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ON COMMUTING GRAPHS OF GENERALIZED DIHEDRAL

GROUPS

VIPUL KAKKAR AND GOPAL SINGH RAWAT

Abstract. For a group G and a subset X of G, the commuting graph of X,
denoted by Γ(G,X) is the graph whose vertex set is X and any two vertices
u and v in X are adjacent if and only if they commute in G. In this article,
certain properties of the commuting graph of generalized dihedral groups have
been studied.

1. Introduction

Throughout the article, we consider the simple undirected graphs which are
without loops or multiple edges. For a graph Γ, the vertex set and edge set are
denoted by V (Γ) and E(Γ). If a vertex u is adjacent to a vertex v, then we denote
it as u ∼ v. The degree deg(v) of a vertex v in Γ is the number of edges incident to
v. A graph Γ is said to be regular if and only if the degree of every vertex is equal.
A graph Γ is complete graph if each vertex are adjacent with every other vertex of
the graph Γ and denoted by Kn where n is the number of vertices in the graph.

A generalized dihedral group D(G) is the semi-direct product G ⋊φ C2 of an
abelian group G with a cyclic group C2 = {1,−1}, where homomorphism φ maps 1
and −1 to identity automorphism and inversion automorphism respectively. There-
fore, the binary operation on D(G) is defined as follows

(g1, c1) (g2, c2) = (g1 g2
c1 , c1 c2 ),

where g ∈ G and c ∈ C2.

In this paper, G will denote a finite abelian group of order n. Then, G is
isomorphic to the direct product Zm1

×· · ·×Zmk
of cyclic groups, wherem1 · · ·mk =

n. In this paper, we will identify G with Zm1
× · · · × Zmk

and we place factors of
direct product of 2-power order (if it exists) before the factors of odd order, that is

G = Zm1
× · · · × Zmr

︸ ︷︷ ︸

factors of 2-power order

×

factors of odd order
︷ ︸︸ ︷

Zmr+1
× · · · × Zmk

In the above, mi = 2t for some integer t ≥ 0 and 1 ≤ i ≤ r. By [4, Theorem 2.9,
p. 9], we note that D(G) is abelian if and only if G is elementary abelian 2-group.
Throughout the paper, by a generalized dihedral group D(G) we will always mean
it to be non-abelian, otherwise it will be stated. Following are elementary results.

Lemma 1.1. ([4, Proposition 4.12, p.11]) Given any abelian group G, the element
(g, 1) is in Z(D(G)) if and only if g2 = e ∈ G.

Lemma 1.2. ([4, Proposition 4.13, p.12]) Given any abelian group G, the element
(g,−1) is in the center of D(G) if and only if D(G) is abelian.

0This work is a part of M.Sc. Thesis of the second author.
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Lemma 1.3. Let G be an abelian group. Then (g1,−1), (g2,−1) ∈ D(G) commute
if and only if g21 = g22.

Lemma 1.4. Let G be an abelian group. If (g1, 1) ∈ D(G) commute with (g2,−1) ∈
D(G), then (g1, 1) ∈ Z(D(G)).

By Lemmas 1.1 and 1.2, one observes that Z(D(G)) = {(g, 1) | g2 = e}. This
implies that |Z(D(G))| = 2r. Let G1 = {(g, 1) ∈ D(G) | g ∈ G} and G2 =
{(g,−1) ∈ D(G) | g ∈ G}. Note that Z(D(G)) ⊆ G1. Further, we write Ω1 =
Z(D(G)), Ω2 = G1 \ Z(D(G)) and Ω3 = G2. Let g1, g2 ∈ G = Zm1

× · · ·Zmr
×

Zmr+1
× · · · × Zmk

. Then gi = (gi1, · · · , gik), i = 1, 2. Let (g1,−1) commutes with
(g2,−1). Then, by Lemma 1.3, g21j = g22j for all 1 ≤ j ≤ k. This implies that the

number of elements in G2 that commute with a fix element (g1,−1) is 2r. Also, one
notes that g21 = g22 defines an equivalence relation in G. Therefore, G2 is partitioned
into n

2r subsets. We denote these subsets by B1, · · · , B n
2r
.

