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Abstract

Self-dual cyclic codes form an important class of linear codes. It has

been shown that there exists a self-dual cyclic code of length n over a

finite field if and only if n and the field characteristic are even. The

enumeration of such codes has been given under both the Euclidean

and Hermitian products. However, in each case, the formula for self-

dual cyclic codes of length n over a finite field contains a characteristic

function which is not easily computed. In this paper, we focus on more

efficient ways to enumerate self-dual cyclic codes of lengths 2νpr and

2νprqs, where ν, r, and s are positive integers. Some number theoretical

tools are established. Based on these results, alternative formulas and

efficient algorithms to determine the number of self-dual cyclic codes of

such lengths are provided.
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1 Introduction

Self-dual cyclic codes constitute an important class of linear codes due to their
rich algebraic structures, their fascinating links to other objects, and their wide
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applications. Such codes have been extensively studied for both theoretical and
practical reasons (see [2], [4], [5], [6], [9], [11] and references therein). Some
major results on Euclidean self-dual cyclic codes have been discussed in [4]
and [6]. The complete characterization and enumeration of such codes have
been established in [4]. These results have been generalized to the Hermitian
case in [5]. Some related results on the enumeration of self-dual cyclic codes
over finite chain rings can be found in [3].

For a prime power q, denote by Fq the finite field of q elements. A linear
code C of length n over Fq is defined to be a subspace of the Fq-vector space
Fn
q . The Euclidean dual of a linear code C is defined to be

C⊥E = {v ∈ Fn
q | 〈v, c〉E = 0 for all c ∈ C},

where 〈v,u〉E :=
∑n

i=1 viui is the Euclidean inner product between v =
(v1, v2, . . . , vn) and u = (u1, u2, . . . , un) in Fn

q . In the case where q is a square,
the Hermitian dual of a linear code C can be defined as well and it is defined
to be

C⊥H = {v ∈ Fn
q | 〈v, c〉H = 0 for all c ∈ C},

where 〈v,u〉H :=
∑n

i=1 viu
√
q

i is the Hermitian inner product between v and u

in Fn
q . A code C is said to be Euclidean self-dual (resp. Hermitian self-dual)

if C = C⊥E (resp., C = C⊥H).
A linear code C is said to be cyclic if it is invariant under the right

cyclic shift. It is well known that every cyclic code of length n over Fq can
be view as an (isomorphic) ideal in the principal ideal ring Fq[x]/〈x

n − 1〉
uniquely generated by a monic divisor g(x) of xn − 1. Such the polynomial
is called the generator polynomial of C. For a polynomial f(x) =

∑k

i=0 fix
i

of degree k in Fq[x] with f0 6= 0, the reciprocal polynomial of f(x) is defined

to be f ∗(x) := f−1
0 xk

∑k

i=0 fi(1/x)
i. If q is a square, the conjugate reciprocal

polynomial of f(x) is defined to be f †(x) := f
−√

q

0 xk
∑k

i=0 f
√
q

i (1/x)i. In [4]
and [5], it has been shown that a cyclic code of length n with the generator
polynomial g(x) is Euclidean self-dual (resp., Hermitian self-dual) if and only if
g(x) = h∗(x) (resp., g(x) = h†(x)), where h(x) = xn−1

g(x)
. Based on this results,

the following characterizations for the existence of self-dual cyclic codes were
obtained in [4] and [5].

Theorem 1.1 ( [4]). There exists a Euclidean self-dual cyclic code of length
n over Fq if and only if n and q are even.

Theorem 1.2 ( [5]). If q is a square, then there exists an Hermitian self-dual
cyclic code of length n over Fq if and only if n and q are even.



From the above characterizations, it suffices to study Euclidean (resp.,
Hermitian) self-dual cyclic codes of even length n = n′2ν over F2l (resp., F22l),
where n′ is odd and ν is a positive integer.

