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Abstract

A random geometric graph, G(n, r), is formed by choosing n points independently and
uniformly at random in a unit square; two points are connected by a straight-line edge if

they are at Euclidean distance at most r. For a given constant k, we show that n
−k

2k−2 is
a distance threshold function for G(n, r) to have a connected subgraph on k points. Based
on this, we show that n−2/3 is a distance threshold for G(n, r) to be plane, and n−5/8 is a
distance threshold to be planar. We also investigate distance thresholds for G(n, r) to have
a non-crossing edge, a clique of a given size, and an independent set of a given size.

1 Introduction

Wireless networks are usually modeled as disk graphs in the plane. Given a set P of points in
the plane and a positive parameter r, the disk graph is the geometric graph with vertex set P
which has a straight-line edge between two points p, q ∈ P if and only if |pq| ≤ r, where |pq|
denotes the Euclidean distance between p and q. If r = 1, then the disk graph is referred to as
unit disk graph. A random geometric graph, denoted by G(n, r), is a geometric graph formed
by choosing n points independently and uniformly at random in a unit square; two points are
connected by a straight-line edge if and only if they are at Euclidean distance at most r, where
r = r(n) is a function of n and r → 0 as n→∞.

We say that two line segments in the plane cross each other if they have a point in common
that is interior to both edges. Two line segments are non-crossing if they do not cross. Note
that two non-crossing line segments may share an endpoint. A geometric graph is said to be
plane if its edges do not cross, and non-plane, otherwise. An edge in a geometric graph is said
to be free (or non-crossing) if its interior is not intersected by any other edge of the graph.
A graph is planar if and only if it does not contain K5 (the complete graph on 5 vertices) or
K3,3 (the complete bipartite graph on six vertices partitioned into two parts each of size 3) as
a minor. A non-planar graph is a graph which is not planar. A clique in a graph is a subset of
vertices of the graph such that every two of them are adjacent. An independent set in a graph
is a subset of vertices of the graph such that none of them are adjacent.

A graph property P is increasing if a graph G satisfies P, then by adding edges to G, the
property P remains valid in G. Similarly, P is decreasing if a graph G satisfies P, then by
removing edges from G, the property P remains valid in G. P is called a monotone property if
P is either increasing or decreasing. Connectivity and “having a clique of size k” are increasing
monotone properties, while planarity, “being plane”, and “having an independent set of size k”
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are decreasing monotone properties. In this paper we will see that “having a free edge” is not
a monotone property in G(n, r).

By [10, 14] any monotone property of random geometric graphs has a sharp threshold func-
tion (see [8] for a definition). The thresholds in random geometric graphs are expressed by the
distance r. In the sequel, the term w.h.p. (with high probability) is to be interpreted to mean
that the probability tends to 1 as n → ∞. For an increasing property P, the threshold is a
function t(n) such that if r = o(t(n)) then w.h.p. P does not hold in G(n, r), and if r = ω(t(n))
then w.h.p. P holds in G(n, r). Symmetrically, for a decreasing property P, the threshold is
a function t(n) such that if r = o(t(n)) then w.h.p. P holds in G(n, r), and if r = ω(t(n))
then w.h.p. P does not hold in G(n, r). Note that a threshold function may not be unique.
It is well known that

√
lnn/n is a connectivity threshold for G(n, r); see [15, 20, 21]. In this

paper we investigate (not necessarily sharp) thresholds in random geometric graphs for having
a connected subgraph of constant size, being plane, and being planar.

1.1 Related Work

Random graphs were first defined and formally studied by Gilbert in [11] and Erdös and Rényi
[9]. It seems that the concept of a random geometric graph was first formally suggested by
Gilbert in [12] and for that reason is also known as Gilbert’s disk model. These classes of graphs
are known to have numerous applications as a model for studying communication primitives
(broadcasting, routing, etc.) and topology control (connectivity, coverage, etc.) in idealized
wireless sensor networks. They have been extensively studied in theoretical computer science
and mathematical sciences over last few decades.

An instance of Erdös-Rényi graph [9] is obtained by taking n vertices and connecting any two
with probability p, independently of all other pairs; the graph derived by this scheme is denoted
by Gn,p. In Gn,p the threshold is expressed by the edge existence probability p, while in G(n, r)
the threshold is expressed in terms of r. In both random graphs and random geometric graphs,
property thresholds are of great interest [5, 8, 10, 14, 19]. Note that edge crossing configurations
in G(n, r) have a geometric nature, and as such, have no analogues in the context of the Erdös-
Rényi model for random graphs. However, planarity, and having a clique or an independent set
of specific size are of interest in both Gn,p and G(n, r).

Bollobás and Thomason [6] showed that any monotone property in random graphs has a
threshold function. See also a result of Friedgut and Kalai [10], and a result of Bourgain and
Kalai [7]. In the Erdös-Rényi random graph Gn,p, the connectivity threshold is p = log n/n and
the threshold for having a giant component is p = 1/n; see [2]. The planarity threshold for Gn,p
is p = 1/n, and its threshold for having a clique of size k is p = n−2/(k−1); see [5, 24].

A general reference on random geometric graphs is [23]. There is extensive literature on
various aspects of random geometric graphs of which we mention the related work on coverage
by [16, 17] and a review on percolation, connectivity, coverage and coloring by [4]. As in random
graphs, any monotone property in random geometric graphs has a threshold function [8, 14, 18,
19].

