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Abstract

For a positive integer n, let Zn be the set of all non-negative integers modulo
n and P(Zn) be its power set. A modular sumset valuation or a modular sumset
labeling of a given graph G is an injective function f : V (G)→ P(Zn) such that
the induced function f+ : E(G) → P(Zn) defined by f+(uv) = f(u) + f(v).
A modular sumset indexer of a graph G is an injective modular sumset valued
function f : V (G)→ P(Zn) such that the induced function f+ : E(G)→ P(Zn)
is also injective. In this paper, some properties and characteristics of this type
of modular sumset labeling of graphs are being studied.

Key Words: Modular sumset graphs; weak modular sumset graphs; strong modular
sumset graphs, maximal modular sumset graphs exquisite modular sumset graphs;
modular sumset number of a graph.
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1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [4],
[11] and [18]. For graph classes, we further refer to [5], [7] and [19] and for notions
and results in number theory, we refer to [3] and [13]. Unless mentioned otherwise,
all graphs considered here are simple, finite and have no isolated vertices.

Let A and B be two sets integers. The sumset of A and B is denoted by A+B
and is defined as A + B = {a + b : a ∈ A, b ∈ B}. If either A or B is countably
infinite, then A+B is also countably infinite. We denote the cardinality of a set A
by |A|. Then, we have the following theorem on the cardinality of the sumset of two
sets.

Theorem 1.1. [13] For two non-empty sets A and B, |A|+ |B| − 1 ≤ |A+ B| ≤
|A| |B|.

Another theorem on sumsets of two sets of integers proved in [13] is given below.
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2 On the Modular Sumset Labeling of Graphs

Theorem 1.2. Let A and B be two non-empty sets of integers. Then, |A+ B| =
|A| + |B| − 1 if and only if A and B are arithmetic progressions with the same
common difference.

Using the concepts of the sumset of two sets, the notions of an integer additive
set-labeling and an integer additive set-indexer of a given graph G was introduced
as follows.

Definition 1.3. Let N0 be the set of all non-negative integers and let P(N0) be
its power set. An integer additive set-labeling of a graph G is an injective function
f : V (G)→ P(N0), where the induced function f+(uv) : E(G)→ P(N0) is defined
by f+(uv) = f(u) + f(v). A graph G which admits an integer additive set-labeling
is called an integer additive set-labeled graph or integer additive set-valued graph.

Definition 1.4. [8] An integer additive set-indexer (IASI) is as an injective function
f : V (G)→ P(N0) such that the induced function f+ : E(G)→ P(N0) defined by
f+(uv) = f(u) + f(v) = {a + b : a ∈ f(u), b ∈ f(v)} is also injective. A graph G
which admits an IASI is called an integer additive set-indexed graph.

Certain studies about integer additive set-indexers of graphs have been initiated
in [8], [9], [14] and [15]. A series of studies about different types of integer additive
set-labeled graphs followed thereafter. These papers about the characteristics and
properties of integer additive set-valued graphs are the main motivations behind
this paper.

2 Modular Sumset Labeling of Graphs

Let n be a positive integer. We denote the set of all non-negative integers modulo n by
Zn and its power set by P(Zn). The modular sumset of the two subsets A and B of Zn,
denoted by A+B, is the set defined by A+B = {x : a+b ≡ x (mod n), a ∈ A, b ∈ B}.
Through out our discussion, A+B is the sumset of A and B. It can also be noted
that A,B ⊆ Zn =⇒ A+B ⊆ Zn.

Then, using the concepts of modular sumsets of sets and analogous to the
definition of integer additive set-labelings of graphs, let us now define the following
notions.

Definition 2.1. A function f : V (G) → P(Zn), whose induced function f+(uv) :
E(G)→ P(Zn) is defined by f+(uv) = f(u) + f(v), is said to be a modular sumset
labeling if f is injective. A graph G which admits a modular sumset labeling is
called an modular sumset graph.

Definition 2.2. A modular sumset indexer is an injective function f : V (G)→ P(Zn)
such that the induced function f+ : E(G) → P(Zn) defined by f+(uv) = f(u) +
f(v) = {x : a+ b ≡ x (mod n); a ∈ f(u), b ∈ f(v)} is also injective.