The following functions are keys for determining the number of self-dual
cyclic codes. Let O denote the set of odd positive integers. For each positive
integer l, let χl : O → {0, 1} and λl : O → {0, 1} be functions defined by

χl(j) =

{

0 if there exists an integer s ≥ 1 such that j|(2ls + 1),

1 otherwise,
(1)

and

λl(j) =

{

0 if there exists an odd integer s ≥ 1 such that j|(2ls + 1),

1 otherwise.
(2)

For coprime positive integers i and j, let ordj(i) denote the multiplicative
order of i modulo j.

The formulas for the number of Euclidean self-dual cyclic codes of length
n over F2l and the number of Hermitian self-dual cyclic codes of length n over
F22l were given in [4] and [5] as follows.

Theorem 1.3 ( [4, Theorem 3]). Let l be a positive integer and let n = n′2ν

be a positive integer such that n′ ≥ 1 is odd and ν ≥ 1. Then the number of
Euclidean self-dual cyclic codes of length n over F2l is

(2ν + 1)
1
2

∑
d|n′ χl(d)

φ(d)

ordd(2
l) . (3)

Theorem 1.4 ( [5, Corollary 3.7]). Let l be a positive integer and let n = n′2ν

be a positive integer such that n′ ≥ 1 is odd and ν ≥ 1. Then the number of
Hermitian self-dual cyclic codes of length n over F22l is

(2ν + 1)
1
2

∑
d|n′ λl(d)

φ(d)

ordd(2
2l) . (4)

From the above theorems, the difficulty is to compute

t(n′, l) :=
1

2

∑

d|n′

χl(d)
φ(d)

ordd(2l)
(5)

and

τ(n′, l) :=
1

2

∑

d|n′

λl(d)
φ(d)

ordd(22l)
. (6)



We can see that the formulas contain the functions ordd, χl and λl which are
possible but not easy to determined. In this paper, we focus on Euclidean and
Hermitian self-dual cyclic codes of some specific lengths and aim to reduce
the complexity in computing t(n′, l) and τ(n′, l) in (5) and (6), respectively.
Precisely, we focus on the enumeration of self-dual cyclic codes of length 2νpr

and 2νprqs with respect to the Euclidean and Hermitian inner products, where
p and q are distinct odd primes and ν, r, and s are positive integers.

After this introduction, some number theoretical tools and an efficient al-
gorithm to determine the number of Euclidean self-dual cyclic codes of length
2νpr and 2νprqs over F2l are given in Section 2. The analogous results for the
Hermitian case are given in Section 3.

2 Euclidean Self-Dual Cyclic Codes

In this section, number theoretical tools and efficient algorithms for determin-
ing the formula for Euclidean self-dual cyclic codes of length 2νpr and 2νprqs

over F2l in Theorem 1.3 are given. From Theorem 1.3, it is sufficient to focus
on the value of t(n′, l) in (5), where n′ ∈ {pr, prqs}.

2.1 Number Theoretical Results

In order to give an efficient way to compute the number of Euclidean self-dual
cyclic codes, we begin with the following number theoretical results.

For a prime p and integers i ≥ 0 and j ≥ 1, we say that pi exactly divides
j, denoted by pi||j, if pi divides j but pi+1 does not divide j.

Lemma 2.1. Let p be an odd prime and let l be a positive integer. Let γ and
i be the integers such that 2γ || ordp(2) and 2i||l. Then one of the following
statements holds.

1. i < γ if and only if 2γ−i|| ordp(2
l).

2. i ≥ γ if and only if ordp(2
l) is odd.

Proof. We first recall that

ordp(2) = gcd(ordp(2), l) ordp(2
l). (7)

Let j be a nonnegative integer such that 2j || ordp(2
l). By considering the

highest power of two that appear in (7), we have j = γ − min(i, γ). This
completes the proof.



Corollary 2.2. Let p be an odd prime and let l be a positive integer. Let γ be
the integer such that 2γ|| ordp(2). Then the following statements holds.