Random geometric graphs have a connectivity threshold of
√

lnn/n; see [15, 20, 21]. Gupta
and Kumar [15] provided a connectivity threshold for points that are uniformly distributed in
a disk. By a result of Penrose [22], in G(n, r), any threshold function for having no isolated
vertex (a vertex of degree zero) is also a connectivity threshold function. Panchapakesan and
Manjunath [20] showed that

√
lnn/n is a threshold for being an isolated vertex in G(n, r).

This implies that
√

lnn/n is a connectivity threshold for G(n, r). For k ≥ 2, the details on the
k-connectivity threshold in random geometric graphs can be found in [22, 23]. Connectivity of
random geometric graphs for points on a line is studied by Godehardt and Jaworski [13]. Appel
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and Russo [3] considered the connectivity under the L∞-norm.

1.2 Our Results

In this paper we investigate thresholds for some monotone properties in random geometric
graphs. In Section 2 we show that for a constant k, the distance threshold for having a connected

subgraph on k points is n
−k

2k−2 . We show that the same threshold is valid for the existence of a
clique of size k. Based on that, we prove the following thresholds for a random geometric graph
to be plane or planar. In Section 3, we prove that n−2/3 is a distance threshold for a random
geometric graph to be plane. In Section 4, we prove that n−5/8 is a distance threshold for a
random geometric graph to be planar. In Section 5 we investigate the existence of free edges
in random geometric graphs. In Section 6, we investigate thresholds for having an independent
set of size k.

2 The threshold for having a connected subgraph on k points

In this section, we look for the distance threshold for “existence of connected subgraphs of

constant size”; this is an increasing property. For a given constant k, we show that n
−k

2k−2 is the
threshold function for the existence of a connected subgraph on k points in G(n, r). Specifically,

we show that if r = o(n
−k

2k−2 ), then w.h.p. G(n, r) has no connected subgraph on k points, and

if r = ω(n
−k

2k−2 ), then w.h.p. G(n, r) has a connected subgraph on k points. We also show that
the same threshold function holds for the existence of a clique of size k.

Theorem 1. Let k ≥ 2 be an integer constant. Then, n
−k

2k−2 is a distance threshold function
for G(n, r) to have a connected subgraph on k points.

Proof. Let P1, . . . , P(nk)
be an enumeration of all subsets of k points in G(n, r). Let DG[Pi] be

the subgraph of G(n, r) that is induced by Pi. Let Xi be the random variable such that

Xi =

{
1 if DG[Pi] is connected,

0 otherwise.

Let the random variable X count the number of sets Pi for which DG[Pi] is connected. It is
clear that

X =

(nk)∑

i=1

Xi. (1)

Observe that E[Xi] = Pr[Xi = 1]. Since the random variables Xi have identical distributions,
we have

E[X] =

(
n

k

)
E[X1]. (2)

We obtain an upper bound and a lower bound for Pr[Xi = 1]. First, partition the unit
square into squares of side equal to r. Let {s1, . . . , s1/r2} be the resulting set of squares. For a
square st, let St be the kr × kr square which has st on its left bottom corner; see Figure 1(a).
St contains at most k2 squares each of side length r (St may be on the boundary of the unit
square). Let Ai,t be the event that all points in Pi are contained in St. Observe that if DG[Pi]
is connected then Pi lies in St for some t ∈ {1, . . . , 1/r2}. Therefore,
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if DG[Pi] is connected, then (Ai,1 ∨Ai,2 ∨ · · · ∨Ai,1/r2),

and hence we have

Pr[Xi = 1] ≤
1/r2∑

t=1

Pr[Ai,t] ≤
1/r2∑

t=1

(k2r2)k = k2kr2k−2. (3)

Now, partition the unit square into squares with diagonal length equal to r. Each such
square has side length equal to r/

√
2. Let {s1, . . . , s2/r2} be the resulting set of squares. Let

Bi,t be the event that all points of Pi are in st. Observe that if all points of Pi are in the same
square, then DG[Pi] is a complete graph and hence connected. Therefore,

if (Bi,1 ∨Bi,2 ∨ · · · ∨Bi,2/r2), then DG[Pi] is connected,

and hence we have

Pr[Xi = 1] ≥
2/r2∑

t=1

Pr[Bi,t] =

2/r2∑

t=1

(
r2

2

)k
=

1

2k−1
r2k−2. (4)

Since k ≥ 2 is a constant, Inequalities (3) and (4) and Equation (2) imply that

E[Xi] = Θ(r2k−2), (5)

E[X] = Θ(nkr2k−2). (6)

If n→∞ and r = o(n
−k

2k−2 ) we conclude that the following inequalities are valid

Pr[X ≥ 1] ≤ E[X] (by Markov’s Inequality)

= Θ(nkr2k−2) (by (6))

= o(1). (7)

Therefore, w.h.p. G(n, r) has no connected subgraph on k points.

St

st
r

kr

Sx

sx

(2k-1)r

(a) (b)

Figure 1: (a) The square St has st on its left bottom corner. (b) The square Sx which is centered
at sx.

