P_{1}, P_{2}, \ldots P_{n}$ whose entries assume values of the set \mathcal{V}_{n};
2. Initialize all entries of $P_{1}, P_{2}, \ldots, P_{n}$ with \mathcal{U}_{n};
3. For every $k=1,2, \ldots, n^{2}$ do loop
4. For every $i=1,2, \ldots, n$ do loop
5. For every $j=1,2, \ldots, n$ do loop
6. \quad Choose $\langle a, b\rangle \in P_{k}[i][j]$;
7. $\quad P_{k}[i][j]=\{\langle a, b\rangle\} ;$
8. For every $t=k+1, k+2, \ldots n^{2}$ from the set $P_{t}[i][j]$ remove the element $\langle a, b\rangle$;
9. For every $t=j+1, j+2, \ldots n$ from the set $P_{t}[i][j]$ remove all elements $\langle x, y\rangle$ such that $x=a$;
10. For every $t=i+1, i+2, \ldots n$ from the set $P_{t}[i][j]$ remove all elements $\langle x, y\rangle$ such that $y=b$;
end loop 5:
end loop 4 :
end loop 3 .
Algorithm 3 Receive a S-permutation matrix from a Π_{n}-matrix.
Input: $P=\left[\left\langle a_{k}, b_{l}\right\rangle\right]_{n \times n} \in \Pi_{n}, 1 \leq k, l \leq n$.
Output: $S=\left[s_{i j}\right]_{n^{2} \times n^{2}} \in \Sigma_{n^{2}}, 1 \leq i, j \leq n^{2}$.
11. Construct an $n^{2} \times n^{2}$ integer array $S=\left[s_{i j}\right], 1 \leq i, j \leq n^{2}$ and initialize $s_{i j}=0$ for all $i, j \in\left\{1,2, \ldots, n^{2}\right\}$;
12. For every $k, l \in\{1,2, \ldots, n\}$ do loop
13. $i=(k-1) * n+a_{k}$;
14. $j=(l-1) * n+b_{l}$;
15. $\quad s_{i j}=1$
end loop.
Algorithm 4 Receive Sudoku matrices.
Input: Integer n.
Output: Sudoku matrix A.
16. Get n^{2} mutually disjoint Π_{n} matrices $P_{1}, P_{2}, \ldots P_{n^{2}}$ (Algorithm (ᄌ));
17. For every $k=1,2, \ldots, n^{2}$ from P_{k} receive $S_{k} \in \Sigma_{n^{2}}$ (Algorithm (3);
18. $A=1 * S_{1}+2 * S_{2}+\cdots+n^{2} * S_{n^{2}}$.

4 Conclusion and remarks

- Described in section 3 algorithms will work more efficiently if the programmer uses programming languages and programming environments with integrated tools for working with data structure set [1, 4, 5, 7, 8, 9].
- If in item 6 of Algorithm 2 we choose ordered pair $\langle a, b\rangle \in P_{k}[i][j]$ randomly, then we will get a random Sudoku matrix [10]. Thus we tested the effectiveness of the algorithm.
- If in item 6 of Algorithm 2 we choose all ordered pairs $\langle a, b\rangle \in P_{k}[i][j]$, then finally we will get all $n^{2} \times n^{2}$ Sudoku matrices. We do not know a general formula for finding the number θ_{n} of all $n^{2} \times n^{2}$ Sudoku matrices for each integer $n \geq 2$. We consider that this is an open mathematical problem. Using a computer program based on described in section 3 algorithms, we calculated that when $n=2$, there are $\theta_{2}=288$ number of 4×4 Sudoku
matrices. This number coincides with our results obtained using other methods described in [12]. In [3], it has been shown that there are exactly $\theta_{3}=9!\cdot 72^{2} \cdot 2^{7} \cdot 27704267971=6670903752021072936960$ number of 9×9 Sudoku matrices. The next step is to calculate the number θ_{4} of 16×16 Sudoku matrices.

References

[1] Pavel Azalov. Object-oriented programming. Data structures and STL. Ciela, Sofia, 2008.
[2] Geir Dahl. Permutation matrices related to sudoku. Linear Algebra and its Applications, 430(8-9):2457-2463, 2009.
[3] Bertram Felgenhauer and Frazer Jarvis. Enumerating possible sudoku grids, 2005.
[4] Ivor Horton. Beginning STL: Standard Template Library. Apress, 2015.
[5] Kathleen Jensen and Niklaus Wirth. PASCAL - User Manual and Report. Lecture Notes in Computer Science. Springer, Berlin Heidelberg, 1985.
[6] Pallavi Mishra, D. K. Gupta, and Rakesh P. Badoni. A new algorithm for enumerating all possible sudoku squares. Discrete Mathematics, Algorithms and Applications, 8(2):1650026 (14 pages), 2016.
[7] Herbert Sghildt. Java: The Complete Reference, Ninth Edition. McGrawHill Education, 2014.
[8] Kiat Shi Tan, Willi-Hans Steeb, and Yorick Hardy. Symbolic $C++$: An Introduction to Computer Algebra using Object-Oriented Programming. Springer-Verlag, London, 2000.
[9] Magdalina Todorova. Data structures and programming in $C++$. Ciela, Sofia, 2011.
[10] Krasimir Yordzhev. Random permutations, random sudoku matrices and randomized algorithms. International J. of Math. Sci. \& Engg. Appls., $6(\mathrm{VI}): 291-302,2012$.
[11] Krasimir Yordzhev. Calculation of the number of all pairs of disjoint spermutation matrices. Applied Mathematics and Computation, 268:1-11, 2015.
[12] Krasimir Yordzhev and Hristina Kostadinova. On some entertaining applications of the concept of set in computer science course. Informational Technologies in Education, (10):24-29, 2011.