In the last twenty years, plenty of researchers have been attracted to study
the graphs of algebraic structure. The study of algebraic structures, using the
properties of graphs, has become an exciting research topic in these years, leading
to many fascinating results and raising questions. The commuting graph of a group
is studied by various author (see [1]-[3] and [6]-[10]). In [3], the certain properties of
the commuting graph of dihedral group are studied. In this paper, we have studied
those properties for the commuting graph of generalized dihedral group

2. Commuting Graph of D(G)

For a non-empty subset X of D(G), the commuting graph of X denoted by
Γ(X) = C(D(G), X) is a graph whose vertex set V (Γ) is X and any two vertices u
and v are adjacent (u ∼ v) if and only if uv = vu. If mi = 2 ∀ i ∈ {1, 2. · · · , k} then
D(G) is abelian hence C(D(G), D(G)) = K2n . Since Ω2 ⊆ G1, each element of Ω2

commutes with each other. Also, no element of Ω2 commute with any element of
G2. Therefore, we obtain the following.

Proposition 2.1. If X is subset of D(G), then

C(D(G), X) =







K2r if X = Ω1

Kn−2r if X = Ω2

K2r if X = Bi (1 ≤ i ≤ n
2p )

The join Γ′∨Γ′′ of two graphs Γ′ and Γ′′ is a graph with vertex set V (Γ′)∪V (Γ′′)
and an edge set E(Γ′)∪E(Γ′′)∪{u ∼ v |u ∈ V (Γ′)& v ∈ Γ(′′)} and the union Γ′∪Γ′′

of two graphs Γ′ and Γ′′ is a graph with vertex set V (Γ′) ∪ V (Γ′′) and an edge set
E( Γ′) ∪ E(Γ′′). If a graph Γ is union of m complete graph Kn with n vertices,
then we write Γ = mKn.

Corollary 2.2. Let Γ = C(D(G), D(G)) be the commuting graph of D(G). Then
Γ = K2r ∨ (Kn−2r ∪

n
2rK2r).

Proof. By Proposition 2.1, there is no edge between two vertices from distinct

blocks Bi. Therefore, C(D(G),Ω3) =
n/2r⋃

i=1

C(D(G), Bi) = n
2rK2r . Also note that

there is no edge between vertices from Ω2 and Ω3. Further, since Ω1 is center
of D(G), each vertex from Ω2 ∪ Ω3 is adjacent with each vertex of Ω1. Hence
C(D(G), D(G)) = K2r ∨ {Kn−2r ∪

n
2rK2r}. �

In a simple undirected graph Γ, degree of a vertex v is the number of edges
incident to that vertex and denoted by deg(v). Now, we have the following.
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Corollary 2.3. Let Γ = C(D(G), D(G)) be the commuting graph of D(G) and v
be a vertex of Γ. Then

deg(v) =







2n− 1 if v ∈ Ω1

n− 1 if v ∈ Ω2

2r+1 − 1 if v ∈ Ω3

Corollary 2.4. Let Γ = C(D(G), D(G)) be the commuting graph of D(G) and v
be a vertex of Γ. Then

|E(Γ)| = 3n2r−1 +
n(n− 2)

2

The coloring of a graph is an assignment of colors to the vertices of the graph
so that no two adjacent vertices have the same color. The chromatic number of a
graph is the smallest number of colors needed to color the graph and denoted by
ψ(Γ). We have the following proposition.

Proposition 2.5. Let Γ = C(D(G), D(G)) be the commuting graph of D(G). Then
ψ(Γ) = n.