In the rest of the proof, we assume that r = ω(n
−k

2k−2 ). In order to show that w.h.p. G(n, r)
has at least one connected subgraph on k vertices, we show, using the second moment method [2],
that Pr[X = 0]→ 0 as n→∞. Recall from Chebyshev’s inequality that

Pr[X = 0] ≤ Var(X)

E[X]2
. (8)
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Therefore, in order to show that Pr[X = 0]→ 0, it suffices to show that

Var(X)

E[X]2
→ 0. (9)

In view of Identity (1) we have

Var(X) =
∑

1≤i,j≤(nk)

Cov(Xi, Xj), (10)

where Cov(Xi, Xj) = E[XiXj ]−E[Xi]E[Xj ] ≤ E[XiXj ]. If |Pi∩Pj | = 0 then DG[Pi] and DG[Pj ]
are disjoint. Thus, the random variables Xi and Xj are independent, and hence Cov(Xi, Xj) =
0. It is enough to consider the cases when Pi and Pj are not disjoint. Assume |Pi ∩ Pj | = w,
where w ∈ {1, . . . , k}. Thus, in view of Equation (10), we have

Var(X) =
k∑

w=1

∑

|Pi∩Pj |=w
Cov(Xi, Xj)

≤
k∑

w=1

∑

|Pi∩Pj |=w
E[XiXj ]. (11)

The computation of E[Xi, Xj ] involves some geometric considerations which are being dis-
cussed in detail below. Since Xi and Xj are 0-1 random variables, XiXj is a 0-1 random variable
and

XiXj =

{
1 if both DG[Pi] and DG[Pj ] are connected,

0 otherwise.

By the definition of the expected value we have

E[XiXj ] = Pr[Xj = 1|Xi = 1] Pr[Xi = 1]

= Pr[Xj = 1|Xi = 1]E[Xi]. (12)

By (5), E[Xi] = Θ(r2k−2). It remains to compute Pr[Xj = 1|Xi = 1], i.e., the probability
that DG[Pj ] is connected given that DG[Pi] is connected. Consider the k-tuples Pi and Pj
under the condition that DG[Pi] is connected. Let x be a point in Pi ∩ Pj . Partition the unit
square into squares of side length equal to r. Let sx be the square containing x. Let Sx be the
(2k − 1)r × (2k − 1)r square centered at sx. Sx contains at most (2k − 1)2 squares each of side
length r (if Sx is on the boundary of the unit square then it may contain less than (2k − 1)2

squares); see Figure 1(b). The area of Sx is at most (2kr)2, and hence the probability that
a specific point of Pj is in St is at most 4k2r2. Since Pi and Pj share w points, in order for
DG[Pj ] to be connected, the remaining k−w points of Pj must lie in Sx. Thus, the probability
that DG[Pj ] is connected given that DG[Pi] is connected is at most (4k2r2)k−w ≤ cwr

2k−2w,
for some constant cw > 0. Thus, Pr[Xj = 1|Xi = 1] ≤ cwr

2k−2w. In view of Equation (12), we
have

E[XiXj ] ≤ c′w · r2k−2w · r2k−2 = c′wr
4k−2w−2, (13)

for some constant c′w > 0.
Since Pi and Pj are k-tuples that share w points, |Pi ∪Pj | = 2k−w. There are

(
n

2k−w
)

ways
to choose 2k − w points for Pi ∪ Pj . Since we choose w points for Pi ∩ Pj , k − w points for
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Pi alone, and k − w points for Pj alone, there are
(

2k−w
w,k−w,k−w

)
ways to split the 2k − w chosen

points into Pi and Pj . Based on this and Inequality (13), Inequality (11) turns out to

Var(X) ≤
k∑

w=1

∑

|Pi∩Pj |=w
E[XiXj ]

≤
k∑

w=1

(
n

2k − w

)(
2k − w

w, k − w, k − w

)
c′wr

4k−2w−2

≤
k∑

w=1

c′′wn
2k−wr4k−2w−2.

for some constants c′′w > 0. Consider (9) and note that by (6), E[X]2 ≥ c′′n2kr4k−4, for some
constant c′′ > 0. Thus,

Var(X)

E[X]2
≤

k∑

w=1

c′′wn
2k−wr4k−2w−2

c′′n2kr4k−4
=

k∑

w=1

c′′w
c′′
· 1

nwr2w−2

=
c′′1
c′′
· 1

n1r0
+
c′′2
c′′
· 1

n2r2
+ · · ·+ c′′k

c′′
· 1

nkr2k−2
(14)

Since r = ω(n
−k

2k−2 ), all terms in (14) tend to zero. This proves the convergence in (9). Thus,

Pr[X = 0] → 0 as n → ∞. This implies that if r = ω(n
−k

2k−2 ), then G(n, r) has a connected
subgraph on k vertices with high probability.

In the following theorem we show that if k = O(1), then n
−k

2k−2 is also a threshold for G(n, r)
to have a clique of size k; this is an increasing property.

Theorem 2. Let k ≥ 2 be an integer constant. Then, n
−k

2k−2 is a distance threshold function
for G(n, r) to have a clique of size k.

Proof. By Theorem 1, if r = o(n
−k

2k−2 ), then w.h.p. G(n, r) has no connected subgraph on k
vertices, and hence it has no clique of size k. This proves the first statement. We prove the
second statement by adjusting the proof of Theorem 1, which is based on the second moment

method. Assume r = ω(n
−k

2k−2 ). Let P1, . . . , P(nk)
be an enumeration of all subsets of k points.

Let Xi be equal to 1 if DG[Pi] is a clique, and 0 otherwise. Let X =
∑
Xi.

Partition the unit square into a set {s1, . . . , s1/r2} of squares of side length r. Let St be the
2r × 2r square which has st on its left bottom corner. If DG[Pi] is a clique then Pi lies in St
for some t ∈ {1, . . . , 1/r2}. Therefore,

Pr[Xi = 1] ≤ 4kr2k−2.

Now, partition the unit square into a set {s1, . . . , s2/r2} of squares with diagonal length r. If all
points of Pi fall in the square st, then DG[Pi] is a clique. Thus,

Pr[Xi = 1] ≥ 1

2k−1
r2k−2.

