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Abstract

For k ∈ ℤ+, define Σk as the set of integers {0, 1, …, k − 1}. Given an integer n and a string t of 

length m ≥ n over Σk, we count the number of times that each one of the kn distinct strings of 

length n over Σk occurs as a subsequence of t. Our algorithm makes only one scan of t and solves 

the problem in time complexity mkn−1 and space complexity m + kn. These are very close to best 

possible.
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1. Introduction

An alphabet Σ is a finite set of symbols; a string over an alphabet Σ is a finite sequence of 

symbols from Σ; the length of a string is the number of symbols in the string; the set of 

strings of length n over Σ is denoted by Σn, and the set of all strings over Σ (including the 

empty string λ) is denoted by Σ∗.

The concepts of substring and subsequence are very important in computational problems 

defined on strings. Such problems are important in many fields, including coding theory, 

machine learning, and analysis of biological sequences (Elzinga et al., 2008). A substring is 

a contiguous part of a string, while the elements of a subsequence are not necessarily 

contiguous in the string. In formal terms, let x, y be two strings over an alphabet Σ, x is a 

substring of y if there exist strings w1, w2 ∈ Σ∗ such that w1xw2 = y. Let z = z1, z2, …, zn 

over Σ. z is a subsequence of a string y over Σ if there exist n + 1 strings w1, w2, …, wn+1 ∈ 
Σ∗ such that w1z1w2z2 ⋯ wnznwn+1 = y.
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We are interested in strings over alphabets whose elements are integers. For an integer k ∈ 
ℤ+ let Σk = {0, 1, …, k−1} (we assume a coding that assigns a unique symbol to each 

integer). Given positive integers n, m with n ≤ m, the problem addressed in this work is to 

count the number of times that each string in  occurs as a subsequence of a string 

. This problem has three parameters: the integer k, the integer n, and the string t. For 

example, consider the case k = 2 (which defines Σ2 = {0, 1}), n = 3, and 

. Table 1 shows the number of times that each string in 

 occurs as a subsequence of . Table 1 

also shows the indices of t at which the subsequences occur, although we are interested only 

in the number of occurrences. For example, the first occurrence of the string s = 110 is at 

positions 2, 4, 5 of t, and the second occurrence is at positions 2, 4, 6.

2. Related Problems

For string subsequences the most studied problem is finding the longest common 

subsequence of two strings; the algorithm of (Wagner and Fischer, 1974) solves the problem 

in time O(n · max(1, m/log n)) for strings with lengths n and m, n > m. The longest 

increasing subsequence problem is similar: given a string t of length m the objective is to 

find the largest j such that i1 < i2 < ⋯ < ij and . The algorithm in 

(Crochemore and Porat, 2010) solves the problem in O(m log log n), where n is the maximal 

length of increasing subsequences of t. The combination of the above two problems is the 

longest common increasing subsequence problem, i.e., the problem of computing the longest 

common subsequence that is also an increasing subsequence of the given strings. Some 

important works on this problem are (Yang et al., 2005; Brodal et al., 2006).

Related to counting subsequences in a given string t are problems like counting the number 

of different subsequences of t, and counting the number of different subsequences of size n 
of t.

In (Elzinga et al., 2008) the number of distinct subsequences in a string t of length m is 

determined in time Θ(m) using a dynamic programming algorithm. Denote by ti, 1 ≤ i ≤ m, 

the prefix of t formed by the first i symbols of t; and let t0 represent the empty string. Let s ⪯ 
t denote that string s is a subsequence of t. Before reading any character of t the number of 

subsequences is 1 since the empty string is counted as a subsequence of t. These are the 

rules applied for each character tj read from the string t:

• If tj ⋠ tj−1 the number of distinct subsequences doubles.

• If tj ⪯ tj−1 the doubling is compensated by subtracting the number of 

subsequences until before the last occurrence of the character tj.

For the problem of counting the number of distinct subsequences of length n in a string t ∈ 
Σm we briefly describe the method given in (Rahmann, 2006).

