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Abstract

Let G = (V, E) be a simple undirected graph. G is a circulant graph
defined on V = Zn with difference set D ⊆ {1, 2, . . . , ⌊ n

2
⌋} provided two

vertices i and j in Zn are adjacent if and only if min{|i−j|, n−|i−j|} ∈ D.
For convenience, we use G(n; D) to denote such a circulant graph.

A function f : V (G) → N∪{0} is an integer {k}-domination function if
for each v ∈ V (G),

∑
u∈NG[v]

f(u) ≥ k. By considering all {k}-domination

functions f , the minimum value of
∑

v∈V (G)
f(v) is the {k}-domination

number of G, denoted by γk(G). In this paper, we prove that if D =
{1, 2, . . . , t}, 1 ≤ t ≤ n−1

2
, then the integer {k}-domination number of

G(n; D) is ⌈ kn

2t+1
⌉.

MSC 2010: 05C69, 11A05.
Keywords: Circulant graph, integer {k}-domination number, Euclidean algo-
rithm.

1 Introduction and preliminaries

The study of domination number of a graph G has been around for quite a
long time. Due to its importance in applications, there are various versions of
extension study, see [6] for reference.

The idea of integer {k}-domination was proposed by Domke et al. in [3].
It can be dealt as a labeling problem. The vertices of the graph G are labeled
by integers in N ∪ {0} such that for each vertex v, the total (sum) values in its
closed neighborhood NG[v] must be at least k. The problem is asking for finding
the minimum total value labeled on G. Finally, we say that f : V (G)→ N∪{0}
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is an integer {k}-domination function if for each v ∈ V (G),
∑

u∈NG[v] f(u) ≥ k.

Among all such functions f , the minimum value of
∑

v∈V (G) f(v) is called the

integer {k}-domination number of G, denoted by γk(G).
It is not difficult to see that the original domination number of a graph

G, γ(G), can be recognized as γ1(G) since the vertices with label "1" gives a
dominating set. For more information about domination problem, the readers
may refer to [2, 4, 5, 6, 8]. Hence, the integer {k}-domination problem is also an
NP-hard problem. So far, results obtained are all on special classes of graphs,
see [1, 3, 7, 9].

In this paper, we shall consider the class of circulant graph G = G(n; D)
where D = {1, 2, . . . , t}, 1 ≤ t ≤ n−1

2 , i.e., V (G) = Zn and two vertices i and
j are adjacent if and only if d(i, j) := min{|i − j|, n − |i − j|} ∈ D. Since
D = {1, 2, . . . , t}, G(n; D) is exactly the power graph Ct

n where Cn is a cycle of
order n.

The following results are obtained by Lin [10]. For clearness, we also outline
its proof in which basic linear algebra is applied.

Proposition 1.1 ([10]). Let G be the circulant graph G(n; D) where D =
{1, 2, . . . , t}. Then, γk(G) ≥ ⌈ kn

2t+1⌉.

Proof. Let A be the adjacency matrix of G and f be an {k}-domination function
of G. Let 1n denote the all 1 column vector of length n. Then, we have

(2t + 1)
∑

v∈V (G)

f(v) = (f(v1), f(v2), . . . , f(vn))(A + In)1n ≥ 1T
n · k · 1n = nk,

which implies the inequality.

By the aid of an algorithm, Lin was able to show the following.

Proposition 1.2 ([10]). For t ≤ 5, γk(G(n; {1, 2, . . . , t})) = ⌈ kn
2t+1⌉.

But, for larger t, it remains unsettled. Our main result of this paper shows
that the equality holds for all 1 ≤ t ≤ n−1

2 .