Since k ≥ 2 is a constant, we have

E[Xi] = Θ(r2k−2),

E[X] = Θ(nkr2k−2).
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In view of Chebyshev’s inequality we need to show that Var(X)
E[X]2

tends to 0 as n goes to

infinity. We bound Var(X) from above by Inequality (11). Consider the k-tuples Pi and Pj
under the condition that DG[Pi] is a clique. Let |Pi ∩ Pj | = w, and let x be a point in Pi ∩ Pj .
Partition the unit square into squares of side length r. Let sx be the square containing x. Let
Sx be the 3r×3r square centered at sx. In order for DG[Pj ] to be a clique, the remaining k−w
points of Pj must lie in Sx. Thus,

E[XiXj ] ≤ c′wr4k−2w−2,

for some constant c′w > 0. By a similar argument as in the proof of Theorem 1, we can show
that for some constants c′′, c′′w > 0 the followings inequalities are valid:

Var(X) ≤
k∑

w=1

c′′wn
2k−wr4k−2w−2,

Var(X)

E[X]2
≤

k∑

w=1

c′′w
c′′
· 1

nwr2w−2
.

Since r = ω(n
−k

2k−2 ), the last inequality tends to 0 as n goes to infinity. This completes the proof
for the second statement.

As a direct consequence of Theorem 2, we have the following corollary.

Corollary 1. n−1 is a threshold for G(n, r) to have an edge, and n−
3
4 is a threshold for G(n, r)

to have a triangle.

3 The threshold for G(n, r) to be plane

In this section we investigate the threshold for a random geometric graph to be plane; this is
a decreasing property. Recall that G(n, r) is plane if no two of its edges cross. As a warm-up
exercise we first prove a simple result which is based on the connectivity threshold for random
geometric graphs, which is known to be

√
lnn/n.

a

b

c
d

r/
√
2

s1j s2j s3j

s4j s5j s6j

s7j s9js8j

Figure 2: An square of di-
ameter r which is partitioned
into nine sub-squares.

Theorem 3. If r ≥
√

c lnn
n , with c ≥ 36, then w.h.p. G(n, r) is

not plane.

Proof. In order to prove that w.h.p. G(n, r) is not plane, we show
that w.h.p. it has a pair of crossing edges. Partition the unit
square into squares each with diagonal length r. Then subdivide
each such square into nine sub-squares as depicted in Figure 2.
There are 18

r2
sub-squares, each of side length r

3
√
2
. The probabil-

ity that no point lies in a specific sub-square is (1− r2

18)n. Thus,
the probability that there exists an empty sub-square is at most

18

r2

(
1− r2

18

)n
≤ n

(
1− c lnn

18n

)n
≤ n1−c/18 ≤ 1

n
,

when c ≥ 36. Therefore, with probability at least 1 − 1
n all sub-squares contain points. By

choosing four points a, b, c, and d as depicted in Figure 2, it is easy to see that the edges (a, b)
and (c, d) cross. Thus, w.h.p. G(n, r) has a pair of crossing edges, and hence w.h.p. it is not
plane.

7



In fact, Theorem 3 ensures that w.h.p. there exists a pair of crossing edges in each of the
squares. This implies that there are Ω

(
n

lnn

)
disjoint pair of crossing edges, while for G(n, r)

to be not plane we need to show the existence of at least one pair of crossing edges. Thus, the
value of r provided by the connectivity threshold seems rather weak. By a different approach,
in the rest of this section we show that n−

2
3 is the correct threshold.

Lemma 1. Let (a, b) and (c, d) be two crossing edges in G(n, r), and let Q be the convex
quadrilateral formed by a, b, c, and d. Then, two adjacent sides of Q are edges of G(n, r).

Proof. Refer to Figure 3. At least one of the angles of Q, say ∠cad, is bigger than or equal to
π/2. It follows that in the triangle 4cad the side cd is the longest, i.e., |cd| ≥ max{|ac|, |ad|}.
Since |cd| ≤ r, both |ac| and |ad| are at most r. Thus, ac and ad—which are adjacent—are
edges of G(n, r).

a

b
c

d a

b
c

d

(a) (b)

Figure 3: (a) Illustration of Lemma 1. (b) Crossing edges (a, b) and (c, d) form an anchor.

In the proof of Lemma 1, a is connected to b, c, and d. So the distance between a to each
of b, c, and d is at most r. Thus, we have the following corollary.

Corollary 2. The endpoints of every two crossing edges in G(n, r) are at distance at most
2r from each other. Moreover, there exists an endpoint which is within distance r from other
endpoints.

Based on the proof of Lemma 1, we define an anchor as a set {a, b, c, d} of four points in
G(n, r) such that three of them form a triangle, say 4cad, and the fourth vertex, b, is connected
to a by an edge which crosses cd; see Figure 3(b). We call a as the crown of the anchor. The
crown is within distance r from the other three points. Note that bc and bd may or may not be
edges of G(n, r). In view of Lemma 1, two crossing edges in G(n, r) form an anchor. Conversely,
every anchor in G(n, r) introduces a pair of crossing edges.

Observation 1. G(n, r) is plane if and only if it has no anchor.

Theorem 4. n−
2
3 is a threshold for G(n, r) to be plane.

Proof. In order to show that G(n, r) is plane, by Observation 1, it is enough to show that it has

no anchors. Every anchor has four points and it is connected. By Theorem 1, if r = o(n−
2
3 ),

then w.h.p. G(n, r) has no connected subgraph on 4 points, and hence it has no anchors. This
proves the first statement.

