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Wiener index of unicycle graphs with given number of even

degree vertices

Peter Luo∗, Cun-Quan Zhang†, Xiao-Dong Zhang‡

Abstract

The Wiener index of a connected graph is the sum of the distance of all pairs

of distinct vertices. It was introduced by Wiener in 1947 to analyze some aspects

of branching by fitting experimental data for several properties of alkane compounds.

Denote by Un,r the set of unicyclic graphs with n vertices and r vertices of even degree.

In this paper we present a structural result on the graphs in Un,r with minimum Wiener

index and completely characterize such graphs when r ≤ n+3

2
.

1 Introduction

Molecular descriptors can be used to describe the molecular topology of chemical com-

pounds. Topological indices of molecular graphs play a key role in the analysis of various

intrinsic chemical properties, such as boiling point and specific heat. Wiener [20] first

introduced the Wiener index when he wanted to analyze branching in organic compounds.

Let G be a graph and u ∈ V (G). Denote by d(u,G) =
∑

v∈V (G) d(u, v) the sum of the

distance from u to all other vertices in V (G). If G is disconnected, denote d(u,G) = ∞.

The Wiener index W (G) is defined as

W (G) =
1

2

∑

u∈V (G)

d(u,G) =
1

2

∑

u∈V (G)

∑

v∈V (G)

d(u, v).

The Wiener index is one of the most studied topological indices in mathematical chem-

istry and it is still a very active research topic (see [1, 2, 3, 6, 7, 8, 9, 10, 11]). One of
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(a) Star S(u) = Su(1, b)
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(b) balanced subdivided star SBu(t; b)

|Pi| = t for i = 1, . . . , b
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(c) Almost balanced subdivided star SaBu(t; b)

|Pj | = t − 1 for j = 1, . . . , i

|Pj | = t for j = i + 1, . . . , b

Figure 1: Subdivided stars

the fundamental problems pertaining to the Wiener index is finding extremal graphs in a

graph family that achieve maximum and/or minimum values of the index in the family.

Readers are referred to the excellent surveys [4, 15, 14, 16, 21] for the developments and

open problems in this area.

A graph is unicyclic (or monocyclic) if it is connected and contains exactly one cycle.

There is a rich literature on extremal problems regarding Wiener index on unicyclic graphs

(for example, see [5, 13, 19, 22]). Section 4 of [21] is devoted to unicyclic graphs.

Lin [17] studied the extreme Wiener index of trees with given number of even degree

vertices. In this paper, we study extreme Wiener index of unicyclic graphs with a given

number of even degree vertices. We give a structural result of unicyclic graphs with n

vertices and r even degree vertices which has the minimum Wiener index in this family and

give a complete characterization of such graphs for r ≤ n+3
2 .

Denote by Un,r the set of unicyclic graphs with n vertices and r vertices of even degrees.

Note that if G ∈ Un,r, then n − r is the number of odd degree vertices and thus n − r is

even.

Let G be a unicyclic graph with the cycle C = v1 . . . vℓv1. Then each component Tvi of

G−E(C) containing the vertex vi is a tree rooted at vi. We denote G by H(T1, T2, . . . , Tℓ)

where Tvi is the tree of G− E(C) rooted at vi.

A subdivided star with root u, denoted by S(u), is a tree obtained from a star by inserting

some degree 2 vertices into each edge in the star.

Denote a balanced subdivided star with center v by SBv(t; b) if it has b branches and

each branch is of length exactly t. Denote an almost balanced subdivided star with center v

by SaBv(t; b) if it has b branches, each branch is of length either t or t− 1, and at least one

branch is of length t (See Figure 1). If the center is irrelevant or can be understood from the

context, we may simply write SB(t; b) or SaB(t; b) for SBv(t; b) or SaBv(t; b) respectively.

Here, SB(1; 1) = K2, SB(0; 0) = K1, and SB(1; b) is a star.

