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Abstract

The distinguishing number (index) D(G) (D′(G)) of a graph G is the least
integer d such that G has a vertex (edge) labeling with d labels that is preserved
only by a trivial automorphism. In this paper we consider the maximal outerplanar
graphs (MOP graphs) and show that MOP graphs, except K3, can be distinguished
by at most two vertex (edge) labels. We also compute the distinguishing number
and the distinguishing index of Halin and Mycielskian graphs.
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1 Introduction

Let G = (V,E) be a simple, connected and undirected graph, and let Aut(G) be
its automorphism group. A labeling of G, φ : V → {1, 2, . . . , r}, is said to be r-

distinguishing, if no non-trivial automorphism of G preserves all of the vertex labels.
The point of the labels on the vertices is to destroy the symmetries of the graph,
that is, to make the automorphism group of the labeled graph trivial. Formally, φ is
r-distinguishing if for every non-identity σ ∈ Aut(G), there exists x in V such that
φ(x) 6= φ(σ(x)). The distinguishing number of a graph G is defined by

D(G) = min{r| G has a labeling that is r-distinguishing}.

This number has defined in [1]. The distinguishing index D′(G) of a graph G is
the least number d such that G has an edge labeling with d labels that is preserved
only by the identity automorphism of G. The distinguishing edge labeling was first
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defined by Kalinowski and Piĺsniak [6] for graphs. Obviously, this invariant is not
defined for graphs having K2 as a connected component. If a graph has no nontrivial
automorphisms, its distinguishing number is 1. In other words, D(G) = 1 for the
asymmetric graphs. The other extreme, D(G) = |V (G)|, occurs if and only if G = Kn.
The distinguishing index of some examples of graphs was exhibited. For instance,
D(Pn) = D′(Pn) = 2 for every n > 3, and D(Cn) = D′(Cn) = 3 for n = 3, 4, 5,
D(Cn) = D′(Cn) = 2 for n > 6. It is easy to see that the value |D(G)−D′(G)| can be
large. For example D′(Kp,p) = 2 and D(Kp,p) = p+ 1, for p ≥ 4.

A maximal outerplanar graph is an outerplanar graph that cannot have any addi-
tional edges added to it while preserving outerplanarity. Every maximal outerplanar
graph with n vertices has exactly 2n − 3 edges, and every bounded face of a maximal
outerplanar graph is a triangle. Every maximal outerplanar graph satisfies a stronger
condition than Hamiltonicity: it is pancyclic, meaning that for every vertex v and every
k in the range from three to the number of vertices in the graph, there is a length k

cycle containing v. A cycle of this length may be found by repeatedly removing a tri-
angle that is connected to the rest of the graph by a single edge, such that the removed
vertex is not v, until the outer face of the remaining graph has length k. In [2], Arvind
et al. designed efficient algorithms for computing the distinguishing numbers of trees
and planar graphs. Arvind et al. proved that the distinguishing number of a planar
graph can be computed in time polynomial in the size of the graph, [3]. Fijavž et al.
showed that every 3-connected planar graph is 5-distinguishing colorable except K2,2,2

and C6 + K2, [5]. They also proved that every 3-connected bipartite planar graph is
3-distinguishing colorable except Q3 and R(Q3).

A Halin graph is a type of planar graph, constructed by connecting the leaves of a
tree into a cycle. The tree must have at least four vertices, none of which has exactly
two neighbors; it should be drawn in the plane so none of its edges cross (this is called
planar embedding), and the cycle connects the leaves in their clockwise ordering in this
embedding. Thus, the cycle forms the outer face of the Halin graph, with the tree inside
it, see Figure 1. Every Halin graph is a Hamiltonian graph, and every edge of the graph
belongs to a Hamiltonian cycle. Moreover, any Halin graph remains Hamiltonian after
deletion of any vertex [4].