We prove the second statement by adjusting the proof of Theorem 1 for k = 4. Assume
r = ω(n−

2
3 ). Let P1, . . . , P(n4)

be an enumeration of all subsets of 4 points. Let Xi be equal

to 1 if DG[Pi] contains an anchor, and 0 otherwise. Let X =
∑
Xi. In view of Chebyshev’s

inequality we need to show that Var(X)
E[X]2

tends to 0 as n goes to infinity.

Partition the unit square into a set {s1, . . . , s2/r2} of squares with diagonal length r. Then,
subdivide each square sj , into nine sub-squares s1j , . . . , s

9
j as depicted in Figure 2. If each of

8



s1j , s
3
j , s

7
j , s

9
j or each of s2j , s

4
j , s

6
j , s

8
j contains a point of Pi, then DG[Pi] is a convex clique of size

four and hence it contains an anchor. Thus,

Pr[Xi = 1] ≥ r6

23
· 2

94
.

This implies that E[Xi] = Ω(r6), and hence E[X] = Ω(n4r6). Therefore,

E[X]2 ≥ c′′n8r12,
for some constant c′′ > 0. By a similar argument as in the proof of Theorem 1 we bound the
variance of X from above by

Var(X) ≤ c′′1n7r12 + c′′2n
6r10 + c′′3n

5r8 + c′′4n
4r6.

Since r = ω(n−
2
3 ), Var(X)

E[X]2
tends to 0 as n goes to infinity. That is, w.h.p. G(n, r) has an

anchor. By Observation 1, w.h.p. G(n, r) is not plane.

As a direct consequence of the proof of Theorem 4, we have the following:

Corollary 3. With high probability if a random geometric graph is not plane, then it has a
clique of size four.

Note that every anchor introduces a crossing and each crossing introduces an anchor. Since,
every anchor is a connected graph and has four points, by (6) we have the following corollary.

Corollary 4. The expected number of crossings in G(n, r) is Θ(n4r6).

4 The threshold for G(n, r) to be planar

In this section we investigate the threshold for the planarity of a random geometric graph; this
is a decreasing property. By Kuratowski’s theorem, a finite graph is planar if and only if it does
not contain a subgraph that is a subdivision of K5 or of K3,3. Note that any plane random
geometric graph is planar too; observe that the reverse statement may not be true. Thus,
the threshold for planarity seems to be larger than the threshold of being plane. By a similar
argument as in the proof of Theorem 3 we can show that if r ≥

√
c lnn/n, then w.h.p. each

square with diagonal length r contains K5, and hence G(n, r) is not planar.

Theorem 5. n−
5
8 is a threshold for G(n, r) to be planar.

Proof. By Theorem 2, if r = ω(n−
5
8 ), then w.h.p. G(n, r) has a clique of size 5. Thus, w.h.p.

G(n, r) contains K5 and hence it is not planar.

If r = o(n−
5
8 ), then by Theorem 1, w.h.p. G(n, r) has no connected subgraph on 5 points,

and hence it has no K5. Similarly, if r = o(n−
3
5 ), then w.h.p. G(n, r) has no connected subgraph

on 6 points, and hence it has no K3,3. Since n−
5
8 < n−

3
5 , it follows that if r = o(n−

5
8 ), then

w.h.p. G(n, r) has neither K5 nor K3,3 as a subgraph.
Note that, in order to prove that G(n, r) is planar, we have to show that it does not contain

any subdivision of either K5 or K3,3. Any subdivision of either K5 or K3,3 contains a connected
subgraph on k ≥ 5 vertices. Since n−5/8 < n−k/(2k−2) for all k ≥ 5, in view of Theorem 1, we
conclude that if r = o(n−

5
8 ), then w.h.p. G(n, r) has no subdivision of K5 and K3,3, and hence

G(n, r) is planar.

As a direct consequence of the proof of Theorem 5, we have the following:

Corollary 5. With high probability if a random geometric graph does not contain a clique of
size five, then it is planar.
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5 Free edges in G(n, r)

Motivated by the problem of finding bottleneck plane matching of a point set (see [1]), we
considered the problem of finding a free edge in unit disk graphs. A free edge in G(n, r) is an
edge whose interior is not intersected by other edges of G(n, r). Although at the first glance
it seems that any unit disk graph has at least one free edge, this is not always true. Figure 4
shows examples of unit disk graphs that do not have any free edges, i.e., all the edges are
crossed. These examples imply that the “existence of a free edge” is not a monotone property
for G(n, r). In this section we investigate the existence of free edges in random geometric graphs.
Throughout this section we assume that points are chosen on a torus, i.e., a unit square with
wraparound.

Figure 4: Unit disk graphs with 15, 20, and 26 points, that do not have any free edge.

Lemma 2. If r = ω
(
1
n

)
and r = o

(
1

n1/2+ε

)
, for any constant ε > 0, then G(n, r) has a free

edge with high probability.

Proof. Since r = ω
(
1
n

)
, by Corollary 1, G(n, r) has at least one edge with high probability.