We first present a structure of graphs in Un,r with minimum Wiener index.
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(a) d(u) is odd.
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· · ·

(b) d(u) is odd.
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(c) d(u) is odd.
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(d) d(u) is odd.
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· · ·
· · ·

(e) d(u) is even.

Figure 2: Configurations for Theorem 1.1
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Figure 3: Configurations for Theorem 1.2: d(u) = n− r + 2 even.

Theorem 1.1 Let r ≥ 0 and G ∈ Un,r such that W (G) is minimum among all graphs in

Un,r. We have the following:

(1) if r ≤ 2 and G must be H(SB(1; b1),X1,X2) where Xj ∈ {K1,K2} for each j = 1, 2,

b1 is odd. See Figure 2-(b-d).

(2) if r ≥ 3, then G must be H(K2,K1,K1,K1,K1) or H(SaB(t; b2),K1, . . . ,K1) where

b2 ≥ 0 is even and t ≥ 0. See Figure 2(a) and (e).

As a corollary, we can further completely characterize G ∈ Un,r such that W (G) is the

minimum when 0 ≤ r ≤ n+3
2 .

Theorem 1.2 Let 0 ≤ r ≤ n+3
2 . Then W (G) is minimum among all graphs in Un,r if and

only if G is one of the following:

(a) H(K2,K1,K1,K1,K1), or H(SB(1; b1),X1,X2) where b1 ≥ 1 is odd and Xj ∈

{K1,K2} for each j. See Figure 2-(a-d).

(b) H(SB(1; b2),K1,K1), H(SB(1; b3),K1,K1,K1), H(SaB(2; b4),K1,K1,K1,K1), where

bi is even for each i = 2, 3, 4. See Figure 3-(a-c).

2 Lemmas

In this section, we introduce some lemmas that will be needed in the proof of our theorems.
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H

X

Y

GX→Y

Figure 4: GX→Y and GY→X .

Let G be a graph which has two distinct cut vertices u, v. Then G consists of three

components X,Y and H such that X and H share u and Y and H share v. Denote by

GX→Y to be the graph obtained from G by moving X to Y so that X,Y and H share the

vertex v. GY →X is defined similarly (see Figure 4).

The following two lemmas are applied frequently in the our proofs.

Lemma 2.1 ([12]) Let G be a graph which has two distinct cut vertices u, v. Let X,Y and

H be the three components such that X and H share u and Y and H share v. Then either

W (GX→Y ) < W (G) or W (GY→X) < W (G).

An edge e = uv is a bridge if its removal increases the number of components and a

bridge is trivial if one of its ends is a leaf vertex.

In particular when H is a single edge, GX→Y = GY→X . Thus we have the following

corollary.

Corollary 2.2 Let e = uv be an nontrivial bridge of G and let X and Y be two components

of G − e. Let H = e. Then GX→Y = GY→X and thus W (GX→Y ) < W (G). In particular,

if one of d(u) and d(v) is odd, G and GX→Y have the same number of even degree vertices.

Lemma 2.3 ([18]) Let G1 and G2 be two disjoint graphs and G be the graph obtained by

identifying G1 and G2 at a vertex u. Then

W (G) = W (G1) +W (G2) + (|V (G1)| − 1)d(u,G2) + (|V (G2)| − 1)d(u,G1),

where d(u,Gi) =
∑

v∈V (Gi)
dGi

(u, v).

The next two lemmas are well-known.

Lemma 2.4 Let C be a cycle of length g. Then

W (G) =

{

k3 if g = 2k,
k(k+1)(2k+1)

2 if g = 2k + 1.
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Lemma 2.5 Let Pt be a path with t edges. Then

W (Pt) =
t(t+ 1)(t+ 2)

6
.

Let e = uv be an edge in G. Contracting the edge e means deleting the edge uv and

then identifying u and v.

The following lemma is a key lemma in the proof of our main results.