In View of Theorem 1.1, the bounds for the cardinality of an edge of a modular
sumset graph G is given in the following theorem.
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Theorem 2.3. Let f : V (G) → P(Zn) be a modular sumset labeling of a given
graph G. Then, for any edge uv ∈ E(G), we have |f(u)|+ |f(v)| − 1 ≤ |f+(uv)| =
|f(u) + f(v)| ≤ |f(u)| |f(v)| ≤ n.

We use the following terms and definitions analogous to those for IASL-graphs. The
cardinality of the set-label of an element of G is said to be the set-labeling number
of that element. If all the vertices of a graph G have the same set-labeling number,
say l, then we say that V (G) is l-uniformly set-labeled. A modular sumset labeling
of G is said to be a k-uniform modular sumset labeling if the set-labeling number of
all edges of G have the same set-labeling number k.

The first and most important problem in this context is to verify whether a
given graph admits a modular sumset labeling. The existence of a modular sumset
labeling (and a modular sumset indexer) for any given graph G, is established in
the following theorem.

Theorem 2.4. Every finite graph admits a modular sumset labeling (or a modular
sumset indexer).

Proof. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vp}.. Let A1, A2 . . . , Ap
be p distinct non-empty subsets of Zn, n being a positive integer. Let f : V (G)→
P(Zn) defined by f(vi) = Ai. Clearly f is injective. Define f+ : E(G)→ P(Zn) by
f+(vivj) = {x : ai + bj ≡ x (mod n); ai ∈ Ai; bj ∈ Aj}. Clearly, f+(vivj) is also a
set of non-negative integers modulo n and hence is a subset of Zn. Therefore, for
suitable choices of n, f is a modular sumset labeling of G.

For taking n sufficiently large, we can make f+ also an injective function, which
establishes the existence of a modular sumset indexer for G.

Figure 1a depicts the existence of a modular sumset labeling for the Petersen
Graph, with respect to the ground set Z4 and Figure 1b illustrates the existence of a
modular sumset indexer for the Petersen Graph, with respect to the ground set Z5.

(a) Petersen Graph together with a sum-
set valuation defined on it

(b) Petersen Graph together with a mod-
ular sumset indexer defined on it

Figure 1



4 On the Modular Sumset Labeling of Graphs

As in the case of all other set-valuations of graphs, the problem of finding the
minimum cardinality required for the ground set Zn with respect to which a given
graph admits a modular sumset labeling is relevant and arouses much interest. In
view of this, let us introduce the following notion.

Definition 2.5. The smallest value of n such that f : V (G)→ P(Zn) is a modular
sumset labeling of a given graph G is called the modular sumset number of G. The
modular sumset number of a graph G is denoted by σ(G). Similarly, the minimum
value of n such that f : V (G)→ P(Zn) is a modular sumset indexer of G is called
the sumset index of G and is denoted by σ̄(G).

The following theorem establishes the modular sumset number of a given graph on
m vertices.

Theorem 2.6. The modular sumset number of a graph G is 1 + blog2mc.

Proof. Let f : V (G)→ P(Zn) be a modular sumset labeling of a given graph G on
m vertices. Then each vertex of G has a non-empty subset of Zn as its set-label.
Therefore, the ground set Zn must have at least m non-empty subsets. That is,
2n − 1 ≥ m. Hence, n ≥ 1 + log2m. Therefore, σ(G) = 1 + blog2mc.

3 Certain Types Modular Sumset Graphs

In this section, we study certain types of modular sumset labelings of given graphs
according to the nature of the set-labels of the elements of those graphs.

Analogous to the studies of integer additive set-labeled graphs, let us now proceed
to study different types of modular sumset labelings of G in terms of the cardinality
of the set-labels of vertices and edges of G.

3.1 Weak Modular Sumset Graphs

As in the study of weak IASL graphs, our first aim is to check the existence of edges
in modular sumset graph which has the same set-labeling number as that of one or
both of its end vertices. The following result establishes the condition for a sumset
to have the same cardinality of one or both of its summands.

Proposition 3.1. Let A and B be two non-empty subsets of Zn. Then, |A+B| = |A|
(or |A + B| = |B|) if and only if either |A| = |B| = Zn or |B| = 1 (or |A| = 1).
More over, |A+B| = |A| = |B| if and only if |A| = |B| = Zn or |A| = |B| = Zn.