Let k ≥ 3 be an integer constant such that k
2k−2 ≤ 1

2 +ε. Then r = o(n
−k

2k−1 ). By Theorem 1,
G(n, r) has no connected component of size k with high probability. Moreover, there exists an

integer constant c, where 2 ≤ c < k, such that r = ω(n
−c

2c−2 ) and r = o(n
−(c+1)

2(c+1)−2 ). Theorem 2
implies that with high probability G(n, r) has a clique of size c. Let H be clique. We claim
that all the edges of the boundary of the convex hull of H are free. For contradiction assume
otherwise, and take an edge (a, b) from the boundary of the convex hull of H that is crossed
by some other edge (c, d). Note that at least one of c and d is not a vertex of H. Let d be a
vertex that is not in H. By Corollary 2, in G(n, r), there is a path (consists of at most two
edges) between d and each of a and b. This in turn gives a connected subgraph with c + 1
vertices in G(n, r). However, by Theorem 1, such a connected component cannot exists with
high probability. This completes the proof of the theorem.

We refer to an edge (u, v) in G(n, r) as a long edge if |uv| ≥
√

8 lnn
n , where |uv| denotes the

Euclidean distance between u and v. For a given region R in the unit square let A(R) denote
the area of R. Let P denote the set of n random points.

Lemma 3. With high probability, none of the long edges of G(n, r) are free.

10



Proof. Let L be the set consisting of all the long edges of G(n, r). Note that L contains at most(
n
2

)
edges. Take any edge (u, v) in L. Consider the closed disk that has (u, v) as a diameter.

Let H1(u, v) and H2(u, v) be the two half-disks on both sides of (u, v). We say that H1(u, v)
(resp. H2(u, v)) is empty if it does not contain any point of P \ {u, v}. Observe that if both
H1(u, v) and H2(u, v) are non-empty, then (u, v) is not a free edge. We are going to show that
with high probability both H1(u, v) and H2(u, v) are non-empty.

Let H be the set of all half-disks defined by the edges in L. Let H be any half-disk in H,

and let d be the diameter of H. Then, A(H) = πd2

8 . Thus, with probability
(

1− πd2

8

)n−2
, H

is empty. Since d ≥
√

8 lnn/n, we have

(
1− πd2

8

)n−2
≤
(

1− π lnn

n

)n−2
≤ e

−π(n−2) lnn
n ≤ e−3 lnn =

1

n3
,

where the last inequality is valid because π(n− 2) > 3n as n→∞. Therefore, with probability
at most 1

n3 , H is empty. Since H contains at most n2 half-disks, the probability that H contains
an empty half-disk is at most n2 · 1

n3 = 1
n . Thus, with probability at least 1− 1

n all half-disks in
H are non-empty. Therefore, both H1(u, v) and H2(u, v) contain points from P \ {u, v}. This
produces an edge in G(n, r) that crosses (u, v). Thus, with high probability all the long edges
in G(n, r) are crossed.

In the following lemma we prove a result that is stronger than the result of Lemma 3.

Lemma 4. If r = Ω
(

1√
s

(
lnn
n

)3/4)
, then s = Ω

((
lnn
n

)3/2)
, and with high probability, every

edge of G(n, r) of length at least s is not free.

Proof. Since r ≤ 1, we have
√
s >

(
c lnn
n

)3/4
for some constant c > 0. This implies the first part

of the claim, that is s = Ω
((

lnn
n

)3/2)
.

Now we show that every edge of length at least s is crossed. Take any edge (u, v) of length
at least s from G(n, r). If |uv| ≥

√
8 lnn/n, then (u, v) is a long edge, and by Lemma 3, (u, v)

is not free with high probability.
Assume |uv| <

√
8 lnn/n, and thus, s <

√
8 lnn/n. This implies that r ≥ c′

√
lnn/n for

some constant c′ > 0. In order to show that (u, v) is crossed, we are going to define two regions,
V1 and U , on opposite sides of (u, v) such that the area of each region is least π lnn

n . Then we
show that each of V1 and U contains a point of P such that these two points are connected by
an edge that crosses (u, v).

Without loss of generality assume that (u, v) is vertical, and let x be its midpoint. Let V1 be
a sector of angle π

3 to the left of oriented edge (u, v) that has radius
√

6 lnn/n and is centered

at x such that its sides make angle π
3 with (u, v); see Figure 5. Note that A(V1) = π lnn

n . As in
the proof of Lemma 3, with high probability V1 contains a point of P . Let w be such a point.

Extend the line segments wu and wv to u′ and v′, respectively, such that |wu′| = |wv′| = r.
Let V2 be the sector of radius r that is centered at w and has wu′ and wv′ as its sides. Let U
be the subset of V2 that is to the right of oriented edge (u, v). Note that if U contains a point
w′ ∈ P , then (w,w′) is an edge of G(n, r) and crosses (u, v); see Figure 5.

We would like the radius r to be sufficiently large such that the area of U be at least
π lnn
n . Without loss of generality assume that w is closer to v than to u, i.e., |wu| ≥ |wv|.

Since |uv| <
√

8 lnn/n, we have |ux| = |vx| <
√

2 lnn/n. Moreover |wu| < |wx| + |ux| <√
6 lnn/n+

√
2 lnn/n < 4

√
lnn/n. By picking c′ ≥ 8 we have r ≥ 8

√
lnn/n; this makes sure

that r > 2|wu|, and subsequently r > 2|wv|. Thus, A(U) > 1
2A(V2). Let α = ∠uwv. Then,

11



v

u

w
w′

r

u′

x

√
6 lnn
n

v′

α β

V1 U

Figure 5: Illustration of Lemma 4. Each of the shaded regions has area at least π lnn
n .

A(V2) = αr2

2 and A(U) > αr2

4 . If α ≥ π
3 , then

A(U) >
πr2

12
≥ 64π lnn

12n
>
π lnn

n
.