Lemma 2.6 Let G be a unicyclic graph with the cycle C of length at least 4 and maximum

degree at least 3 satisfying: G 6= H(K2,K1,K1,Ki,K1) for each i = 1, 2, every vertex x in

C has either degree 2 or odd degree adjacent to exactly dG(x)− 2 leaf vertices, and at most

one vertex in C has degree at least 4. Let uv be an edge in C such that

(i) dG(u) is the maximum;

(ii) dG(u) + dG(v) is also maximum subject to (i).

Let G1 be the graph obtained from G by contracting the edge uv and adding a leaf adjacent

to u. Then

(1) |V (G)| = |V (G1)| and G1 and G have the same number of even degree vertices;

(2) W (G1) < W (G).

Proof. Denote C = u1u2 . . . ugu1 and k = ⌊g2⌋. Without loss of generality, assume that

u2u1 = uv is the edge satisfying (i) and (ii) where u = u2 and v = u1. Let u′i be a leaf

vertex adjacent to ui in G if dG(ui) ≥ 3. Note that every vertex x 6= u2 in C is adjacent to

at most one leaf vertex in G and in G1, u1 is a leaf vertex adjacent to u2 and if dG(u1) = 3,

then u′1 is also a leaf vertex adjacent to u2.

Obviously G and G1 have the same number of vertices.

Note that dG(u2) is odd since dG(u2) ≥ 3 is odd by the assumption. If dG(u1) = 2, then

dG1(u2) = dG(u2) + 1 is even and dG1(u1) = 1. If dG(u1) = 3, then dG1(u2) = dG(u2) + 2

remains odd and dG1(u2) = dG1(u
′
2) = 1. Thus G1 and G have the same number of even

degree vertices. This proves (1).

Now we are going to prove (2): W (G1) < W (G).

We first have the following observations.

Claim 2.1 (1) dG1(x, y) ≤ dG(x, y) for any two distinct vertices with u1 6∈ {x, y}.

(2) If x 6= u1, dG1(x,G1 \ {u1}) ≤ dG(x,G \ {u1}).

(3)
∑

2≤i<j≤g

(dG(ui, uj)− dG1(ui, uj)) =
k(k − 1)

2
.

Proof. (1) and (2) are obvious by the definition of G1. Now we prove (3).
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Since dG(u1, Cg) =
2W (Cg)

g
, we have

∑

2≤i<j≤g

(dG(ui, uj)−dG1(ui, uj)) = W (Cg)−dG(u1, Cg)−W (Cg−1) =
(g − 2)

g
W (Cg)−W (Cg−1).

If g = 2k + 1, then by Lemma 2.4, we have

g − 2

g
W (Cg)−W (Cg−1) =

(2k − 1)

2k + 1

k(k + 1)(2k + 1)

2
− k3 =

k(k − 1)

2
.

If g = 2k, then

g − 2

g
W (Cg)−W (Cg−1) =

(2k − 2)

2k
k3 −

(k − 1)k(2k − 1)

2
=

k(k − 1)

2
.

Denote A = ∪k
i=3N [ui] \ {u2, uk+2}, B = ∪g

i=k+3N [ui] \ {u1, uk+2}, C = NG[uk+2] \

{uk+1, uk+3}, and D = NG[u2] \ {u1, u3}. That is, A consists of u3, . . . , uk+1 together with

their respective leaf neighbors if they exist, B consists of uk+3, . . . , ug, with their similarly

defined leaf neighbors, C consists of uk+2 together with its leaf neighbor (if it exists), and

D consists of u2 together with its leaf neighbor (if it exists).

Claim 2.2 We have the following statements.

(1) For each v ∈ A and each leaf neighbor w of u2, dG1(u1, v) = dG(u1, v) and dG1(w, v) =

dG(w, v).

(2) For each v ∈ B and each leaf neighbor w ∈ D, dG1(u1, v) = dG(u1, v) + 1 and

dG1(w, v) = dG(w, v) − 1.