2 The main result

By Proposition 1.1, in order to determine γk(G), it suffices to show that γk(G) ≤
⌈ nk

2t+1⌉. That is, we need a proper distribution of values for f(v1), f(v2), . . . , f(vn)

such that for each vi,
∑

u∈NG[vi] f(u) ≥ k and
∑n

i=1 f(vi) ≤ ⌈
nk

2t+1⌉. Since we

are dealing with circulant graphs,
∑

u∈NG[vi] f(u) is in fact the sum of 2t + 1

consecutive labels assigned to the circle Cn = (v1, v2, . . . , vn). Therefore, we
turn our focus on providing suitable labels to meet the condition.

For example, let n = 8 and t = 2. Then, the following labeling of (v1, v2, . . . , v8),
(x4, x3, x1, x2, x0, x4, x3, x1) will satisfy the requirement, where xi = ⌊k+i

5 ⌋,
i = 0, 1, 2, 3, 4.

We are considering 1 ≤ t ≤ n−1
2 in what follows. First, we need an estimaton

of the sum of rational numbers which take its floor or ceiling values.

2



Lemma 2.1. For positive integers a, b and nonnegative integer k, we have the
following.

(1) ⌊k+⌊x⌋
a ⌋ = ⌊k+x

a ⌋ for any real number x,

(2) k =
∑a−1

i=0 ⌊
k+i

a ⌋, and

(3) ⌈ak
b ⌉ =

∑a
i=1⌊

k+⌈ib/a⌉−1
b ⌋.

Proof. (1) and (2) are easy to check, we prove (3).

⌈
ak

b
⌉ =

a−1∑

i=0

⌊
⌈ak/b⌉+ i

a
⌋

=

a−1∑

i=0

⌊
⌊(ak + b− 1)/b⌋+ i

a
⌋ =

a−1∑

i=0

⌊
(ak + b− 1)/b + i

a
⌋

=

a−1∑

i=0

⌊
k + ((i + 1)b− 1)/a

b
⌋ =

a−1∑

i=0

⌊
k + ⌊((i + 1)b− 1)/a⌋

b
⌋

=

a−1∑

i=0

⌊
k + ⌈((i + 1)b− 1− a + 1)/a⌉

b
⌋ =

a−1∑

i=0

⌊
k + ⌈(i + 1)b/a⌉ − 1

b
⌋.

Since the variables a, b and k are all integers, the uniqueness of the formula
in Lemma 2.1(3) can be confirmed.

Corollary 2.2. If integers 0 ≤ s0 ≤ s1 ≤ · · · ≤ sa−1 < b satisfy

⌈
ak

b
⌉ =

a−1∑

i=0

⌊
k + si

b
⌋

for positive integers a, b and nonnegative integer k, then si = ⌈(i + 1)b/a⌉ − 1
for i = 0, 1, . . . , a− 1.

According to the si’s given above, we split [b] := {0, 1, . . . , b− 1} into subin-
tervals with maximal elements si’s. For positive integers a < b, let [b] be parti-
tioned into a subsets such that

Si =

{
⌈

bi

a
⌉, ⌈

bi

a
⌉+ 1, . . . , ⌈

b(i + 1)

a
⌉ − 1

}

for i = 0, 1, . . . , a− 1. It is clear that ||Si| − |Sj ||≤ 1 for all i, j. We analyze the
subsets containing more elements in the following.

Lemma 2.3. Let q and r be the quotient and remainder of b divided by a,
respectively. Then the cardinality |Si| = q + 1 if i = ⌊aj

r ⌋ for j = 0, 1, . . . , r− 1.
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Proof. By definition, |Si| = ⌈(i + 1)b/a⌉ − ⌈ib/a⌉ = q + ⌈(i + 1)r/a⌉ − ⌈ir/a⌉.
Therefore, |Si| = q + 1 if and only if there exists some integer 0 ≤ j ≤ r − 1
such that ir/a ≤ j < (i + 1)r/a. The above inequality can be rewritten as
i ≤ ja/r<i + 1, and hence i = ⌊ja/r⌋.