Proof. We start coloring from Ω1 ∪ Ω2 = G1. Since C(D(G),Ω1 ∪ Ω2) is complete
graph of n vertices, we need n colors to get it colored. Therefore (Ω1∪Ω2) is colored
with n colors. To color vertices from Ω3, we move block wise. In each block there
are 2r vertices and these all are adjacent with vertices from Ω1 but not adjacent
with vertices from Ω2. Since |Ω2| > 2r, we can choose any of 2r colors that we used
for Ω2. These colors again can be used to color another block as any block has no
common edge with the rest of blocks. Hence, ψ(Γ) = n. �

3. Detour Distance of Commuting graph of D(G)

The detour distance dD(u, v) between two vertices u and v in a graph Γ is the
length of a longest u − v path in Γ. A u − v path of length dD(u, v) is called a
u − v detour geodesic. The detour eccentricity (eccD(v)) of a vertex v in Γ is the
maximum detour distance between v and any vertex of Γ. The minimum detour
eccentricity among the vertices of Γ is called the detour radius of Γ, denoted by
radD(Γ). The detour diameter diamD(Γ) of a graph Γ is the maximum detour
eccentricity in Γ. Now, we have the following.

Theorem 3.1. Let Γ = C(D(G), D(G)) be the commuting graph of D(G) with
|Ω1| = 2r. Then for each v ∈ Ω1

eccD(v) =

{

2n− 1 if n
2r < 2r

n+ 2r(2r − 1)− 1 if n
2r ≥ 2r

and for each v ∈ Ω2 ∪ Ω3

eccD(v) =

{

2n− 1 if n
2r ≤ 2r

n+ 4r − 1 if n
2r > 2r

Proof. First assume that v ∈ Ω1. If
n
2r < 2r, then the center Ω1 has more elements

than number of blocks. To get a maximum length path starting from v ∈ Ω1, one
first covers all vertices of Ω2, for they all are adjacent. Therefore, one covers each
vertex from Ω2 without repetition. Now, one moves to any vertex of Ω1 except v
itself and from there one moves to one of the blocks and complete all the vertices of
that block. Now, move to another vertices in Ω1 from there we again cover a block.
Repeating this process we cover all the blocks. If there are some vertices still left in
Ω1, then they will be covered at last. Hence eccD(v) = 2n− 1. If n

2r > 2r, then we
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do the same process as above but the vertices from Ω1 exhausts before it cover all
the blocks. Hence in this case the maximum blocks that can be covered is 2r − 1.
Therefore, the total vertices which are covered are n + 2r(2r − 1) by the longest
path started from a vertex v ∈ Ω1. Hence, eccD(v) = n+ 2r(2r − 1)− 1.

Now, assume that v ∈ Ω2 and n
2r ≤ 2r. We proceed in the same manner as we

did in the above case. We start from vertex v ∈ Ω2 and first cover all the vertices of
Ω2 and then move to one of the vertex of Ω1. Then we head to one of the block and
cover it and again move to another vertices of Ω1. Keep on repeating the process
we first exhaust with blocks and still left some vertices in Ω1 which we cover at the
end. Hence, eccD(v) = 2n − 1. If n

2r > 2r, then one can similarly observed that
eccD(v) = n+ 4r − 1.

Finally, assume that v ∈ Ω3 and n
2r ≤ 2r. We start from one vertex from a block

and cover it and then moves to one of the vertex in Ω1 and then covers whole Ω2.
Then , as above eccD(v) = 2n − 1. If n

2r > 2r, then by the similar argument as
above eccD(v) = n+ 4r − 1. �

Corollary 3.2. Let Γ = C(D(G), D(G)) be the commuting graph of D(G) with
|Ω1| = 2r. Then

radD(Γ) =

{

2n− 1 if n
2r < 2r

n+ 2r(2r − 1)− 1 if n
2r ≥ 2r

and

diamD(Γ) =

{

2n− 1 if n
2r ≤ 2r

n+ 4r − 1 if n
2r > 2r

4. Resolving Polynomial of Commuting Graph of D(G)

Let β(G) the metric dimension of Γ and β(Γ, x) =
∑n

i=β(Γ) six
i denote the

resolving polynomial of Γ (see [3]).
Let u be a vertex of a graph Γ. Then, the set N(u) = {v ∈ V (Γ) | v ∼ u in Γ}

is called the open neighborhood of u and N [u] = N(u) ∪ {u} is called the closed
neighborhood of u. Two distinct vertices u and v of Γ are called twins ifN [u] = N [v]
or N(u) = N(v). A subset U of vertex set of Γ is called a twin-set in Γ if u, v are
twins in Γ for every pair of distinct vertices u, v ∈ U . The following the remark
from [3].