(3) For each v ∈ C and each leaf neighbor w of u2, we have

(3-1) dG1(u1, v) = dG(u1, v) + 1;

(3-2) dG1(w, v) = dG(w, v) if g = 2k + 1 and dG1(w, v) = dG(w, v) − 1 if g = 2k.

Proof. By the definition of G1, we have

dG1(u2, v) =

{

dG(u2, v) if v ∈ A or if v ∈ C when g = 2k + 1,

dG(u2, v) − 1 if v ∈ B or if v ∈ C when g = 2k.

By the definition of G1 again, we have that if w = u1 or if w is a leaf neighbor of u2,

then for every v ∈ A ∪B ∪ C,

dG1(w, v) = 1 + dG1(u2, v).

This proves the claim.

Claim 2.3 If dG(u1) = 3, then
∑k+1

i=1 (dG(u
′
1, ui)− dG1(u

′
1, ui)) = −1 + k > 0.

6



Proof. It follows from the following:

• dG(u
′
1, u1) = 1 = dG1(u

′
1, u1)− 1.

• dG(u
′
1, ui) = dG1(u

′
1, ui) + 1 for each i = 2, . . . , k + 1.

By Claims 2.1-2.3, if g = 2k , we have W (G)−W (G1) ≥
k(k−1)

2 > 0;

And if g = 2k + 1, then W (G) − W (G1) ≥ k(k−1)
2 − 1 ≥ 0. Thus if k ≥ 3, then

W (G)−W (G1) > 0.

Now assume k = 2 and g = 5. By Claim 2.2, we have the following:

•
∑

x∈B∪C(dG(u1, x)− dG1(u1, x)) =
∑

x∈B∪C(−1) = −|B ∪ C| = −|B| − |C|

•
∑

x∈B,y∈D(dG(x, y)− dG1(x, y)) =
∑

x∈B,y∈D(1) = |B||D|

• If dG(u1) = 3, then dG(u1, u
′
1) = 1+dG1(u1, u

′
1) and

∑

x∈D∪A(dG(x, u
′
1)−dG1(x, u

′
1)) =

|A|+ |D|.

Note that by the hypothesis, |D| ≥ |B| and |D| ≥ |B|. Thus if dG(u1) = 3,

W (G)−W (G1) ≥ |B||D|+ |D|+ |A|+ 1− |B| − |C| > 0.

If dG(u1) = 2, then dG(u3) = 2 and dG(u2) + dG(u1) ≥ dG(u4) + dG(u5). Hence

|D|+2 ≥ |B|+|C|. Moreover since G 6= H(K2,K1,K1,Ki,K1) for each i = 1, 2, dG(u2) ≥ 5.

This implies 2 ≤ |B| ≤ 3 and 2 ≤ |C| ≤ 3. Therefore

W (G)−W (G1) ≥ |B||D| − |B| − |C| > 0.

This completes the proof of the lemma.

3 Proof of Theorem 1.1

We will complete the proof of Theorem 1.1 in this section.

We first need to introduce more notations. Let G be a unicyclic graph with the cycle

C. Recall that G−E(C) is a forrest such that each component is a tree rooted at a vertex

u ∈ V (C). Denote such a tree by Tu and denote by G− Tu the graph obtained from G by

deleting all edges in E(Tu) and all resulting isolated vertices. That is G− Tu is the graph

obtained from G by deleting all vertices in Tu except u. Similarly we can define G−Tu−Tv.

Tu is called trivial if Tv = K1, i.e. dG(v) = 2.

Let T be a tree rooted at u. Let v be a vertex in T and S be a set of some children of

v. Denote by Tv(S) the subtree rooted at v induced by {v} ∪ S and the descendents of S.

If S = {x} or S = {x, y}, we simply denote it by Tv(x) or Tv(x, y), respectively.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let G ∈ Un,r such that W (G) is as small as possible. Let

C = u1u2 . . . ugu1 be the cycle in G.