Assume α < π
3 . Since s > 0, we have α > 0. Let β = ∠wvu. Observe that π

3 < β < 2π
3 . By

the law of sines we have

sinα = sinβ · |uv||wu| >
√

3

2
· |uv||wu| ≥

√
3

2
· s

|wu| .

Note that sinα < α, for all 0 < α < π
3 . Thus,

α >

√
3

2
· s

|wu| ,

and hence

A(U) >
αr2

4
>

√
3

8
· sr

2

|wu| >
√

3

32
· sr2√

lnn/n
.

To ensure A(U) ≥ π lnn
n , it is enough to guarantee the following inequality

√
3

32
· sr2√

lnn/n
≥ π lnn

n
. (15)

However, Inequality (15) is valid if

r ≥ c√
s
·
(

lnn

n

) 3
4

,

for some constant c ≥ 8. This is ensured by the statement of the lemma.
To this end, for each edge (u, v) in G(n, r) of length at least s, we have two regions V1 and

U such that each of them has area at least π lnn
n . Let R be the set of all such regions for all

edges of G(n, r) whose lengths are at least s. Note that R contains at most n2 regions. As in
the proof of Lemma 3, the probability that a region R ∈ R does not contain any point of P is at
most 1

n3 , and thus, the probability that there exists an empty region in R is at most n2 · 1
n3 = 1

n .
Thus, with probability at least 1 − 1

n all regions in R have a point of P . Therefore, both V1
and U contain points from P . This produces an edge in G(n, r) that crosses (u, v). Thus, with
high probability all the edges of G(n, r) of length at least s are crossed.

12



Theorem 6. Let G(n, r) be a random geometric graph.

1. If r � 1
n then w.h.p. G(n, r) has no edge.

2. If 1
n � r � 1

n2/3 then w.h.p. every edge of G(n, r) is free.

3. If 1
n2/3 � r � 1

n1/2+ε , for any constant ε > 0, w.h.p. G(n, r) has a free edge.

4. If r � (lnn)3/4

n1/4 , then w.h.p. G(n, r) has no free edge.

Proof. The first part is immediate from Corollary 1. For the second part, in this range there
exists an edge by Corollary 1, and there is no crossing by Theorem 4. The third part has been
proved in Lemma 2. It remains to prove the last part. By Corollary 1, with high probability no
edge of the G(n, r) can have length o( 1

n). Thus, with high probability all edges of G(n, r) have
length Ω( 1

n). Therefore, the result follows from Lemma 4 by setting s = 1
n . Note that for large

values of n we have 1
n = Ω

((
lnn
n

)3/2)
, which is required in Lemma 4.

6 Thresholds for having an independent set of size k

In this section we investigate thresholds for a random geometric graph to have an independent
set of a given size; this is a decreasing property. Throughout this section we assume that points
are chosen on a torus, i.e., a unit square with wraparound. Note that if G(n, r) has no edge
then it has an independent set of size n. Moreover, if G(n, r) has at least one edge, then it has
no independent set of size n. By Corollary 1, n−1 is a radius threshold for G(n, r) to have an
edge. Therefore, n−1 is a radius threshold for G(n, r) to have an independent set of size n.

Theorem 7. Let k ≥ lnn be an integer. If r >

√
c ln( en

k
)

k , for some constant c > 0, then G(n, r)
has no independent set of size k with high probability.

Proof. Let P1, . . . , P(nk)
be an enumeration of all subsets of k points in G(n, r). Let Xi be a

random variable such that

Xi =

{
1 if Pi is an independent set,

0 otherwise.

Let the random variable X counts the number of independent sets Pi. Thus, X =
∑(nk)

i=1Xi.
Since Xi’s have identical distributions, we have

E[X] =

(
n

k

)
E[X1]. (16)

Observe that E[X1] = Pr[X1 = 1]. In order to compute/estimate the probability of P1 being
an independent set we observe the following. Let P1 = {p1, . . . , pk}. For each point pi ∈ P1, let
D(pi, r) and D(pi, r/2) be the two disks of radius r and r/2, respectively, which are centered
at pi. For each i = 2, . . . , k, let Ai be the event that D(pi, r/2) is disjoint from all the disks
D(pj , r/2), for j = 1, . . . , i− 1, i.e.,

D(pi, r/2) ∩D(pj , r/2) = ∅, for all j = 1, . . . , i− 1.

See Figure 6. Observe that if P1 is an independent set, then all the disks D(pj , r/2), with
j ∈ {1, . . . , k} are pairwise disjoint. Therefore,

if P1 is an independent set, then (A1 ∧A2 ∧ · · · ∧Ak).
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Thus, we have

Pr[X1 = 1] ≤ Pr[A1 ∧ · · · ∧Ak]
= Pr[A1] · Pr[A2|A1] · Pr[A3|A2 ∧A1] · · ·Pr[Ak|Ak−1 ∧ · · · ∧A1]. (17)

p1

p2

pi−1

pi

r
2

r

D(pi, r/2)

D(p1, r/2)

D(p1, r)

Figure 6: pi should be outside D(pj , r) for all j = 1, . . . , i− 1.

Note that Pr[A1] = 1, and we are going to compute Pr[Ai|Ai−1 ∧ · · · ∧A1] for i = 2, . . . , k.
In order forD(pi, r/2) to be disjoint from

⋃i−1
j=1D(pj , r/2), pi should lie outside

⋃i−1
j=1D(pj , r).