Remark 4.1. ([3, Remark 3.3, p. 2398]) If U is a twin-set in a connected graph
Γ of order n with |U | = l ≥ 2, then every resolving set for Γ contains at least l − 1
vertices of U .

Theorem 4.2. Let Γ = C(D(G), D(G)) be the commuting graph of D(G).Then

β(Γ) =

{

2n− n
2r − 2 |Ω1| ≥ 2

2n− 3 |Ω1| = 1

Proof. Assume that |Ω1| = 2r ≥ 2. Note that N [u] = N [v] = D(G) ∀u, v ∈ Ω1 and
there does not exist w ∈ D(G)\Ω1 such that N [w] = D(G). Hence Ω1 is a twin-set
in Γ with |Ω1| ≥ 2. Further N [u] = N [v] = Ω1 ∪ Ω2 ∀u, v ∈ Ω2 and there does
not exist w ∈ D(G)\Ω2 such that N [w] = Ω1 ∪ Ω2. Hence Ω2 is a twin-set in Γ
with |Ω2| ≥ 2 as |Ω2| ≥ |Ω1|. Similarly each block Bi(1 ≤ i ≤ n

2r ) is a twin-set as
N [u] = N [v] = Ω1 ∪ Bi ∀u, v ∈ Bi(1 ≤ i ≤ n

2r ) with |Bi| ≥ 2. Hence all twin-sets
in D(G) with cardinality greater than or equal to 2 are Ω1,Ω2, B1, B,2 , · · ·B n

2r
.

Therefore, by Remark 4.1, β(Γ) = 2n− n
2r − 2.



ON COMMUTING GRAPHS OF GENERALIZED DIHEDRAL GROUPS 5

Now assume that Ω1 = 1. One can note that Ω2 is a twin-set with |Ω2| ≥ 2 and
Ω3 is also a twin-set as N(u) = N(v) = Ω1 ∀u, v ∈ Ω3. Therefore, there are two
twin-sets in this case. Hence β(Γ) = |Ω2| − 1 + |Ω3| − 1 = (n − 1) − 1 + n − 1 =
2n− 3. �

Now, we find the resolving polynomial β(Γ, x) of the graph Γ.

Theorem 4.3. Let Γ = C(D(G), D(G)) be the commuting graph with |Ω1| = 1.
Then

β(Γ, x) = x2n−3(x3 + 2nx2 + (n2 + n− 1)x+ n(n− 1))

Proof. By Theorem 4.2, β(Γ, x) = 2n−3. In order to find the resolving polynomial,
we need to calculate s2n−3, s2n−2, s2n−1, s2n. By [3, Proposition 3.5, p. 2399],
s2n−1 = 2n and s2n = 1.

The sets Ω1,Ω2 and Ω3 are mutually disjoint out of which Ω2 and Ω3 are twins
set. There for we have to pick |Ω2| − 1 vertices from Ω2 and |Ω3| − 1 vertices from
Ω3 and no vertex from Ω1. Therefore, the total number of choices of resolving set
for Γ of cardinality 2n− 3 is

s2n−3 = 1C0 ×
n−1Cn−2 ×

nCn−1 = (n− 1)n = n(n− 1)