7



Claim 3.1 Let e = xy be a nontrivial bridge, meaning min{dG(x), dG(y)} ≥ 2. Then both

d(x) and d(y) are even.

Proof. Let H = e, X and Y be two components of G − e. If one of d(x) and d(y) is odd,

by Corollary 2.2, GX→Y ∈ Un,r and W (GX→Y ) < W (G), a contradiction to the minimality

of W (G). Thus both d(x) and d(y) are even.

Claim 3.2 Let u ∈ V (C).

(1) If dG(u) is odd, then Tu is a star.

(2) If dG(u) ≥ 4 is even, then Tu is a subdivided star.

Proof. (1) Assume that d(u) is odd. Then d(u) ≥ 3. Suppose to the contrary that Tu is

not a star. Then d(u) ≥ 3 and there is an edge uv ∈ Tu such that uv is a nontrivial bridge

in G, a contradiction to Claim 3.1.

(2) Assume that d(u) ≥ 4 is even. Suppose to the contrary that d(v) ≥ 3 for some vertex

v ∈ V (Tu) \ {u}. Let X be a subtree rooted at v such that dX(v) = 2. Let Y = G−Tu and

H = Tu − (X − v). Since dX(v) = 2 and dY (u) = 2 both are even, both GX→Y and GY→X

belong to Un,r. And by Lemma 2.1, either W (GX→Y ) < W (G) or W (GY→X) < W (G), a

contradiction to the minimality of W (G).

Claim 3.3 There are at most one vertex in V (C) with at least 4.

Proof. Suppose to the contrary that u and v are two vertices in V (C) with degree at least

4. Let X be a subtree of Tu rooted at u such that dX(u) = 2 and Y be a subtree of Tv

rooted at v such that dY (v) = 2. Let H = G− (X − u)− (Y − v). Then both GX→Y and

GY→X belong to Un,r. By Lemma 2.1, either W (GX→Y ) < W (G) or W (GY→X) < W (G),

a contradiction to the minimality of W (G).

Without loss of generality, assume dG(u1) = max{dG(u)|u ∈ V (C)}. We consider three

cases according to dG(u1) in the following.

3.1 The case when dG(u1) = max{dG(u)|u ∈ V (C)} = 2

In this case, g = |V (G)| and G = Cn with r = n. Cn is the only graph in Un,n. Thus the

theorem is true.

3.2 The case when dG(u1) = max{dG(u)|u ∈ V (C)} ≥ 3 is odd

Claim 3.4 Either g = 5 and G = H(K2,K1,K1,K1,K1) or g = 3 and thus r ≤ 2. In

particular, dG(u2) = dG(u3) = 2 if r = 2 or dG(u2) = 2 and dG(u3) = 3 if r = 1, or

dG(u2) = dG(u3) = 3 if r = 0.

8



Proof. If G = H(K2,K1,K1,K2,K1), it is easy to see that W (G) < W (G1) by simple

calculation, where G1 = H(K1,2,K2,K1,K1). Suppose to the contrary g ≥ 4 and G 6=

H(K2,K1,K1,Ki,K1) for i = 1, 2. Let G1 be the graph obtained from G by contracting

u1u2, where dG(u2) is the maximum and dG(u2) + dG(u1) ≥ d(x) + d(y) for any edge xy

with dG(x) = dG(u2). By Lemma 2.6, W (G1) < W (G) and G1 ∈ Un,r, a contradiction to

the minimality of W (G). Thus g = 3. By Claim 3.2, Tu1 is a star. Since dG(u1) ≥ 3 is odd,

we have r ≤ 2.

Claim 3.4 completes the proof of (1) in the theorem.

3.3 The case when d(u1) = max{d(u)|u ∈ V (C)} ≥ 4 is even

Claim 3.5 d(ui) = 2 for each i = 2, . . . , g.