Example 2.4. Let a = 3, b = 8, and r = 2 be the remainder of b divided by a.
Then

⌈
3k

8
⌉ =

3∑

i=1

⌊
k + ⌈8i/3⌉ − 1

8
⌋ = ⌊

k + 2

8
⌋+ ⌊

k + 5

8
⌋+ ⌊

k + 7

8
⌋, (1)

and [8] = {0, 1, . . . , 7} can be partitioned into 3 subsets such that

S0 = {0, 1, 2}, S1 = {3, 4, 5} and S2 = {6, 7},

where the subsets numbered with ⌊aj
r ⌋ = 0 and 1 as j = 0 and 1, respectively,

have more than 1 elements. Note that the maximal elements 2, 5, 7 of subsets
Si’s are the integers in (1) that construct ⌈ 3k

8 ⌉.

Additionally, we need a result of the comparison between two sequences. For
two real finite non-decreasing sequences A = (ai), A′ = (a′

i) of the same length
n, we say that A ≤ A′ if ai ≤ a′

i for i = 0, 1, . . . , n− 1.

Lemma 2.5. Let A and A′ be two subsequences of a real finite non-decreasing
sequence B which have equal length 0 < |A| = |A′| < |B|. Then A ≤ A′ if and
only if B \A′ ≤ B \A.

Proof. Because of the symmetry, we prove A ≤ A′ implies B \ A′ ≤ B \ A
by induction on |A| in the following. It is clearly true when |A| = 1. Suppose
the statement is correct for |A| < m < |B|. Assume that A = (ai)

m−1
i=0 and

A′ = (a′
i)

m−1
i=0 satisfying A ≤ A′. From induction hypothesis, B \ (a′

i)
m−1
i=1 ≤

B\(ai)
m−1
i=1 . It is clear that the non-decreasing sequence obtained by exchanging

an entry a of the original sequence into ã ≥ a (and inserting ã to the appropriate
position) is not less than the original sequence. Thus, we have

B \A′ ≤ B \ Ã ≤ B \A,

where Ã is obtained from A by deleting a0 and adding a′
0. The result follows.

Now, we are ready to find the desired integer {k}-domination function f .
Let [a] := {0, 1, . . . , a − 1} for each positive integer a. For a sequence A of
length a, let the entries of A indexed by [a] and A(i) be the i-th entry of A. For
0 ≤ i < j ≤ a, the subsequence A[i : j] := [A(i), A(i + 1), . . . , A(j − 1)]. If A
is a permutation of [a], then the complement of A is a sequence A of length a
defined as A(i) = a − 1 − A(i) for 0 ≤ i ≤ a − 1. The concatenation A ◦ B of
two sequences A and B of lengths a and b, respectively, is a sequence of length

4



a + b obtained by attaching B to A defined as (A ◦B)(i) = A(i) if 0 ≤ i ≤ a− 1
and (A ◦B)(j) = B(j − a) if a ≤ j ≤ a + b− 1.

Let A be a permutation of [a] and thus a sequence of length a. For positive
integers a < b, we call B the extension sequence of the pair (A, b) if B is
a permutation of [b] satisfying B(i) < B(j) if and only if A(i0) < A(j0) or
A(i0) = A(j0) with i < j, where i0 and j0 are the remainders of i and j
divided by a, respectively. For example, when (a, b) = (3, 7) and A = [0, 1, 2],
the extension sequence of (A, b) is B = [0, 3, 5, 1, 4, 6, 2], which is attained by
extending A to the sequence [0, 1, 2, 0, 1, 2, 0] of length 7 and renumbering it
with 0, 1, . . . , 6.

A permutation A of [a] is said to be nice corresponding to some b > a with
a ∤ b if

A(i) < A(i + r) for 0 ≤ i ≤ a− r − 1 (2)

and
A(j) < A(j − a + r) for a− r ≤ j ≤ a− d− 1, (3)

where r is the remainder of b divided by a and d = gcd(a, b). Note that if
r = d then the condition (3) can be ignored. For example, [1, 3, 0, 2, 4] is
nice corresponding to 8 (or any larger integer congruent to 3 modulo 5) and
[4, 1, 6, 3, 0, 5, 2, 7] is nice corresponding to 13.