1. ordp(2
l) is odd if and only if 2γ|l.

2. If γ ≥ 1, then 2|| ordp(2
l) if and only if 2γ−1||l.

3. If γ ≥ 1, then 4| ordp(2
l) if and only if 2γ−1 ∤ l.

Proof. Let i be an integer such that 2i||l. Then the first part is immediately
deduced from Lemma 2.1 since 2i||l.

If 2γ−1||l, then i = γ − 1 < γ. Again by Lemma 2.1, 2|| ordp(2
l). Con-

versely, if 2|| ordp(2
l) which implies that ordp(2

l) is even, then by Lemma 2.1
we deduced that i < γ and hence γ − i = 1. Thus 2γ−1||l. The second part is
proved.

If 2γ−1 ∤ l, then γ−1 > i which means γ−i ≥ 2 and γ > i. Thus by Lemma
2.1, 22| ordp(2

l). Conversely, if 4| ordp 2
l, then γ − i ≥ 2 and this implies that

2γ−1 ∤ l. This completes the third part.

For an odd integer d > 1, necessary and sufficient conditions for χl(d) to
be zero were determined in [7] in terms of ordp(2

l), where p is a prime divisor
of d.

Lemma 2.3 ( [7, Theorem 1]). Let d > 1 be an odd integer and let l be a
positive integer. Then χl(d) = 0 if and only if there exists e ≥ 1 such that
2e||ordp(2

l) for every prime p dividing d.

Generally, for any positive integer l and any odd integer d > 1, the value of
χl(d) can be obtained by considering a parity of ordp(2

l) for each prime divisor
p of d. It is easy to see that the following corollary holds.

Corollary 2.4. Let p be an odd prime and let l be a positive integer. Then
the following statements hold.

1. χl(p) = 1 if and only if ordp(2
l) is odd.

2. χl(p) = 0 if and only if ordp(2
l) is even.

3. χl(p
i) = χl(p) for all positive integers i.

The values ordpi(2
l) for all 1 ≤ i ≤ r play a vital role in determining t(pr, l).

Here, we simplify ordpi(2
l) in terms of ordp(2

l).



Lemma 2.5. Let p be an odd prime and let l and i be positive integers. If α
is the largest integer such that p ∤ ordpα(2

l), then

ordpi(2
l) =

{

ordp(2
l) if i ≤ α,

pi−α ordp(2
l) if α < i.

In particular, if 2 is a primitive root modulo p2, then

ordpi(2
l) =

pi−1(p− 1)

gcd(pi−1(p− 1), l)

for all positive integers i.

Proof. The first part of this lemma follows from [8, Theorem 3.6].
Next, we assume that 2 is a primitive root modulo p2. Then 2 is a primitive

root modulo p and 2 is a primitive root modulo pi for j ≥ 2 by the Primitive

Element Theorem. In other words, ordpi(2
l) = pi−1(p−1)

gcd(pi−1(p−1),l)
for all positive

integers i.

Corollary 2.6. Let p be an odd prime and let l and i be positive integers. If
pi|| ordpr(2

l), then α = r − i is the largest integer such that p ∤ ordpα(2
l).

Proof. By Lemma 2.5, it is easy to see that for any 1 ≤ j ≤ α, ordpi(2
l) is not

divisible by p and for any i ≥ 1, pi|| ordpα+i(2l).
By the assumption, we have pi|| ordpr(2

l). Thus r = α + i and hence the
largest integer such that p ∤ ordpα(2

l) is r − i as desired.

From Corollary 2.6, the integer α can be computed. Hence, for each 1 ≤
i ≤ r, ordpi(2

l) follows from Lemma 2.5.

2.2 Euclidean Self-Dual Cyclic Codes of Length 2νpr

In this subsection, an alternative and simplified formula for Euclidean self-dual
cyclic codes of length 2νpr over F2l is given based on the number theoretical
tools given in Subsection 2.1. An efficient algorithm to compute the number
of such self-dual codes is provided as well.