Proof. Suppose to the contrary that d(ui) ≥ 3 for some i ∈ 2, . . . , g. By Claim 3.3,

d(ui) = 3. Let u′i be the leaf neighbor of ui. Since d(u1) ≥ 4, let X = Tu1 , Y = Tui
and

H = G− (X−u1)− (Y −ui). Then both GX→Y and GY→X belong to Un,r. By Lemma 2.1,

either W (GX→Y ) < W (G) or W (GY→X) < W (G), a contradiction to the minimality of

W (G).

To prove that G must be the configuration (2) in Theorem 1.1, we need to show the

following claim which says that the subdivided star Tu1 is almost balanced.

Claim 3.6 Let P1 and P2 be the two branches of Tu1 . Then ||P1| − |P2|| ≤ 1.

Proof. Suppose to the contrary |P1| − |P2| ≥ 2. Let v1 and v2 be the other endvertices of

P1 and P2 than u1, respectively.

Denote P ′
1 = P1 − v1 and P ′

2 = P2 + v2v1. Let G1 be the graph obtained from G by

replacing P1 and P2 with P ′
1 and P ′

2. Then G1 ∈ Un,r.

We have the following facts:

(a) |P1| = dG(u1, v1) ≥ |P2|+ 2 > dG1(u1, v1) = |P2|+ 1.

(b) for any two vertices x, y ∈ V (G) = V (G1), if v1 6∈ {x, y}, then dG(x, y) = dG1(x, y).

(c) For any x ∈ V (G) − V (P1) − V (P2), dG(x, v1) = dG(x, u1) + dG(u1v1) > dG1(x, u1) +

dG1(u1, v1).

(d)
∑

x∈P ′
1∪P

′
2
dG1(x, v1) =

∑

x∈P1∪P2
dG(x, v1) since P

′
1∪P ′

2 and P1∪P2 are two paths with

the same length and have v1 as one endvertex.

By (a)−(d) we have W (G1) < W (G), a contradiction to the minimality of W (G). This

completes the proof of the theorem.
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4 Proof of Theorem 1.2

We will complete the proof of Theorem 1.2 in this section We first prove the following two

lemmas.

Lemma 4.1 Let G = H(SaBu(t, b),K1, . . . ,K1) ∈ Un,r with girth g, 3 ≤ r ≤ n+3
2 and

dG(u) = n− r + 2 is even. Then

(a) t ≤ 2.

(b) u is adjacent to a leaf vertex unless r = n+3
2 and g = 3 in which case, SaBu(2; b) =

SBu(2, b) is balanced with t = 2.

Proof. We rearrange the inequality r ≤ n+3
2 to get n− 2(n− r) ≤ 3. Thus 2(n− r) + 3 ≥

n ≥ (t− 1)(n − r) + 1 + g. Since g ≥ 3, we have (3− t)(n − r) ≥ 1 > 0. Therefore t ≤ 2.

Note that 3 is the minimum value for the length of a cycle and that 2n− 2r represents

the number of vertices in SaBu(2; b). Thus, equality n − 2(n − r) = 3 is achieved when

SaBu(2, b) = SBu(2; b) and g = 3.

We first define an operation as follows:

LetG = H(SaBu(t; b),K1, . . . ,K1) ∈ Un,r where 3 ≤ r ≤ n+3
2 and g ≥ 4. By Lemma 4.1,

t ≤ 2 and u has a leaf neighbor. Let uv be an edge in Cg and w be a leaf neighbor of u in

SaBu(t; b).

Operation A: The operation A is defined as identifying v and u (denoted by u) and

adding a leaf vertex adjacent to w. Denote by GA the graph obtained from G by Operation

A.