Now, we calculate s2n−2. In this case, we have to choose one more vertices than
2n− 3. This may be from Ω1,Ω2 or Ω3. Therefore, the total number of choices of
resolving sets of cardinality 2n− 2 is

s2n−2 = 1C1×
n−1Cn−2×

nCn−1+
1C0×

n−1Cn−1×
nCn−1+

1C0×
n−1Cn−2×

nCn

=⇒ s2n−2 = (n− 1)n+ n+ n− 1 = n2 + n− 1

�

Theorem 4.4. Let Γ = C(D(G), D(G)) be the commuting graph with |Ω1| ≥ 2.
Then

β(Γ, x) = x2n−
n
2r

−2

(

(n− 2r)(2r)
n
2r

+1 +

2n−2∑

i=2n− n
2r

−1

six
i + 2nx

n
2r

+1 + x
n
2r

+2

)

where

si = (n− 2r)(2r)2n−i−1 ×
n
2r

+1C2n−i−1 + (2r)2n−i ×
n
2r

+1C2n−i

Proof. We will calculate sj , where j = 2n− n
2r −2 and si (2n−

n
2r −1 ≤ i ≤ 2n−2).

We first calculate sj , j = 2n− n
2r − 2. Since |Ω1| ≥ 2, all the twin-sets in D(G)

with cardinality greater than or equal to 2 are Ω2,Ω1, B1, B,2 , · · ·B n
2r
. We have

to choose all vertices except any one vertex from each of twin-sets. Therefore, the
total ways to form such a resolving set is

sj =
n−2rCn−2r−1 ×

2rC2r−1 ×
2rC2r−1 × · · · 2

r

C2r−1
︸ ︷︷ ︸

n
2r

−times

sj = (n− 2r)× 2r × 2r · · · × 2r
︸ ︷︷ ︸

n
2r

−times

= (n− 2r)

(

2r
) n

2r
+1

Now, we calculate si (2n− n
2r − 1 ≤ i ≤ 2n− 2). Let us choose a resolving set of

cardinality 2n− n
2r − 2+ t with 1 ≤ t ≤ n

2r , that is, we choose t more vertices than
β(Γ) = 2n− n

2r − 2. Observe that except Ω2, all the twin-sets Ω1, B1, B,2 , · · ·B n
2r

have cardinality 2r. We have to choose t more vertices. First, choose one of t
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vertices from Ω2 and the rest from

(
⋃ n

2r

j=1 Bj

)

∪ Ω1 and then choose all from
(
⋃ n

2r

j=1 Bj

)

∪ Ω1. Therefore, the total choices are

s2n− n
2r

−2+t =
n−2rCn−2r ×

((

2rC2r × · · · × 2rC2r
︸ ︷︷ ︸

(t−1)times

)

×

(

2rC2r−1 × · · · × 2rC2r−1
︸ ︷︷ ︸

n
2r

−t+2

)

×

(
n
2r

+1Ct−1

))

+ n−2rCn−2r−1 ×

((

2rC2r × · · · × 2rC2r
︸ ︷︷ ︸

t times

)

×

(

2rC2r−1 × · · · × 2rC2r−1
︸ ︷︷ ︸

( n
2r

−t+1) times

)

×

(
n
2r

+1Ct

))

s2n− n
2r

−2+t = (2r)
n
2r

−t+2
×

n
2r

+1Ct−1 + (n− 2r)× (2r)
n
2r

−t+1
×

n
2r

+1Ct

Suppose 2n− n
2r −2+t = i. This implies t = i−2n+ n

2r +2 and 2n− n
2r −1 ≤ i ≤ 2n−2.

Therefore, the total ways of choosing resolving set of cardinality i is

si = (2r)
n
2r

−i+2n− n
2r

−2+2 ×
n
2r

+1Ci−2n+ n
2r

+2−1 + (n− 2r)× (2r)
n
2r

−i+2n− n
2r

−2+1

×
n
2r

+1Ci−2n+ n
2r

+2

si = (2r)2n−i ×
n
2r

+1Ci−2n+ n
2r

+1 + (n− 2r)× (2r)2n−i−1 ×
n
2r

+1Ci−2n+ n
2r

+2

Since nCr = nCn−r,

si = (2r)
2n−i

×
n
2r

+1C2n−i + (n− 2r)× (2r)
2n−i−1

×
n
2r

+1C2n−i−1.

�
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