In view of the above proposition, it can be noted that the set-labeling number of
an edge of G is equal to that of an end vertex of that edge if and only if the set-
labeling number of the other end vertex is 1. Hence, analogous to the corresponding
notion of IASL-graphs (see [9, 14]), we have the following definition.

Definition 3.2. A modular sumset labeling f of a graph G is said to be a weak
modular sumset labeling of G if the set-labeling number of every edge of G is equal
to the set-labeling number of at least one of its end vertices. A graph G which
admits a weak modular sumset labeling is called a weak modular sumset graph.
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It is to be noted that for a weak modular sumset graph, no two adjacent vertices
can have non-singleton set-labels.

Remark 3.3. The elements of G having the set-labeling number 1 are called the
monocardinal elements of G. An edge can be monocardinal if and only if its end
vertices are monocardinal. The set-labeling number of an edge of a given graph G is
equal to the set-labeling number of both of its end vertices if and only if the edge
and its end vertices are monocardinal

Hence, analogous to the corresponding of weak IASL-graphs the following results
are valid for weak modular sumset graphs.

Theorem 3.4. A graph G admits a weak modular sumset labeling if and only if G
is bipartite or contains monocardinal edges.

Theorem 3.5. A graph G admits a weakly uniform modular sumset labeling if and
only if G is bipartite.

Figure 2 illustrates a weak modular sumset graph with respect to the ground set Z6.

Figure 2: An example to a weak modular sumset graph.

It can be noticed that the study about weak modular sumset graphs is very much
close to the study of weak IASL-graphs and hence offers no novelty in this context.

3.2 Weak Modular Sumset Number of Graphs

As a special case of modular sumset number of graph we introduce the following
notion.

Definition 3.6. The weak modular sumset number of a graph G is defined to be
the minimum value of n such that a modular sumset labeling f : V (G)→ P(Zn) is
a weak modular sumset labeling of G.

In this section, we initiate a study about the weak modular sumset number of
different graph classes. First we observe the following proposition.

In the following theorem, we determine the weak sumset number of an arbitrary
graph G in terms of its covering and independence numbers.
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Theorem 3.7. Let G be a modular sumset graph and α and β be its covering number
and independence number respectively. Then, the weak modular sumset number of G
is max{α, r}, where r is the smallest positive integer such that 2r − r − 1 ≥ β.

Proof. First recall the result α(G) + β(G) = |V (G)|. Since G is a modular sumset
graph, no two adjacent vertices can have non-singleton set-labels simultaneously.
Therefore, the maximum number of vertices that have non-singleton set-labels is
β. Let V ′ be the set of these independent vertices in G. Therefore, the minimum
number of vertices that are monocardinal is |V (G)| − β = α. Since all these vertices
in V − V ′ must have distinct singleton set-labels, the ground set must have at least
α elements.

Also, the number non-empty, non-singleton subsets of the ground set must be
greater than or equal to α, since, otherwise all the vertices in V ′ can not be labeled
by non-singleton subsets of this ground set. Note that the number of non-empty,
non-singleton subsets of a set A is 2|A| − |A| − 1.

Therefore, the weak modular sumset number G is α if 2α−α−1 ≥ β. Otherwise,
the ground set must have at least r elements such that 2r − r − 1 ≥ β. Therefore,
in this case, the weak modular sumset number of G is r, where r is the smallest
positive integer such that 2r − r − 1 ≥ β. Hence, σ∗(G) = max{α, r}.

We shall now discuss the weak modular sumset number of certain standard graph
classes. First consider a path graph Pm on m vertices.

Proposition 3.8. The weak modular sumset number of a path Pm on m vertices is
given by

σ∗(Pm) =

{
m if m ≤ 2

bm
2
c if m > 2

Proof. Let Pm denote be a path on m vertices. Then, α = bm
2
c and β = dm

2
e. It is

obvious that we need a singleton set to label the single vertex of Pm if m = 1 and a
two element set to label the two vertices of Pm when m = 2. Hence, let m ≥ 3. For
any positive integer m ≥ 3, we have 2b

m
2
c > 2. Therefore, 2b

m
2
c + bm

2
c − 1 > dm

2
e.