Lemma 4.2 Let G = H(SaBu(t; b),K1, . . . ,K1) ∈ Un,r with 1 ≤ t ≤ 2, 3 ≤ r ≤ n+3
2 and

g ≥ 4. Then

W (G)−W (GA) =











= 0 if g = 7 and SaBu(t, b) = SBu(1, 4) ;

< 0 if g ∈ {4, 5};

> 0 otherwise.

Proof. Let T = SaBu(t; b) and T1 = SaB′
u(t; b), which is obtained by adding a leaf vertex

to a path of length 1 in SaBu(2; b). By Lemma 2.3, we have the following two equalities:

W (G) = W (Cg) +W (T ) + (g − 1)d(u, T ) + (|T | − 1)d(u,Cg),

W (GA) = W (Cg−1) +W (T1) + (g − 2)d(u, T1) + |T |d(u,Cg−1).

Note that d(u, T1) = d(u, T )+2 and dG(w, T ) = d(u, T )+|T |−2. Also, we can use Lemma 2.3

again to find W (T1) in terms of W (T ). We split T1 such that V (G1) = {v,w}, where w is

the cut vertex, and G2 = T. Thus,

W (T1) = W (G1) +W (T ) + (|T | − 1)d(w,G1) + (2− 1)d(w, T ) = W (T ) + d(w, T ) + |T |.
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Therefore,

W (G)−W (GA) = (W (Cg) +W (Cg−1)) + (W (T )−W (T1))

+ ((g − 1)d(u, T ) − (g − 2)d(u, T1)) + ((|T | − 1)d(u,Cg)− |T |d(u,Cg−1)

= (W (Cg)−W (Cg−1))− d(w, T ) − |T |+ d(u1, T ) + 4− 2g

+ ((|T | − 1)d(u,Cg)− |T |d(u,Cg−1)

= (W (Cg)−W (Cg−1))− 2|T |+ 6− 2g + ((|T | − 1)d(u,Cg)− |T |d(u,Cg−1).

Now, we have to account for whether g is even or odd. Note that by Lemma 2.4 d(u,Cg) =
2
g
W (Cg) = k2 when g = 2k and d(u,Cg) = k(k−1) when g = 2k+1. The equation becomes

W (G)−W (GA) =

{

1
2k

2 − 9k
2 + (k − 2)|T |+ 6 if g = 2k,

1
2k

2 − 9k
2 + (k − 2)|T |+ 4 if g = 2k + 1.

With some simple calculation, one can show that the lemma holds.

Now we can complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let G ∈ Un,r where r ≤ n+3
2 such that W (G) is minimal. By

Theorem 1.1 we have that G must be one of the following

(a) G is a graph obtained from a triangle xyz by attaching at most one leaf to each of

x and y and a star K1,t to z where t is odd and the total number of leaves in G is n− r.

(b) G = H(K2,K1,K1,K1,K1).

(c) G = H(SaBv(t; b),K1, . . . ,K1) where t ≤ 2, dG(u) = n − r + 2 is even, and b =

dG(u)− 2.

Note that in (a), 0 ≤ r ≤ 2 and the graph is uniquely determined. For (b), it

is easy to see that W (H(K2,K1,K1,K1,K1)) = W (H(SB(1; 2),K1,K1,K1)) = 24 and

H(SB(1; 2),K1,K1,K1) is a graph described in (c).

Now we only need to consider the case (c). By Lemma 4.2, we have g ≤ 5 or g = 7 and

SaBv(t; b) = SBv(1; b) is a star with 5 vertices.

Claim 4.1 g ≤ 5 and if g ∈ {3, 4}, then SaBv(t, b) must be a star, i.e., t = 1.

If g = 7 and SaBv(t; b) is a star with 5 vertices, then W (GA) = W (G) and W (GA)A <

W (GA) = W (G), a contradiction.

Assume g ∈ {3, 4}. If t = 2, reverse Operation A on G. By Lemma 4.2, the resulting

graph has a smaller wiener index, a contradiction. This completes the proof of Theorem 1.2.

�
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