The Mycielskian or Mycielski graph of an undirected graph is a larger graph formed
from it by a construction of Jan Mycielski (1955) [7]. The construction preserves the
property of being triangle-free but increases the chromatic number; by applying the
construction repeatedly to a triangle-free starting graph, Mycielski showed that there
exist triangle-free graphs with arbitrary large chromatic number. Let the n vertices
of the given graph G be v0, v1, ..., vn−1. The Mycielski graph µ(G) of G contains G

itself as an isomorphic subgraph, together with n + 1 additional vertices: a vertex ui
corresponding to each vertex vi of G, and another vertex w. Each vertex ui is connected
by an edge to w, so that these vertices form a subgraph in the form of a star K1,n.
In addition, for each edge vivj of G, the Mycielski graph includes two edges, uivj and
viuj. The illustration shows Mycielski’s construction as applied to a 5-vertex cycle
graph with vertices vi for 0 ≤ i ≤ 4. The resulting Mycielskian is the Grötzsch graph,
an 11-vertex graph with 20 edges, see Figure 2. Thus, if G has n vertices and m edges,
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Figure 1: Examples of a Halin graph.

Figure 2: The Grötzsch graph as the Mycielskian of a 5-cycle graph.

µ(G) has 2n+ 1 vertices and 3m+ n edges.

We study the distinguishing number and the distinguishing index of planar and
maximal outerplanar graphs in Section 2. Then we study symmetry breaking for the
Halin graphs which are planar graphs, in Section 3. Finally, in Section 4, we obtain
the distinguishing number and the distinguishing index of Mycielski graphs.

2 Maximal outerplanar graph

In this section we study symmetry breaking for planar and maximal outerplanar graphs.
We first consider planar graphs.

2.1 Planar graphs

Theorem 2.1 If G is a connected graph with clique number four and the maximum

degree ∆ ≥ 5, then D(G) ≤ ∆− 1.
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Proof. Let v0, v1, v2, v3 be vertices of an induced subgraph K4 in G. We label the
vertex v0 with label ∆−1, and vertices v1, v2 and v3 with labels 1, 2 and 3, respectively.
Next we label the remaining unlabeled vertices in NG(v0) with different labels in the
set {1, 2, . . . ,∆ − 2} \ {3}. Now we consider the BFS tree T of G with root v0, hence
NG(v0) = NT (v0). We label the vertex v0 and each vertex in NT (v0), exactly the same
as G. For labeling of the remaining vertices of T , we use the following mathematical
induction.
Let x be a labeled vertex of T at distance i from v0 where i ≥ 1. Then, we label the
adjacent vertices to x which are at distance i+ 1 of v0, with different labels in the set
{1, 2, . . . ,∆− 1}.

We now consider this labeling for vertices of G. If there is an induced subgraph K4

in G with vertices of labels exactly the same labels as the induced subgraph v0v1v2v3,
i.e., labels 1,2,3 and ∆− 1, except the induced subgraph v0v1v2v3, then we change the
labels of vertices of this induced subgraph by permuting of labels of vertices in NT (x)
where x is some of vertices of that induced subgraph K4. So without loss of generality
we can assume that the induced subgraph K4 with vertices v0, v1, v2, v3 is the only
induced subgraph K4 in G with label set {1, 2, 3,∆− 1}. Hence this induced subgraph
is fixed, pointwise, under each automorphism of G preserving the labeling. Thus each
automorphism of G preserving the labeling, fixes the vertex v0, each vertex of NG(v0),
and so preserves the distance of v0. We show that all vertices at distance i, i ≥ 1, from
v0 are fixed under each automorphism of G preserving the labeling, by induction on i.

Let x be vertex at distance i, i ≥ 1, of v0 which is fixed under each automorphism
of G preserving the labeling. Since the label of vertices adjacent to x in G which are
at distance i + 1 from v0 are distinct, so all of them are fixed, too. This argument
can be used for all vertices at distance i from v0, and so we conclude that all vertices
at distance i + 1 from v0 are fixed. Therefore the identity automorphism is the only
automorphism of G preserving the labeling and so D(G) ≤ ∆− 1. �

The condition ∆(G) ≥ 5 is necessary in Theorem 2.1. For instance, see Figure 3 for
a graph with ∆(G) = χ(G) = D(G) = 4. It is known that a connected planar graph
with chromatic number χ(G) = 4 has clique number 4, so the following result is an
immediate consequence of Theorem 2.1.

Corollary 2.2 Let G be a connected planar graph with chromatic number χ(G) = 4
and maximum degree ∆ ≥ 5. Then D(G) ≤ ∆− 1.