That is, 2α − α− 1 > β. Hence, by Theorem 3.7, σ∗(Pm) = α = bm
2
c.

Next graph we consider is a cycle Cm on m vertices. The weak modular sumset
number a cycle Cm is given in the following result.

Proposition 3.9. The weak modular sumset number of a cycle Cm, on m vertices
is

σ∗(Cm) =

{
m− 1 if n = 3, 4

dm
2
e if n ≥ 5

.

Proof. For C3, α = 2 and β = 1. Therefore, 2α − α − 1 = 1 = β. Therefore, by
Theorem 3.7, σ∗(C3) = 2. If C4, α = 2 and β = 2. Now, 2α − α− 1 = 1 < β. Also,
for r = 3, 2r − r − 1 = 23 − 3− 1 = 4 > β. Therefore, by Theorem 3.7, σ∗(C4) = 3

For a cycle Cm; m ≥ 5, we have α = dm
2
e and β = bm

2
c. Since m ≥ 3, 2d

m
2
e ≥ 4.

Therefore, 2d
m
2
e + dm

2
e − 1 > bm

2
c. That is, 2α − α− 1 > β. Hence, by Theorem 3.7,

σ∗(Cm) = α = dm
2
e.
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Another graph that can be generated from a cycle is a wheel graph, denoted
by Wn+1, which is the graph obtained by joining every vertex of a cycle Cn to an
external vertex. That is, Wn+1 = Cn +K1. The following result provides the weak
modular sumset number of a wheel graph.

Proposition 3.10. The weak modular sumset number of a wheel graph Wm+1 is
1 + dm

2
e.

Proof. For a wheel graph Wm+1 = Cm + K1, we have α = 1 + dm
2
e and β = bm

2
c.

Since m ≥ 3, as explained in the previous theorems, 2α − α − 1 > β. Hence, by
Theorem 3.7, σ∗(Wm+1) = 1 + dm

2
e.

Another graph that is close to cycles and wheel graphs is a helm graph, denoted
by Hm, which is the graph obtained by adjoining a pendant edge to each vertex of
the outer cycle Cm of a wheel graph Wm+1 . It has 2m+ 1 vertices and 3m edges.
The next result establishes the weak modular sumset number of a helm graph.

Proposition 3.11. The weak modular sumset number of a helm graph Hm is m.

Proof. For Hm, we have α = m and β = m+1. It is to be noted that 2m−1 ≥ (m+1)
for all positive integer m ≥ 3. Therefore, 2m−m−1 > m+1. That is, 2α−α−1 > β.
Hence by Theorem 3.7, σ∗(Hm) = α = m.

Another graph which are related to paths are ladder graph, denoted by Lm and is
defined as the Cartesian product of a path on m vertices and a path on two vertices.
That is, Lm = pm�P2 (or Lm = Pm�K2), where m > 2. The weak modular sumset
number of a ladder graph is determined in the following proposition.

Proposition 3.12. The weak modular sumset number of a ladder graph Lm is m.

Proof. Let Lm = Pm�P2, where m > 2. Irrespective of whether m is odd or even,
α = m and β = m. For any positive integer m > 2, we have 2m −m− 1 > m. That
is, 2α − α− 1 > β. Then, by Theorem 3.7, σ∗(Ln) = m.

Next we proceed to determine the weak modular sumset number of a complete
graph Kn. is determined in the following result. We already mentioned the weak
modular sumset number of K1, K2 and K3 when we discussed the weak modular
sumset number of paths and cycles. Hence, need consider complete graphs having 4
or more vertices. The weak modular sumset number of a complete graph Km, where
m ≥ 4, is determined in the following result.

Proposition 3.13. For a positive integer m ≥ 4, the weak modular sumset number
of a complete graph Km is m− 1.

Proof. For a complete graph Km, we have α = m− 1 and β = 1. Therefore, for any
positive integer m, we have 2m−1 −m− 2 > 1. That is, 2α − α− 1 > β. Therefore,
the weak modular sumset number of Km is m− 1.

The minimum cardinality of the ground set when the given graph G admits
a weakly uniform modular sumset labeling arouses much interest in this occasion.
Hence, we have the following result.
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Theorem 3.14. Let G be a graph with covering number α and independence number
β and let G admits a weakly k-uniform modular sumset labeling, where k < α being
a positive integer. Then, the minimum cardinality of the ground set Zn is max{α, r},
where r is the smallest positive integer such that

(
r
k

)
≥ β.