Pr[Ai|Ai−1 ∧ · · · ∧A1] = Pr


pi /∈

i−1⋃

j=1

D(pj , r)
∣∣∣Ai−1 ∧ · · · ∧A1




= 1− Pr


pi ∈

i−1⋃

j=1

D(pj , r)
∣∣∣Ai−1 ∧ · · · ∧A1




≤ 1− Pr


pi ∈

i−1⋃

j=1

D(pj , r/2)
∣∣∣Ai−1 ∧ · · · ∧A1




= 1− (i− 1)π(r/2)2

≤ e−
(i−1)πr2

4 . (18)

By Inequalities (17) and (18) we have

E[X1] ≤ Pr[A1 ∧ · · · ∧Ak]

≤ 1 · e−πr
2

4 · e− 2πr2

4 . . . e−
(k−1)πr2

4

= e−
πr2

4
(1+2+···+(k−1))

= e−
πr2

8
k(k−1)

≤ e−πr
2k2

16 ,

where the last inequality is valid because k − 1 > k
2 . This and Equality (16) imply that

E[X] ≤
(
n

k

)
· e−πr

2k2

16 ≤
(en
k

)k
· e−πr

2k2

16 .
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Note that r >

√
c ln( en

k
)

k . By Markov’s Inequality we have:

Pr[X ≥ 1] ≤ E[X]

≤
(en
k

)k
e−

πr2k2

16

≤
(en
k

)k
e−

πck
16

ln( en
k
)

=
(en
k

)k (en
k

)−πck
16

=
(en
k

)k(1−πc
16

)
,

which tends to zero if c > 16
π and n→∞. This implies that with high probability X = 0, and

hence G(n, r) has no independent set of size k.

1
2
√
k

2
√
k

Figure 7: The shaded squares belong to S.

Theorem 8. Let k ≤ n
4 lnn be an integer. If r ≤ 1

2
√
k

, then G(n, r) has an independent set of

size k with high probability.

Proof. Partition the unit square into sub-squares each of side length 1
2
√
k
. Note that this par-

tition contains 4k sub-squares. Let S be the set of k sub-squares selected from every second
column and every second row. See Figure 7. The probability that no point lies in a specific
sub-square is (1− 1

4k )n. Thus, the probability that there exists an empty sub-square in S is at
most

k

(
1− 1

4k

)n
≤ ke−n

4k ≤ 1

4 lnn
,

where the second inequality is valid because k ≤ n
4 lnn . Therefore, with probability at least

1− 1
4 lnn all sub-squares in S contain points. On the other hand, since r ≤ 1

2
√
k
, in G(n, r) there

is no edge between two points in different sub-squares of S. Thus, by choosing one point from
each sub-square in S we obtain an independent set of size k.

Corollary 6. Let k > n
4 lnn be an integer. If r >

√
c ln lnn

k , for some constant c > 0, then

G(n, r) has no independent set of size k with high probability.

Proof. Since k > n
4 lnn , we have ln( enk ) ≤ 1 + ln 4 + ln lnn. Thus, the statement follows by

Theorem 7.
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7 Concluding Remarks

We presented thresholds for a random geometric graph, G(n, r), to have a connected subgraph
or a clique of constant size, to be plane, and to be planar. We also investigated the existence
of free edges and independent sets in G(n, r). Following are natural extensions of the problems
discussed in this paper that are worth pursuing:

1. Since any monotone property of G(n, r) has a sharp threshold function [10, 14], it would
be interesting to provide such functions for the above properties.

2. Having a connected subgraph or a clique of size k are monotone properties. For any

integer constant k ≥ 2, we proved that n
−k

2k−2 is a threshold function for having a connected
subgraph or a clique of size k. A natural problem is to extend these results for the case
where k is not necessarily a constant.

3. Having an independent set of size k is a monotone property in G(n, r). We provided
lower and upper bounds on r for the existence of an independent set of size k. A natural
problem is to improve any of the provided bounds.

4. The existence of a free edge in G(n, r) is not a monotone property. We proved that

if r = o
(
1
n

)
or r = Ω

(
(lnn)3/4

n1/4

)
, then w.h.p. G(n, r) has no free edge. Moreover, if

r = ω
(
1
n

)
and r = o

(
1

n1/2+ε

)
for any constant ε > 0, then w.h.p. G(n, r) has a free edge.

The threshold behavior for the existence of a free edge in G(n, r) when r belongs to the

interval
[

1
n1/2+ε ,

(lnn)3/4

n1/4

]
remains as an open problem.

5. We provided examples of unit disk graphs that do not have any free edge. An interesting
question is to determine if every planar unit disk graph has at least one free edge.

References

[1] A. K. Abu-Affash, A. Biniaz, P. Carmi, A. Maheshwari, and M. H. M. Smid. Approximating
the bottleneck plane perfect matching of a point set. Comput. Geom., 48(9):718–731, 2015.

[2] N. Alon and J. H. Spencer. The probabilistic method. John Wiley & Sons, 3rd edition,
2007.

[3] M. J. B. Appel and R. P. Russo. The connectivity of a graph on uniform points on [0, 1]d.
Statistics & Probability Letters, 60(4):351–357, 2002.

[4] P. Balister, A. Sarkar, and B. Bollobás. Percolation, connectivity, coverage and colouring of
random geometric graphs. In Handbook of Large-Scale Random Networks, pages 117–142.
Springer, 2008.

[5] B. Bollobás. Random graphs. Cambridge University Press, 2001.

[6] B. Bollobás and A. Thomason. Threshold functions. Combinatorica, 7(1):35–38, 1987.

[7] J. Bourgain and G. Kalai. Threshold intervals under group symmetries. Convex Geometric
Analysis MSRI Publications Volume 34, pages 59–63, 1998.
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