Theorem 2.7. Let p be an odd prime and let l and r be positive integers. Let
α be the largest integer such that p ∤ ordpα(2

l) and let γ be the integer such that
2γ || ordp(2) . Then



t(pr, l) =

{

gcd(ordp(2),l)

2ordp(2)
(pα − 1 + (p− 1)(r − α)pα−1) if 2γ|l,

0 if 2γ ∤ l.
(8)

In particular, if 2 is a primitive root modulo p2, then for any positive integer
r

t(pr, l) =

{

1
2
(
∑r

i=1 gcd(p
i−1(p− 1), l)) if 2γ|l,

0 if 2γ ∤ l.
(9)

Proof. Assume that 2γ ∤ l. Then ordp(2
l) is even by Corollary 2.2. By Corollary

2.4, we have χl(p
i) = 0 for all 1 ≤ i ≤ r. It follows that t(pr, l) = 0.

Next, assume that 2γ|l. By Corollary 2.2, it follows that ordp(2
l) is odd.

Hence, by Corollary 2.4, χl(p
i) = 1 for all 1 ≤ i ≤ r. From (5) and Lemma

2.5, it can be concluded that

t(pr, l) =
1

2

r
∑

i=0

χl(p
i)

φ(pi)

ordpi(2l)
(10)

=
1

2

r
∑

i=1

pi−1(p− 1)

ordpi(2l)
(11)

=
1

2

(

α
∑

i=1

pi−1(p− 1))

ordpi(2l)
+

r
∑

i=α+1

pi−1(p− 1)

ordpi(2l)

)

(12)

=
1

2

(

α
∑

i=1

pi−1(p− 1)

ordp(2l)
+

r
∑

i=α+1

pi−1(p− 1)

pi−α ordp(2l)

)

(13)

=
p− 1

2ordp(2l)

(

α
∑

i=1

pi−1 +

r
∑

i=α+1

pα−1

)

(14)

=
(p− 1) gcd(ordp(2), l)

2ordp(2)

(

α
∑

i=1

pi−1 + (r − α)pα−1

)

(15)

=
(p− 1) gcd(ordp(2), l)

2ordp(2)

(

pα − 1

p− 1
+ (r − α)pα−1

)

(16)

=
gcd(ordp(2), l)

2ordp(2)

(

pα − 1 + (p− 1)(r − α)pα−1
)

. (17)

Finally, assume that 2 is a primitive root modulo p2. By Lemma 2.5, we



have ordpi(2
l) = pi−1(p−1)

gcd(pi−1(p−1),l)
for all integers 1 ≤ i ≤ r. Hence,

t(pr, l) =
1

2

r
∑

i=0

χl(p
i)

φ(pi)

ordpi(2l)
(18)

=
1

2

r
∑

i=1

pi−1(p− 1)
pi−1(p−1)

gcd(pi−1(p−1),l)

(19)

=
1

2

r
∑

i=1

gcd(pi−1(p− 1), l) (20)

as desired.

From the above theorem, we obtain the following corollary.

Corollary 2.8. If p is an odd prime and l, r are positive integers satisfying l
is not divisible by p, ordp (2

l) is odd and 2 is a primitive root modulo p2, then
t(pr, l) = r

2
gcd(p− 1, l).

Example 2.9. Let p = 11, l = 4 and r = 3. We can see that 2 is a primitive
root modulo 112 and ord11 (2

4) = 5 is odd. Thus t(113, 4) = 3
2
gcd(10, 4)=3.

The results discussed above can be summarized in Algorithm 1.
To compute t(pr, l) directly from (5), we need to compute χl(p

i), φ(pi), and
ordpi (2

l) for all 0 ≤ i ≤ r. It is not difficult to see that Algorithm 1 can reduce
some complexity since it requires to compute only ordp (2), ordp2 (2), ordpr (2

l)
and some basic expressions in (8) or (9).