Define Si,j = {s ∈ Σi : s ⪯ t1 ⋯ tj} as the set of subsequences of length i in the prefix tj, and 

define Ci,j = |Si,j| as the cardinality of Si,j. We refine the above definitions by imposing a 
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condition on the last character σ of each s in Si,j as follows: Si,j[σ] = {s ∈ Σi : s ⪯ t1 ⋯ tj and 

si = σ}, and Ci,j[σ] = |Si,j[σ]|. In this manner C0,j = 1 for all j because S0,j = {t0}; C0,j[σ] = 0 

since S0,j[σ] = ∅ for all σ ∈ Σ; and Ci,j = Σσ∈Σ Ci,j[σ] for i > 0 and all j. In addition, it is 

convenient to define Ci,j = 0 if i > j. The objective is to compute Cn,m by using the following 

recurrence relation for j = 1, …, m and i = 1, …, j (if j > n then it is enough to compute the 

values of the recurrence relation for i = 1, …, n):

This last problem is similar to the problem addressed in the present work. The difference is 

that our objective is to count the number of times that each string in the set Σn occurs as a 

subsequence of a string t ∈ Σm. If the alphabet Σ has k symbols then the output of the 

problem will be kn values corresponding to the kn strings in the set Σn.

3. The Algorithm

Given k and n, we use a perfect k-ary tree of height n to count the number of times that each 

string in  occurs as a subsequence of a string . The perfect k-ary tree of height n 

has  nodes of which kn are leaf nodes. The tree has the following characteristics:

•
The nodes are labelled with the integers from 1 to . The labelling is 

done from left to right and from top to bottom.

• The k edges emanating from an internal node are labelled with the integers from 

0 to k − 1.

• There is a counter associated with each node except the root node. The counter 

of a node stores the number of occurrences as a subsequence of t of the string 

formed by concatenating the label of the edges in the path from the root node to 

the node.

Figure 1 shows the perfect tree created by the algorithm for k = 2 and n = 3. The 

concatenations of the edge labels in the paths from the root node to the nodes in the i-th level 

produce the elements in the set . In particular, the concatenation of the n edge labels in 

the path from the root node to a leaf node gives a string of . Thus there is a 

correspondence between the strings formed by concatenating the labels of the edges in the 

paths to the leaf nodes and the elements in the set . In this example, the paths from the 

root node to the leaf nodes produce the strings of 

.
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Inside each node (other than the root node) there are two integers, the first one is the label of 

the node and the second one is the current value of the counter of the node. The root node 

has no counter and its label is 1.

The algorithm reads the symbols of the string t one at a time. Let ti denote the i-th symbol of 

the string t. Before processing any symbol of t each string in  has occurred zero 

times. Thus the counters of all nodes are initially zero. For the i-th symbol read from the 

string t the algorithm performs the following two steps to update the counters:

1. From level n to level 2 update the counter of each node whose edge from the 

parent node is labelled with the symbol ti according to:

2. In level 1 increment by one unit the counter of the node whose edge from the 

root node has the label ti.

By performing these steps for every symbol of t the algorithm counts all occurrences of the 

strings in  In what follows we describe how the updates of the counters of the tree 

of Figure 1 take place as the first three symbols of the string t = 0 1 0 1 0 0 1 are read:

1. t1 = 0:

a. Counters of nodes 8, 10, 12, 14 in the third level are updated; in all 

cases the result is 0 since the counters of those nodes and the counters 

of their parents are 0.

b. Counters of nodes 4, 6 in the second level are updated; in all cases the 

result is 0.

c. The counter of node 2 in the first level is incremented by one unit; now 

its value is 1.

2. t2 = 1:

a. Counters of nodes 9, 11, 13, 15 in the third level are updated; in all 

cases the result is 0.

b. Counters of nodes 5, 7 in the second level are updated; in this case the 

counter of node 5 becomes 1 and the counter of node 7 remains at 0.

c. The counter of node 3 in the first level is incremented by one unit; now 

its value is 1.

3. t3 = 0:

a. Counters of nodes 8, 10, 12, 14 in the third level are updated; this time 

the counter of node 10 becomes 1, and the counters of nodes 8, 12, 14 

remain at 0.
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b. Counters of nodes 4, 6 in the second level are updated; in this case both 

counters are set to 1.

c. The counter of node 2 in the first level is incremented by one unit; now 

its value is 2.