2.2 Maximal outerplanar graphs

A maximal outerplanar graph, or briefly a MOP graph, is a graph that is isomorphic
to a triangularization of a polygon. All MOPs can be constructed according to the
following recursive rule (see, for instance, [9]): (i) the triangle, K3, is a MOP, and (ii) a
MOP with n+ 1 vertices can be obtained from some MOP M with n vertices (n ≥ 3),
by adding a new vertex adjacent to two consecutive vertices on the Hamiltonian cycle
of M . All MOPs with up to seven vertices are shown in Figure 4.
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Figure 3: A graph with ∆(G) = χ(G) = D(G) = 4.

Theorem 2.3 If G is a connected graph of order n ≥ 6 with exactly one Hamiltonian

cycle, then D(G) ≤ 2.

Proof. Let V (G) = {v1, . . . , vn}. Since there is only one cycle, say C, with consecutive
vertices v1, . . . , vn, so the restriction of any automorphism of G to C is an automor-
phism of C. We label the vertices of G with two labels 1 and 2 such that the cycle C

with consecutive vertices v1, . . . , vn has been distinguishingly. This labeling is a distin-
guishing labeling for G, Since if f is an automorphism of G preserving this labeling,
then we can consider f as an automorphism of C preserving its labeling, and so f is
the identity automorphism, since we labeled C distinguishingly. �

Corollary 2.4 If G is a maximal outerplanar graph, then D(G) ≤ 2, except for K3.

Proof. It is known that every maximal outerplanar graph has exactly one Hamilto-
nian cycle. By Figure 4, it can be seen that the distinguishing number of maximal
outerplanar graphs with seven or less vertices is at most two, except for K3. Hence the
result is a direct consequence of Theorem 2.3. �

Theorem 2.5 If G is a maximal outerplanar graph, then D′(G) ≤ 2, except for K3.

Proof. By Figure 4, it can be seen that the distinguishing index of maximal outerplanar
graphs with seven or less vertices is at most two, except for K3. Hence the result is a
direct consequence of Theorem 3.5. �

Corollary 2.4 and Theorem 2.5 are true for 2-connected outerplanar graphs, too,
because these graphs have exactly one Hamiltonian cycle.

3 Halin graphs

A Halin graph is constructed by connecting the leaves of a tree into a cycle. The tree
must have at least four vertices, none of which has exactly two neighbors; it should be
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Figure 4: Maximal outerplanar graph with seven or less vertices.

drawn in the plane so that none of its edges cross, and the cycle connects the leaves in
their clockwise ordering in this embedding. Every Halin graph is a Hamiltonian graph.
We start with the following lemma.

Lemma 3.1 Let T be a tree of order at least four with no vertex of degree two, and G

be its Halin graph. If f is an automorphism of G fixing the vertices of the cycle induced

on the set of the leaves of T , say C, then f is the identity automorphism of G.

Proof. Let f fixes the vertices of C, but moves a vertex x ∈ V (T ) \ V (C) to y. Since
f fixes the vertices of C, so we can consider f as an automorphism of T . On the other
hand, since degree of x in T is at least 3, so the set of the nearest vertices of degree 1
to x in T is different from the set of the nearest vertices of degree 1 to y in T . Now
since f maps x to y, so f moves some vertices of C which is a contradiction. �

Theorem 3.2 If T is a tree of order at least four with no vertex of degree two, and G

be its Halin graph, then D(G) ≤ 4. The equality holds for K1,3.

Proof. We label the vertices of the cycle induced on the set of the leaves of T , say C,
distinguishingly with three labels 1,2, and 3. Next we label the remaining unlabeled
vertices of G with a new label 4. This labeling is distinguishing. In fact, if f is an
automorphism of G preserving the labeling, then the restriction of f to vertices of C
is an automorphism of C. Since the cycle C has been labeled distinguishingly, so this
restriction is the identity, and thus f is the identity automorphism of G, by Lemma
3.1. �
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Figure 5: All Halin graphs of with six or less vertices.