2.3 Euclidean Self-Dual Cyclic Codes of Length 2νprqs

In this subsection, an alternative and simplified formula for Euclidean self-dual
cyclic codes of length 2νprqs over F2l is given as well as an efficient algorithm
to compute the number of such self-dual codes.

The following lemma is a key to simplified the formula of t(prqs, l).

Lemma 2.10. Let p and q be distinct odd primes and let l be a positive integer.
Let γ and β be the integers such that 2γ|| ordp (2) and 2β|| ordq (2), respectively.
Then the following statements hold.

1. χl(pq) = 1 if and only if one of the following statements holds.

(a) χl(p) = 1 or χl(q) = 1.



For an odd prime p and positive integers l and r, do the following
steps.

1. Compute ordp (2).

2. Determine γ such that 2γ|| ordp (2).

2.1 If 2γ ∤ l, then t(pr, l) = 0 by (8). Done.

2.2 If 2γ|l, then compute ordp2 (2).

2.2.1 If ordp2 (2) = p(p− 1), then evaluate (9). Done.

2.2.2 If ordp2 (2) 6= p(p− 1), then do the following steps.

i) Compute ordpr (2
l).

ii) Determine the largest integer α such that p ∤
ordpα(2

l) (by Corollary 2.6).

iii) Evaluate (8). Done.

Figure 1: Steps in Computing t(pr, l)

(b) χl(p) = 0 = χl(q) and γ 6= β.

2. χl(pq) = 1 if and only if χl(p) = 0 = χl(q) and γ = β.

3. χl(p
iqj) = χ(pq) for all positive integers i and j.

Proof. To prove the first part, let γ′ and β ′ be the integers such that 2γ
′
|| ordp (2

l)
and 2β

′
|| ordq (2

l), respectively. Assume that χl(pq) = 1. By Lemma 2.3, it
follows that 1) either ordp (2

l) or ordp (2
l) is odd, or 2) ordp (2

l) and ordp (2
l)

are even and γ′ 6= β ′ by Corollary 2.2. The former implies that χl(p) = 1
or χl(q) = 1. The latter implies that χl(p) = 0 = χl(q) and γ′ 6= β ′. Since
ordp (2

l) and ordp (2
l) are even, Lemma 2.1 implies that γ = γ′−i and β = β ′−i.

Thus γ 6= β.
Conversely, assume that the statement (a) or (b) holds. If χl(p) = 1 or

χl(q) = 1, then χl(pq) = 1 by Lemma 2.3. Assume that χl(p) = 0 = χl(q) and
γ 6= β. Since χl(p) = 0 = χl(q), we have γ′ > 0 and β ′ > 0 by Corollary 2.4.
Since ordp (2

l) and ordp (2
l) are even, Lemma 2.1 implies that γ′ = γ − i and

β ′ = β − i. Thus γ′ 6= β ′. Therefore, χl(pq) = 1 as desired.
It is not difficult to see that the second part and the first part are equivalent

and the third one follows from Lemma 2.3.



A simplified formula for t(prqs, l) is given as follows.

Theorem 2.11. Let p and q be distinct odd primes and let r, s, and l be positive
integers. Then

t(prqs, l) = χl(p)t(p
r, l) + χl(q)t(q

s, l) + χl(pq)
r
∑

i=1

s
∑

j=1

φ(piqj)

lcm
(

ordpi (2l), ordqj (2l)
) .

Proof. We note that ordpiqj(2
l) = lcm

(

ordpi (2
l), ordqj (2

l)
)

. Using (5) and
Lemma 2.10, the result follows.

The next corollary follows from Corollary 2.2, Lemma 2.10 and Theorem
2.11.

Corollary 2.12. Let p and q be distinct odd primes and let r, s, and l be posi-
tive integers. Let γ and β be the integers such that 2γ|| ordp (2) and 2

β|| ordq (2),
respectively. Then one of the following statements holds.