Proof. Let G be a graph which admits a weakly k-uniform sum set labeling f A = Zn.
Then, by Theorem 3.5, G is bipartite. Let X, Y be the bipartition of the vertex set
V (G). If |X| ≤ |Y |, then α = |X| and β = |Y |. Then, distinct elements of X must
have distinct singleton set-labels. Therefore, n ≥ α.

On the other hand, since f is k-uniform, all the elements in Y must have distinct
k-element set-labels. The number of k-element subsets of a set A (obviously, with
more than k elements) is

(|A|
k

)
. The ground set A has α elements only if

(
α
k

)
≥ β.

Otherwise, the ground set A must contain at least r elements, where r > α is the
smallest positive integer such that

(
r
k

)
≥ β. Therefore, n = max{α, r}.

In the above theorems we considered the value of k which is less than or equal
to α. What is the case when k ≥ α? the following theorem provides a solution to
this problem.

Corollary 3.15. Let G be a weakly k-uniform modular sumset graph, where k ≥ α,
where α is the covering number of G. Then, the minimum cardinality of the ground
set is the smallest positive integer n such that

(
n
k

)
≥ β, where β is the independence

number of G.

Proof. If k ≥ α, then
(
α
k

)
does not exist. Then, the proof is immediate from Theorem

3.14.

Now, we proceed to verify the properties of certain graphs in which the set-
labeling number of edges are the product of the set-labeling numbers of their end
vertices.

3.3 Strong Modular Sumset Graphs

Analogous to strong IASL-graphs, we define the following notion.

Definition 3.16. Let f : V (G)→ P(Zn) be a modular sumset labeling defined on
a given graph G. Then, f is said to be a strong modular sumset labeling if for the
associated function f+ : E(G) → P(Zn), |f+(uv)| = |f(u)| |f(v)| ∀ uv ∈ E(G). A
graph which admits a strong modular sumset labeling is called a strong modular
sumset graph.

Let DA be the difference set of a given set A defined by DA = {|ai−aj| : ai, aj ∈
A}. Then, the necessary and sufficient condition for a graph to admit a strong
modular sumset labeling is as given below.

Theorem 3.17. A modular sumset labeling f : V (G)→ P(Zn) of a given graph G is
a strong modular sumset labeling of G if and only if Df(u)∩Df(v) = ∅, ∀ uv ∈ E(G),
where |f(u)| |f(v)| ≤ n.
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Proof. Let f : V (G) → P(Zn) be a modular sumset labeling on a given graph G.
For any vertex u ∈ V (G), define Df (u) = {ai − aj : ai, aj ∈ f(u)}.

Let uv be an arbitrary edge in E(G). Assume that f is a strong modular
sumset labeling of G. Then, by definition |f+(uv)| = |f(u)| |f(v)|. Therefore,
for any elements ai, aj ∈ f(u) and br, bs ∈ f(v), we have ai + br 6= aj + bs in
f+(uv) ∀ uv ∈ E(G). That is, |ai − aj| 6= |bs − br| for any ai, aj ∈ f(u) and
br, bs ∈ f(v). That is, Df(u) ∩ Df(v) = ∅. Therefore, the difference sets of the
set-label of any two adjacent vertices are disjoint.

Conversely, assume that the difference Df(u) ∩ Df(v) = ∅ for any edge uv in
G. That is, |ai − aj| 6= |bs − br| for any ai, aj ∈ f(u) and br, bs ∈ f(v). Then,
ai − aj 6= bs − br. That is, ai + br 6= aj + bs. Therefore, all elements in f(u) + f(v)
are distinct. That is, |f+(uv)| = |f(u)| |f(v)| for any edge uv ∈ E(G). Hence, f is
a strong modular sumset labeling of G.

Also, note that the maximum possible cardinality in the set-label of any element
of G is n, the product |f(u)| |f(v)| can not exceed the number n. This completes
the proof.

Figure 3 illustrates a strong modular sumset labeling of a graph with respect to
the ground set Z6.

Figure 3: An example to a strong modular sumset graph.