Theorem 3.3 Let T be a tree of order at least four with no vertex of degree two, and

G be its Halin graph. If T has no vertex of degree 3, then D(G) ≤ 3. The equality holds

for wheels W4 and W5.

Proof. Since T has no vertex of degree 3, so the only vertices of degree 3 in G is the
vertices of the cycle inuced on the set of leaves of T , say C. Hence the automorphisms
of G map the vertices of C to itself, setwise. Thus the automorphism group of G is
a subgroup of the automorphism group of T . Now, we label the vertices of the cycle
induced on the set of the leaves of T , say C, distinguishingly with three labels 1,2, and
3. Next we label the remaining unlabeled vertices of G with an arbitrary label, say 1.
Then this labeling is distinguishing. In fact, if f is an automorphism of G preserving
the labeling, then since the restriction of f to vertices of C is an automorphism of C
and the cycle C has been labeled distinguishingly, so this restriction is the identity, and
thus f is the identity automorphism of G, by Lemma 3.1. �

Theorem 3.4 Let T be a tree of order at least four with no vertex of degree two, and

G be its Halin graph. If T has no vertex of degree 3 and the number of leaves of T is

at least 6, then D(G) ≤ 2.

Proof. It is known that D(Cn) = 2 for any n ≥ 6. Thus if we label the vertices of the
cycle induced on the set of the leaves of T , say C, distinguishingly with two labels 1
and 2, and next we label the remaining unlabeled vertices of G with an arbitrary label,
say 1, then this labeling is distinguishing, by a similar argument as proof of Theorem
3.2. �

We recall that a traceable graph is a graph that possesses a Hamiltonian path.

Theorem 3.5 [8] If G is a traceable graph of order n ≥ 7, then D′(G) ≤ 2.

The assumption n ≥ 7 is substantial in this theorem, because for example D′(K3,3) = 3.

Theorem 3.6 The distinguishing index of Halin graphs is at most two, except for K4.

Proof. It can be seen that the distinguishing index of Halin graphs of order at most
6 is 2 except for K4, see Figure 5. For the Halin graphs of order at least 7, the result
follows from Theorem 3.5. �
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4 Mycielski graphs

Let the n vertices of the given graph G be v0, v1, ..., vn−1. The Mycielski graph µ(G) of
G contains G itself as an isomorphic subgraph, together with n+1 additional vertices:
a vertex ui corresponding to each vertex vi of G, and another vertex w. Each vertex
ui is connected by an edge to w, so that these vertices form a subgraph in the form
of a star K1,n. In addition, for each edge vivj of G, the Mycielski graph includes two
edges, uivj and viuj . By above notations of vertices of Mycielski graph µ(G) we have
the following result. We recall that graphs with no pairs of vertices with the same open
neighborhoods are called R-thin.

Proposition 4.1 Let G be an R-thin graph. If f is an automorphism of µ(G) such

that f(w) = w, then the restriction of f to each of sets {u1, . . . , un} and {v1, . . . , vn}
is isomorphic to an automorphism of G.

Proof. If f(w) = w, then since f preserves adjacency relation, so f maps the sets
{u1, . . . , un} and {v1, . . . , vn} to itself, setwise. By the same reasoning the restriction
of f to {v1, . . . , vn} is an automorphism of G. In sequel, we want to show that the
restriction of f to the vertices {u1, . . . , un} is isomorphic to the restriction of f to
{v1, . . . , vn}. For this purpose we suppose that f(ui) = uσ(i) and f(vi) = vτ(i) where
τ and σ are permutations of {1, . . . , n} and 1 ≤ i ≤ n, and show that τ = σ. Let
vk be an arbitrary vertex of G and NG(vk) = {vk1 , . . . , vkt}. Thus Nµ(G)(uk) \ {w} =
{vk1 , . . . , vkt}, and hence Nµ(G)(uσ(k)) \ {w} = {vτ(k1), . . . , vτ(kt)}. Then NG(vσ(k)) =
{vτ(k1), . . . , vτ(kt)}. On the other hand NG(vτ(k)) = {vτ(k1), . . . , vτ(kt)}. Therefore vτ(k)
and vσ(k) have the same open neighbor in G. SinceG is an R-thin graph, so τ(k) = σ(k).
Since k is arbitrary, so we have the result. �

Theorem 4.2 If G is an R-thin graph of order n ≥ 2, then D(µ(G)) ≤ D(G) + 1.