1. If 2γ|l and 2β|l, then

t(prqs, l) = t(pr, l) + t(qs, l) +
r
∑

i=1

s
∑

j=1

φ(piqj)

lcm
(

ordpi (2l), ordqj (2l)
) .

2. If 2γ|l and 2β ∤ l, then

t(prqs, l) = t(pr, l) +
r
∑

i=1

s
∑

j=1

φ(piqj)

lcm
(

ordpi (2l), ordqj (2l)
) .

3. If 2γ ∤ l and 2β|l, then

t(prqs, l) = t(qs, l) +
r
∑

i=1

s
∑

j=1

φ(piqj)

lcm
(

ordpi (2l), ordqj (2l)
) .

4. If 2γ ∤ l and 2β ∤ l and γ 6= β, then

t(prqs, l) =

r
∑

i=1

s
∑

j=1

φ(piqj)

lcm
(

ordpi (2l), ordqj (2l)
) .

5. If 2γ ∤ l and 2β ∤ l but γ = β, then

t(prqs, l) = 0.

It is not difficult to see that the complexity in Corollary 2.12 is lower than
a direct computation in (5).



3 Hermitian Self-Dual Cyclic Codes

In this section, we focus on the enumeration of Hermitian self-dual cyclic codes
of lengths 2νpr and 2νprqs over F22l, where p and q are distinct odd primes and
ν, r, and s are positive integers. A simplification of the formula for τ(n′, l) is
established for all n′ ∈ {pr, prqs}.

3.1 Number Theoretical Results

Properties of λl and ordpi(2
2l) used in the enumeration of Hermitian self-dual

cyclic codes are discussed.

Lemma 3.1 ( [5, Theorem 4.1]). Let j > 1 be an odd integer and let l be a
positive integer. Then λl(j) = 0 if and only if 2||ordp(2

l) for every prime p
dividing j.

The next corollary follows immediately from Lemma 3.1.

Corollary 3.2. Let p be an odd prime and let l be a positive integer. Then
the following statements hold.

1. λl(p) = 1 if and only if ordp(2
l) is odd or 4| ordp(2

l).

2. λl(p) = 0 if and only if 2|| ordp(2
l).

3. λl(p
i) = λl(p) for all positive integers i.

Next, we determine ordpi(2
2l).

Lemma 3.3. Let p be an odd prime and let l and i be positive integers. If α is
the largest integer such that p ∤ ordpα(2

l), then one of the following statements
holds.

1. If ordp(2
l) is odd, then

ordpi(2
2l) = ordpi(2

l) =

{

ordp(2
l) if i ≤ α,

pi−α ordp(2
l) if α < i.

2. If ordp(2
l) is even, then

ordpi(2
2l) =

ordpi(2
l)

2
=

{

ordp(2l)
2

if i ≤ α,
pi−α ordp(2l)

2
if α < i.



In particular, if 2 is a primitive root modulo p2, then

ordpi(2
2l) =

pi−1(p− 1)

gcd(pi−1(p− 1), 2l)

for all positive integers i.

Proof. From Lemma 2.5, ordp(2
l) and ordpi(2

l) have the same parity for all

positive integers i. Since ordpi(2
2l) =

ord
pi
(2l)

gcd(ord
pi
(2l),2)

and

gcd(ordpi(2
l), 2) =

{

1 if ordp(2
l) is odd,

2 if ordp(2
l) is even,

the results follow from Lemma 2.4.

3.2 Hermitian Self-Dual Cyclic Codes of Length 2νpr

In this subsection, an explicit formula for the number of Hermitian self-dual
cyclic codes of length 2νpr over F22l is given together with an efficient algorithm
to compute the number of such self-dual codes.