Figure 2 shows the status of the tree after processing the first three symbols of t = 0 1 0 1 0 0 

1. The nodes with counters distinct from 0 are the nodes 2, 3, 4, 5, 6, 10. The strings 

represented by these nodes are: node(2) = 0, node(3) = 1, node(4) = 00, node(5) = 01, 

node(6) = 10, node(10) = 010.

Once the algorithm processes all symbols of t, the counter of each leaf node gives the 

number of occurrences in t of the string  formed by concatenating the label of the 

edges in the path from the root node to the leaf node. The algorithm is able to count all 

occurrences of each string in , but we are interested only in the occurrences of the 

strings of . In the above example only the string 010 has occurred after reading the first 

three symbols of t = 0 1 0 1 0 0 1.

For each symbol ti of the string t, the algorithm updates all nodes that are endpoints of an 

edge with label ti. In the perfect tree constructed by the algorithm for k and n, the total 

number of nodes that are endpoints of an edge is the total number of nodes minus the root 

node. Then, for every symbol σ of the alphabet Σk = {0, 1, …, k − 1} there are 

 nodes in the tree each of which satisfies that its edge from the parent 

node has label σ. Simplifying this expression we have:

Therefore, for every symbol read from the string t the algorithm updates the counters of (kn 

− 1)/(k − 1) nodes of the tree. The updating of a node takes one operation, either a sum of 

two terms or an increment of one unit. Accordingly, if the string t has m symbols then the 

algorithm counts all occurrences of all strings of length n over Σk in  operations.

In general, as a symbol σ is read from the string t, the number of occurrences of the strings 

in  whose last character is σ grows, and so the counters of those strings must be updated. 

For each symbol σ ∈ Σk there are kn−1 strings of  whose last symbol is σ, and therefore 

at least kn−1 counters must be updated each time a character from t is processed. Thus, any 

algorithm that processes sequentially the m characters of t will solve the problem in m(kn−1) 

operations. This complexity is for the general case (nothing is assumed about the distribution 

and frequency of the characters of t). For example, if t = σ σ ⋯ σ is formed by m 
occurrences of the character σ, then the result can be computed easily: the value of the 
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counter associated with the string  formed by n characters σ is , while the 

value of the counters for the other strings in  is zero.

The execution time m(kn − 1)/(k − 1) of our algorithm is greater than the minimum possible 

m(kn−1) only by a factor k/(k − 1). The memory required by our algorithm is O(m) to store 

the string t, and O((kn+1 − 1)/(k − 1)) to store the perfect k-ary tree of height n. Any 

algorithm requires O(m) to store the string t, and O(kn) to store the counters associated with 

each string of . Again, for large k the spatial complexity of our algorithm is O(m) plus 

O((kn+1 − 1)/(k − 1)) = O(kn+1/k) = O(kn).

4. Implementation of the Algorithm

Since all internal nodes have exactly k children, there is a straight-forward way to store the 

nodes of the tree in an array. The perfect tree constructed for the given values of k and n has 

 nodes, and they are labelled from 1 to . The tree can be stored in an array 

of size equal to the number of nodes of the tree by storing the node with label i in the i-th 

position of the array. The positions of the array correspond to the labels of the nodes, and the 

contents of the positions correspond to the counters of the nodes.

Let d = k − 2 be a value dependent of the given k. If the node at position i is an internal node 

then its children nodes are in positions (i)(k) − d, (i)(k) − d + 1, …, (i)(k) − d + k − 1 of the 

array; and the parent of the node at position i, i ≠ 1, is at position  of the array.

To perform the updates of the counters associated with each node in an efficient way, we use 

the fact that nodes that are endpoints of edges with equal labels are stored in positions 

separated by a distance of k in the array. For example, in a tree for k = 3 the nodes at 

positions 2, 5, 8, 11, … are endpoints of an edge with label 0, the nodes at positions 3, 6, 9, 

12, … are endpoints of and edge with label 1, and the nodes at positions 4, 7, 10, 13, … are 

endpoints of an edge with label 2.

The algorithm described in the previous section first updates counters of nodes in the last 

level of the tree, then updates counters of nodes in the next level, and so on until reaching 

level 1. To preserve this order, the implementation of the algorithm first updates the last 

node of the array that is an endpoint of an edge with label ti, where ti is the symbol currently 

read from the string t. Then, starting from this node the algorithm updates the nodes 

separated by k positions, going from the end to the beginning of the array.