The following properties will carry out the recursive constructions.

Proposition 2.6. Suppose that R is a nice permutation of [r] corresponding
to some a > r with r ∤ a. Let R be the complement of R. Then the extension
sequence of (R, a) is also nice corresponding to some b > a with b ≡ r (mod a).

Proof. Let A be the extension sequence of (R, a). Note that A(i) < A(i + r) for
0 ≤ i ≤ a−r−1 can be verified directly by the definition of extension sequences.
Assume that s is the remainder of a divided by r. It’s left to consider the case
a−r ≤ j ≤ a−d−1 where r is the remainder of b divided by a and d = gcd(a, b).
Assume that s is the remainder of a divided by r. By Euclidean algorithm, s ≥ d.

Case 1: a− r ≤ j ≤ a− s− 1.
In order to show A(j) < A(j − a + r), we observe that the remainders of j and
j − a + r divided by r are j′ + s and j′, respectively, where j′ = j − a + r.
Moreover, since R is nice, we have R(i + s) < R(i) for 0 ≤ i ≤ r − s − 1. The
result is straightforward by the definition of extension sequences.

Case 2: a− s ≤ j ≤ a− d− 1.
In this case, the remainders of j and j−a+r divided by r become j′−r+s and j′,
respectively, where j′ = j−a+r. Once again, since R is nice, R(i−r+s) < R(i)
for r − s ≤ i ≤ r − d− 1. We have the proof.
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Proposition 2.7. Let positive integers a < b with r > 0 the remainder of b
divided by a and R a permutation of [r] with complement R. If the extension
sequence A of (R, a) satisfies

⌈
rk

a
⌉ =

a−1∑

i=a−r

⌊
k + A(i)

a
⌋,

then the extension sequence B of (A′, b) satisfies

⌈
ak

b
⌉ =

b−1∑

i=b−a

⌊
k + B(i)

b
⌋

where A′ is the extension sequence of (R, a).

Proof. By Corollary 2.2,

{A(i) | a− r ≤ i ≤ a− 1} =

{
⌈

aj

r
⌉ − 1 | 1 ≤ j ≤ r

}
.

Let q and s be the quotient and remainder of a divided by r, respectively. Claim
that the set of A′[0 : r] equals the set of a− 1 − A[a − r : a− 1]. It is clear for
s = 0. If s > 0, we have

A(i) = a− 1−A′(a− s + i) for i = 0, 1, . . . , s− 1,

since entries in A that larger than A(i) become smaller than A′(a− s + i) in A′,
and vice versa. Therefore, the set of A[s + jr : s + (j + 1)r] equals to the set of
a− 1−A′[a− s− (j + 1)r : a− s− jr] for j = 0, 1, . . . , q. The claim follows by
taking j = q − 1. Moreover, since

a− 1− (⌈
ai

r
⌉ − 1) = a + ⌊

−ai

r
⌋ = ⌊

a(r − i)

r
⌋

for 1 ≤ i ≤ r, we have

{A′(i) | 0 ≤ i ≤ r − 1} =

{
⌊

aj

r
⌋ | 0 ≤ j ≤ r − 1

}

which exactly indicates the indices of subsets defined in Lemma 2.3. Hence
the set of B[b − a : b] gives the maximal elements in each of the subsets
S0, S1, . . . , Sa−1, and this fact completes the proof.

For each pair of positive integers (a, b) with a < b, define two codes C1 and
C2 as follows. If a divides b, then

C1(a, b) := [0, 1, . . . , a− 1].