Theorem 3.4. Let p be an odd prime and r be a positive integer. Let α be
the largest positive integer such that p ∤ ordpα(2

l) and let γ be the integer such
that 2γ|| ordp(2) . Then

τ(pr, l) =











gcd(ordp(2),l)

2ordp(2)
(pα − 1 + (p− 1)(r − α)pα−1) if 2γ |l,

gcd(ordp(2),l)
ordp(2)

(pα − 1 + (p− 1)(r − α)pα−1) if 2γ−1 ∤ l,

0 if 2γ−1||l.

(21)

In particular, if 2 is a primitive root modulo p2, then for any positive integer
r

τ(pr, l) =

{

1
2
(
∑r

i=1 gcd(p
i−1(p− 1), 2l)) if 2γ|l or 2γ−1 ∤ l,

0 if 2γ−1||l.
(22)

Proof. From Corollary 2.2, 2γ−1||l if and only if 2|| ordp(2
l) which is equivalent

to χl(p) = 0 by Corollary 3.2. In this case, λl(p
i) = 0 for all 1 ≤ i ≤ r.

Equivalently, τ(pr, l) = 0 if and only if 2γ−1||l.



Assume that 2γ|l or 2γ−1 ∤ l. By Corollary 2.2, it follows that ordp(2
l) is

odd or 4| ordp(2
l). Consider the following two cases.

Case 1: ordp(2
l) is odd. From the definition of τ in (6) and Lemma 3.3, we

have

τ(pr, l) =
1

2

r
∑

i=0

λl(p
i)

φ(pi)

ordpi(22l)
(23)

=
1

2

r
∑

i=1

pi−1(p− 1)

ordpi(2l)
(24)

=
gcd(ordp(2), l)

2ordp(2)

(

pα − 1 + (p− 1)(r − α)pα−1
)

. (25)

Case 2: 4| ordp(2
l). From (6) and Lemma 3.3, it follows that

τ(pr, l) =
1

2

r
∑

i=0

λl(p
i)

φ(pi)

ordpi(22l)
(26)

=
1

2

r
∑

i=1

2pi−1(p− 1)

ordpi(2l)
(27)

=
gcd(ordp(2), l)

ordp(2)

(

pα − 1 + (p− 1)(r − α)pα−1
)

. (28)

Finally, assume further that 2 is a primitive root modulo p2. By Lemma

2.5, we have ordpi(2
l) = pi−1(p−1)

gcd(pi−1(p−1),l)
for all 1 ≤ i ≤ r. Hence,

τ(pr, l) =
1

2

r
∑

i=0

χl(p
i)

φ(pi)

ordpi(22l)
(29)

=
1

2

r
∑

i=1

pi−1(p− 1)
pi−1(p−1)

gcd(pi−1(p−1),2l)

(30)

=
1

2

r
∑

i=1

gcd(pi−1(p− 1), 2l) (31)

as desired.

Corollary 3.5. Let l be a positive integer and p be an odd prime satisfying l
is not divisible by p. If 2 is a primitive root modulo p2 and ordp (2

l) is odd or
ordp (2

l) is divisible by 4, then τ(pr, l) = r gcd(p−1
2
, l) for all positive integers

r.



Example 3.6. Let p = 11, l = 4 and r = 3. We can see that 2 is a primitive
root modulo 112 and ord11 (2

4) = 5 is odd. Thus τ(113, 4) = 3 gcd(5, 4)=3.

The results on τ(pr, l) discussed above can be summarized in Algorithm 2.

For an odd prime p and positive integers l and r, do the following
steps.

1. Compute ordp (2).

2. Determine γ such that 2γ|| ordp (2).

2.1 If 2γ−1||l, then τ(pr, l) = 0 by (21). Done.

2.2 If 2γ|l or 2γ−1 ∤ l, then compute ordp2 (2).

2.2.1 If ordp2 (2) = p(p− 1), then evaluate (22). Done.

2.2.2 If ordp2 (2) 6= p(p− 1), then do the following steps.

i) Compute ordpr (2
l).

ii) Determine the largest integer α such that p ∤
ordpα(2

l) (by Corollary 2.6).

iii) Evaluate (21). Done.