Analogous to the weak modular sumset number of a graph G, we can define the
strong modular sumset number of G as the minimum cardinality required for the
ground set Zn so that G admits a strong modular sumset labeling. The choice of
ground set Zn is very important in this context because n should be sufficiently
large so that the vertices of the given graph can be labeled in such a way that the
difference sets of these set-labels of all adjacent vertices must be pairwise disjoint.

Analogous to the corresponding results on strong IASL-graphs and strongly
uniform IASL-graphs proved in [15], the following results are valid for strong modular
sumset graphs also.

Theorem 3.18. For a positive integer k ≤ n, a modular sumset labeling f : V (G)→
P(Zn) of a given connected graph G is a a strongly k-uniform modular sumset labeling
of G if and only if either k is a perfect square or G is bipartite.
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Proof. If k is a perfect square, say k = l2, then we can label all the vertices of a
graph by distinct l-element sets in such a way that the difference sets of the set-labels
of every pair of adjacent vertices are disjoint. Hence, assume that k is not a perfect
square.

Let G be a bipartite graph with bipartition (X, Y ). Let r, s be two divisors of
k. Label all vertices of X by distinct r-element sets all of whose difference sets are
the same, say DX . Similarly, label all vertices of Y by distinct s-element sets all
of whose difference sets the same, say DY , such that DX ∩DY = ∅. Then, all the
edges of G has the set-labeling number k = rs. Therefore, G is a strongly k-uniform
modular sumset graph.

Conversely, assume that G admits a strongly k-uniform modular sumset labeling,
say f . Then, f+(uv) = k ∀ uv ∈ E(G). Since, f is a strong modular sumset labeling,
the set-labeling number of every vertex of G is a divisor of the set-labeling numbers
of the edges incident on that vertex. Let v be a vertex of G with the set-labeling
number r, where r is a divisor of k, but r2 6= k. Since f is k-uniform, all the vertices
in N(v), must have the set-labeling number s, where rs = k. Again, all vertices,
which are adjacent to the vertices of N(v), must have the set-labeling number r.
Since G is a connected graph, all vertices of G have the set-labeling number r or
s. Let X be the set of all vertices f G having the set-labeling number r and Y be
the set of all vertices of G having the set-labeling number s. Since r2 6= k, no two
elements in X (and no elements in Y also) can be adjacent to each other. Therefore,
G is bipartite.

Theorem 3.19. For a positive non-square integer k ≤ n, a modular sumset labeling
f : V (G)→ P(Zn) of an arbitrary graph G is a a strongly k-uniform modular sumset
labeling of G if and only if either G is bipartite or a disjoint union of bipartite
components.

For a positive integer k ≤ n, the maximum number of components in a strongly
k-uniform modular sumset graph is as follows.

Proposition 3.20. Let f be a strongly k-uniform modular sumset labeling of a graph
G with respect to the ground set Zn. Then, the maximum number of components in
G is the number of distinct pairs of divisors r and s of k such that rs = k.

Remark 3.21. It can be observed that a strongly k-uniform modular sumset graph
can have a non-bipartite component if and only if k is a perfect square. More over,
a strongly k-uniform modular sumset graph G can have at most one non-bipartite
component.

3.4 Maximal Modular Sumset Graph

It can be observed that the maximum value of the set-labeling number of an edge
of a modular sumset graph is n, the cardinality of the ground set Zn. Hence, we
introduce the following notion.

Definition 3.22. Let f : V (G)→ P(Zn) be a modular sumset labeling of a given
graph G. Then, f is said to be a maximal modular sumset labeling of G if and only
if f+(E(G)) = {Zn}.
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In other words, a modular sumset labeling f : V (G)→ P(Zn) of a given graph
G is a maximal modular sumset labeling of G if the set-label of every edge of G is
the ground set Zn itself.

What are the conditions required for a graph to admit a maximal modular sumset
labeling? Let us proceed to find out the solutions to this problem.

Proposition 3.23. The modular sumset labeling f : V (G) → P(Zn) of a given
graph G is a maximal modular sumset labeling of G if and only if for every pair of
adjacent vertices u and v of G some or all of the following conditions hold.

(i) |f(u)|+ |f(v)| ≥ n if Df(u) ∩Df(v) 6= ∅. The strict inequality hold when Df(u)

and Df(v) are arithmetic progressions containing the same elements.