Algorithm 1 shows pseudocode for the algorithm. The operation (j + d)/k in line 11 is an 

integer division and computes the parent of node j. The last three lines of Algorithm 1 print 

the number of occurrences of the strings in . The nodes from position total_nodes−kn 

+ 1 to position total nodes correspond to the kn elements of  listed in lexicographic 

order.

Torres-Jimenez et al. Page 6

Discrete Math Algorithms Appl. Author manuscript; available in PMC 2018 June 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



To get a sense of the time required by the algorithm for some values of k and n, we 

performed the experiments shown in Table 2. The string t in all cases was generated 

randomly and had 100,000 symbols. The machine on which the program was run has an 

Intel® Core™ 2 Duo processor at 3.06 GHz.

5. Conclusions

We developed an algorithm to count the number of times that each string of length n over the 

alphabet Σk = {0, 1, …, k − 1} occurs as a subsequence of a string , where n, k, m ∈ 
ℤ+, m ≥ n. The algorithm uses a perfect k-ary tree of height n to count in one scanning of the 

symbols of t all occurrences of the strings in . The execution time of the algorithm is 

, and this execution time is greater than the minimum possible mkn−1 (for an 

algorithm based on scanning sequentially the characters of t) only by a factor k/(k − 1). The 

algorithm was implemented using an array of size . Each element of the array is a 

counter of the number of times that a string from  has occurred as a subsequence t; 

the last kn elements of the array correspond to the elements of  in lexicographic order. 

The algorithm is able to solve in a reasonable amount of time (less than five minutes) cases 

like k = 4, n = 10, and a string t of length 100,000.

Algorithm 1

count_subsequences(k, n, t)

  1: total_nodes ← (kn+1 − 1)/(k − 1)

  2: ν ← array(total_nodes)

  3: for i ← 1 to total_nodes do

  4:  ν[i] ← 0

  5: end for

  6: d ← k − 2

  7: m ← length(t)

  8: for i ← 1 to m do

  9:  j ← total_nodes − k + ti + 1

10:  while j > k + 1 do

11:   ν[j] ← ν[j] + ν[(j + d)/k]

12:   j ← j − k

13:  end while

14:  ν[j] ← ν[j] + 1

15: end for

16: for i ← total_nodes − kn + 1 to total_nodes do

17:  print(ν[i])

18: end for
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Figure 1. 
Perfect tree created by the algorithm for k = 2 and n = 3.
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Figure 2. 
Status of the tree for k = 2 and n = 3 after reading the first three symbols of t = 0 1 0 1 0 0 1.
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Table 1

Occurrences of the elements in  in the string t = 0 1 0 1 0 0 1.

s Occurrences Indices

000 4 {1, 3, 5}, {1, 3, 6}, {1, 5, 6}, {3, 5, 6}

001 7 {1, 3, 4}, {1, 3, 7}, {1, 5, 7}, {1, 6, 7}, {3, 5, 7}, {3, 6, 7}, {5, 6, 7}

010 7 {1, 2, 3}, {1, 2, 5}, {1, 2, 6}, {1, 4, 5}, {1, 4, 6}, {3, 4, 5}, {3, 4, 6}

011 4 {1, 2, 4}, {1, 2, 7}, {1, 4, 7}, {3, 4, 7}

100 4 {2, 3, 5}, {2, 3, 6}, {2, 5, 6}, {4, 5, 6}

101 6 {2, 3, 4}, {2, 3, 7}, {2, 5, 7}, {2, 6, 7}, {4, 5, 7}, {4, 6, 7}

110 2 {2, 4, 5}, {2, 4, 6}

111 1 {2, 4, 7}
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Table 2

Execution time of the algorithm for some values of k and n; the string t has 100,000 symbols.

k n Nodes Time (in seconds)

2 6 127 0.013061

2 9 1 023 0.077676

2 12 8 191 0.584635

2 15 65 535 4.86974

2 18 524 287 43.4101

3 6 1 093 0.08307

3 8 9 841 0.741019

3 10 88 573 6.91008

3 12 797 161 66.0708

4 6 5 461 0.22226

4 8 87 381 3.62427

4 10 1 398 101 256.516

5 6 19 531 0.850961

5 8 488 281 21.7044
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