Figure 2: Steps in Computing τ(pr, l)

Similar to the Euclidean case, a direct computation of τ(pr, l) from (5) re-
quires the values of χl(p

i), φ(pi) and ordpi (2
l) for all 0 ≤ i ≤ r. The complex-

ity can be reduced using Algorithm 2 since it requires only ordp (2), ordp2 (2),
ordpr (2

l) and some basic expressions in (22) or (21).
From Theorems 1.3 and 1.4, a Euclidean self-dual cyclic code over F2l exists

for all integers l but an Hermitian self-dual cyclic code over F2l exists if and
only if l is even. Over F22l, both the Euclidean and Hermitian self-dual cyclic
codes always exist. The numbers of self-dual codes in the two families can be
compared in terms of t(pr, 2l) and τ(pr, l) as follows.

Proposition 3.7. Let p be an odd prime and r be positive integers. Let γ be
the integer such that 2γ|| ordp(2) . Then one of the following holds

1. If 2γ|l, then τ(pr, l) = t(pr, 2l).

2. If 2γ−1||l, then 0 = τ(pr, l) < t(pr, 2l).



3. If 2γ−1 ∤ l, then τ(pr, l) > t(pr, 2l) = 0 .

Proof. For the first part, it suffices to show that gcd(ordp(2), l) = gcd(ordp(2), 2l).
Since 2γ || ordp(2) and 2γ|l, we have gcd(ordp(2), l) = gcd(ordp(2), 2l) as desired.

For the rest of the theorem, it follows easily from Theorems 2.7 and 3.4.

3.3 Hermitian Self-Dual Cyclic Codes of Length 2νprqs

From Lemma 3.1, we have the following lemma.

Lemma 3.8. Let p and q be distinct odd primes and let l be a positive integer.
Then the following statements hold.

1. λl(pq) = 1 if and only if λl(p) = 1 or λl(q) = 1.

2. λl(p
iqj) = λ(pq) for all positive integers i and j.

Theorem 3.9. Let p and q be distinct odd primes and let r, s, and l be positive
integers. Then

τ(prqs, l) = λl(p)τ(p
r, l) + λl(q)τ(q

s, l) + λl(pq)
r
∑

i=1

s
∑

j=1

φ(piqj)

lcm
(

ordpi (22l), ordqj (22l)
) .

Proof. We note that ordpiqj(2
2l) = lcm

(

ordpi (2
2l), ordqj (2

2l)
)

. The theorem
follows from (6) and Lemma 3.8.

The next corollary follows from Corollary 2.2, Lemma 3.8 and Theorem
3.9.

Corollary 3.10. Let p and q be distinct odd primes and let r, s, and l be posi-
tive integers. Let γ and β be the integers such that 2γ|| ordp (2) and 2

β|| ordq (2),
respectively. Then one of the following statements holds.

1. If 2γ|l or 2γ−1 ∤ l, and 2β|l or 2β−1 ∤ l, then

τ(prqs, l) = τ(pr, l) + τ(qs, l) +
r
∑

i=1

s
∑

j=1

φ(piqj)

lcm
(

ordpi (22l), ordqj (22l)
) .

2. If 2γ|l or 2γ−1 ∤ l, and 2β−1||l, then

τ(prqs, l) = τ(pr, l) +
r
∑

i=1

s
∑

j=1

φ(piqj)

lcm
(

ordpi (22l), ordqj (22l)
) .



3. If 2γ−1||l, and 2β|l or 2β−1 ∤ l, then

τ(prqs, l) = τ(qs, l) +

r
∑

i=1

s
∑

j=1

φ(piqj)

lcm
(

ordpi (22l), ordqj (22l)
) .

4. If 2γ−1||l and 2β−1||l, then

τ(prqs, l) = 0.

Similar to the Euclidean case, the complexity of the direct computation of
τ(pr, l) in (6) can be reduced using Corollary 2.12.
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