(ii) |f(u)| |f(v)| ≥ n if Df(u) ∩Df(v) = ∅.

Proof. For two adjacent vertices u and v in G, let Df(u) = Df(v) = {d} are arithmetic
progressions containing the same elements. Then, the elements in f(u) and f(v)
are also in arithmetic progression, with the same common difference d. Then, by
Theorem 1.2, |f(u) + f(v))| = |f(u)|+ |f(v)|− 1. Therefore, the set-labeling number
of the edge uv is n if and only if |f(u)|+ |f(v)| > n.

Now, let Df(u)∩Df(v) 6= ∅ such that Df(u) 6= Df(v). Then, clearly |f(u)+f(v))| ≥
|f(u)|+ |f(v)|. Therefore, we have |f+(uv)| = n if and only if |f(u)|+ |f(v)| ≥ n.

Next assume that Df(u) ∩ Df(v) = ∅. Then, |f(u) + f(v))| = |f(u)| |f(v)|.
Therefore, we have |f+(uv)| = n if and only if |f(u)| |f(v)| ≥ n.

Figure 4 illustrates a maximal modular sumset labeling of a graph with respect
to the ground set Z4.

Figure 4: An example to a maximal modular sumset graph.

The following result explains a necessary and sufficient condition for a weak
modular sumset labeling of a given graph G to be a maximal modular sumset
labeling of G.

Proposition 3.24. A weak modular sumset labeling of a graph G is a maximal
labeling of G if and only if G is a star graph.
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Proof. Let f be a weak modular sumset labeling of given graph G. First, assume
that f is a maximal modular sumset labeling of G. Then, the set-labeling number
of one end vertex of every edge of G is 1 and the set-labeling number of the other
end vertex is n. Therefore, Zn be the set-label of one end vertex of every edge of G,
which is possible only if G is a star graph with the central vertex has the set-label
Zn and the pendant vertices of G have distinct singleton set-labels.

Conversely, assume that G is a star graph. Label the central vertex of G by
the ground set Zn and label other vertices of G by distinct singleton subsets of Zn.
Then, all the edges of G has the set-indexing number n. That is, this labeling is a
maximal modular sumset labeling of G.

A necessary and sufficient condition for a strong modular sumset labeling of a
graph G to be a maximal modular sumset labeling of G.

Theorem 3.25. Let f be a strong sumset-labeling of a given graph G. Then, f is a
maximal sumset-labeling of G if and only if n is a perfect square or G is bipartite or
a disjoint union of bipartite components.

Proof. The proof is an immediate consequence of Theorem 3.18, when k = n.

In the coming discussion, we check whether the sumset of two sets can contain
both sets and according to that property we define a particular type of modular
sumset graphs.

3.5 Exquisite Modular Sumset Graphs

Analogous to the exquisite integer additive set-labeling of a graph G defined in [16],
let us define the following.

Definition 3.26. For a positive integer n, let Zn be the set of all non-negative
integers modulo n and P(Zn) be its power set. An exquisite modular sumset labeling
(EMSL) is a modular sumset labeling f : V (G)→ P(Zn) with the induced function
f+ : E(G) → P(Zn) defined by f+(uv) = f(u) + f(v), uv ∈ E(G), such that
f(u), f(v) ⊆ f+(uv) for all adjacent vertices u, v ∈ V (G). A graph which admits an
exquisite modular sumset labeling is called an exquisite modular sumset graph.

What is the condition required for a given graph to admit an exquisite modular
sumset labeling? The following proposition leads us to a solution to this question.

Proposition 3.27. Let A and B be two subsets of the set Zn. Then, A (or B) is a
subset of their sumset A+B if and only if every element ai of A is the sum (modulo
n) of an element aj (not equal to ai) in A and an element bl in B.

Proof. Let A,B ⊆ Zn. Assume that every element of A is the sum (modulo n)
of an element in A and an element B. That is, ai ∈ A =⇒ ∃ aj ∈ A, bl ∈
B such that ai = aj + bl. Hence ai ∈ A+B. Therefore, A ⊆ A+B.

Conversely, assume that A ⊆ A+B. Then, ai ∈ A =⇒ ai ∈ A+B =⇒ ai =
aj + bl for some aj ∈ A, bl ∈ B.