Proof. We present a distinguishing vertex labeling of µ(G) with D(G) + 1 labels.
Let c : V (G) → {1, . . . ,D(G)} be a distinguishing labeling of G. We extend c to a
(D(G) + 1)-labeling c of µ(G) with c(vi) = c(vi), c(ui) = c(vi) for 1 ≤ i ≤ D(G),
and c(w) = 0. We claim that c is a distinguishing labeling of µ(G). In fact if f is an
automorphism of µ(G) preserving the labeling c, then f(w) = w, and so the restriction
of f to vertices v1, . . . , vn is an automorphism of G preserving the labeling c. Thus the
restriction of f to the vertices of G is the identity, and so f is the identity automorphism
of µ(G) by Proposition 4.1. �

Theorem 4.3 If G is an R-thin graph of order n ≥ 3 with no connected component

K2, then D′(µ(G)) ≤ D′(G) + 1.

Proof. Let c′ : E(G) → {1, . . . ,D′(G)} be a distinguishing edge labeling of G. We
define a (D′(G) + 1)-labeling c′ of µ(G) with c′(wui) = 0 for 1 ≤ i ≤ D(G), c′(uivj) =
c′(vivj) for i, j ∈ {1, . . . , n} for which vivj ∈ E(G), and c′(e) = c′(e) for all e ∈ E(G).
The mapping c′ is a distinguishing labeling of µ(G). In fact if f is an automorphism of
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Figure 6: A 2-distinguishing labeling of vertices and edges of M4.

µ(G) preserving the labeling c′, then f(w) = w, and so the restriction of f to vertices
v1, . . . , vn is an automorphism of G preserving the labeling c′. Thus the restriction of
f to the vertices of G is the identity, and so f is the identity automorphism of µ(G) by
Proposition 4.1. �

Applying the Mycielskian repeatedly, starting with a graph with a single edge,
produces a sequence of graphs Mi = µ(Mi−1), also sometimes called the Mycielski
graphs. The first few graphs in this sequence are the graph M2 = K2 with two vertices
connected by an edge, the cycle graph M3 = C5, and the Grötzsch graph with 11
vertices and 20 edges. It is clear that Mi is an R-thin graph if and only if Mi−1 is an
R-thin graph. Since M2 is an R-thin graph, so Mi’s are R-thin graphs for any i ≥ 2.

Theorem 4.4 For any i ≥ 5, D(Mi) ≤ D(Mi−1) and D′(Mi) ≤ D′(Mi−1).

Proof. The degree of vertex w in Mi is |V (Mi−1)|, and w is the only vertex with this
degree, so w is fixed under each automorphism of Mi. We first show that D(Mi) ≤
D(Mi−1). We label the vertices of isomorphic subgraph Mi−1 in Mi, i.e., v’s, distin-
guishingly with D(Mi−1) labels, and label the corresponding vertices to the vertices
Mi−1 in Mi, i.e., u’s, exactly the same as v′s and label w with an arbitrary label. Then
by the same reasoning as Theorem 4.2 we conclude that this labeling is distinguishing.
Therefore D(Mi) ≤ D(Mi−1).

For the second part of Theorem, we label the incident edges to w with an arbitrary
label, say 1, and label the remaining edges of Mi exactly the same as Theorem 4.3.
Then by the same reasoning we conclude that this labeling is distinguishing. Therefore
D′(Mi) ≤ D′(Mi−1). �

Corollary 4.5 For i ≥ 4, D(Mi) = D′(Mi) = 2. In particular, D(M3) = D′(M3) = 3
and D(M2) = 2.

Proof. It is easy to see that D(M2) = 2 and D(M3) = D′(M3) = 3. In Figure 6
we presented a 2-distinguishing labeling of vertices and edges of M4. Now the result
follows from Theorem 4.4 and the induction on i. �

We end this paper by the following conjecture:
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Conjecture 4.6 Let G be a connected graph of order n ≥ 3. Then D(µ(G)) ≤ D(G)
and D′(µ(G)) ≤ D′(G), except for a finite number of graphs.
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