In view of the Proposition 3.27, we have the following theorem.
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Theorem 3.28. A graph G admits an exquisite modular sumset labeling if and only
if every element in the set-label of any vertex of G is the sum (modulo n) of an
element in that set-label and an element in the set-label of its adjacent vertex.

Analogous to the corresponding result of exquisite IASL-graphs, we have the
following result for an exquisite modular sumset graphs.

Proposition 3.29. A graph admits an exquisite modular sumset labeling f if the
set-label of every vertex of G consists of the element 0.

Proposition 3.30. Every maximal modular sumset labeling of a graph G is also an
exquisite modular sumset labeling of G.

Proof. Let f be a maximal sumset-labeling of G. Then, f+(uv) = Zn for all edge
uv ∈ E(G). Then, the set-labels f(u) and f(v) are the subsets of f+(uv). Hence, f
is an exquisite modular sumset labeling of G.

Invoking the above results, a necessary and sufficient condition for a modular
sumset labeling of a graph G to be an exquisite modular sumset labeling of G.

Theorem 3.31. A modular sumset labeling f : V (G)→ P(Zn) of a graph G is an
exquisite modular sumset labeling of G if and only if either the set-label of every
vertex consists of the element 0 or f is a maximal modular sumset labeling of G.

Figure 5 illustrates an exquisite modular sumset labeling of a graph, the set-labels
of all whose vertices containing 0.

Figure 5: An example to a maximal modular sumset graph.

Can a weak modular sumset labeling of a graph G be an exquisite modular
sumset labeling of G? Let us now proceed to find the solution to this problem.

Theorem 3.32. Let f : V (G) → P(Zn) be a weak modular sumset labeling of a
graph G. Then, f is an exquisite modular sumset labeling of G if and only if G is a
star.
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Proof. Since f is a weak modular sumset labeling of G, then at least one end vertex
of every edge of G must have singleton set-labels. First, assume that G is a star
graph. Label the central vertex by {0} and label all pendant vertices by the subsets
of Zn containing 0. Then, this labeling is an exquisite modular sumset labeling. (Or
label the central vertex of G by Zn and label the pendant vertices of G by distinct
singleton subsets of Zn. This labeling is also an exquisite modular sumset labeling
of G.)

Conversely, assume that f is an exquisite modular sumset labeling of G. Then
by Theorem 3.31, the set-labels of all vertices of G consist of 0 or f is a maximal
modular sumset labeling. If the set-labels of all vertices of G contain 0, then {0} is
the only singleton set that can be the set-label of a vertex of G. Therefore, G must
be a star in which the set-label of the central vertex is {0} and the pendant vertices
of G have distinct non-singleton subsets of Zn as their set-labels.

If 0 is not an element of the set-label of every vertex of G, then f is a maximal
modular sumset labeling of G. Then, by Theorem 3.24, G is a star graph in which
the set-label of the central vertex is Zn and the pendant vertices of G have distinct
singleton subsets of Zn as their set-labels. This completes the proof.

4 Conclusion

In this paper, we have introduced the notion of modular sumset labeling for given
graphs and discussed certain properties and characteristics of modular sumset graphs.
More properties and characteristics of various modular sumset graphs, both uniform
and non-uniform, are yet to be investigated. Some promising problems in this area
are the following.

Problem 1. Find the minimum cardinality of the ground set Zn so that the modular
sumset labeling f : V (G)→ P(Zn) of a given graph G is a uniform modular sumset
labeling of G.

Problem 2. Characterise the graphs admitting the modular sumset labelings which
are exquisite as well as weak.

Problem 3. Find the minimum cardinality of the ground set Zn so that the modular
sumset labeling f : V (G)→ P(Zn) defined on a given graph G is a modular sumset
indexer of G.

Problem 4. Verify whether the existence of induced modular sumset labelings for
certain graphs associated to the given modular sumset graphs like line graphs, total
graphs etc.

Problem 5. Determine the strong modular sumset number of different graph classes.

The problems of establishing the necessary and sufficient conditions for various
graphs and graph classes to have certain other types of sumset valuations are also
open. Studies on those sumset valuations which assign different sets having specific
properties, to the elements of a given graph are also noteworthy.
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