If the remainder r of b divided by a is positive, then

C1(a, b) := the extension sequence of (C1(r, a), a)

6



where C1(r, a) is the complement of C1(r, a). Now C2 can be constructed sub-
sequently. Let C2(a, b) be the extension sequence of (C1(a, b), b). It is clear that
C1(a, b) and C2(a, b) are permutations of [a] and [b], respectively. Suppose that
each entry α in C2(a, b) is corresponding to ⌊k+α

b ⌋. Then the following result
can be obtained by proving that

C := B[b− a : b] ◦B ◦B ◦ · · · ◦B︸ ︷︷ ︸
q

is a feasible distribution of the circulant graph G, where b = 2t + 1, n = qb + a,
and B = C2(a, b).

Theorem 2.8.

γk(G) = ⌈
kn

2t + 1
⌉.

Proof. By Proposition 1.1, it suffices to show that γk ≤ ⌈
kn

2t+1⌉. Let G =
G(n; {1, 2, . . . , t}), n = qb + a and b = 2t + 1. First, we construct B[b − a : b].
If a divides b such that b = ℓa, then

B[b− a : b] = [ℓ− 1, 2ℓ− 1, . . . , aℓ− 1]

which collects the numbers ⌈ib/a⌉ − 1 for 1 ≤ i ≤ a given in Lemma 2.1.
Therefore, any substring of C of length a is not larger than B[b − a : b]. By
Lemma 2.5, every length b string of B ◦B[b− a : b] or B[b− a : b] ◦B is not less
than [0, 1, . . . , b− 1], so does C. Furthermore, the sequence [0, 1, . . . , b− 1] is of
sum

b−1∑

i=0

⌊
k + i

b
⌋ = k,

which confirms the case for a divides b.

On the other hand, let a > gcd(a, b) and r be the remainder of b divided
by a. Since the initial case is examined above, by Proposition 2.7, B[b − a : b]
collects the elements {⌈ib/a⌉ − 1}a

i=1. For the initial case, if r divides a then
C1(r, a) = [0, 1, . . . , r−1] and it is easy to check that C1(a, b) is nice. Moreover,
by Proposition 2.6, C1(a, b) is always nice, and hence

C[i : i + a] ≤ B[b − a : b] for 0 ≤ i ≤ a− d− 1,

where d = gcd(a, b). Moreover, we also have C[i : i + a] ≤ B[b − a : b] for
a−d ≤ i ≤ qb−1 immediately from the construction of C. The result follows.

Example 2.9. Assume that G(n; D) is a circulant graph on n = 8 vertices
with D = {1, 2} (i.e., t = 2). Let b = 2t + 1 = 5 and a = 3 be the remainder
of n divided by b. First of all, we obtain C1(3, 5) by the process of Euclidean
algorithm. Since the initial condition C1(1, 2) = [0], C1(2, 3) = [0, 1] is directly
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the extension code of [0]. Next, the complement of C1(2, 3) is C1(2, 3) = [1, 0].
Thus, C1(3, 5) = [1, 0, 2], the extension code of ([1, 0], 3). Hence,

C2(3, 5) = [2, 0, 4, 3, 1],

the extension code of (C1(3, 5), 5). Attach the last 3 entries in front of C2(3, 5),
we attain the distribution [4, 3, 1, 2, 0, 4, 3, 1]. Then the circular sequence f(v) : v ∈
V (G) is given by

(⌊
k + 4

5
⌋, ⌊

k + 3

5
⌋, ⌊

k + 1

5
⌋, ⌊

k + 2

5
⌋, ⌊

k

5
⌋, ⌊

k + 4

5
⌋, ⌊

k + 3

5
⌋, ⌊

k + 1

5
⌋)

which satisfies
∑

v∈V (G) f(v) = ⌈8k/5⌉ and
∑

u∈NG[v] f(u) ≥ k for each v ∈

V (G).

3 Concluding remark

We remark finally that the construction of code C2 can be obtained by giving
an algorithm with inputs a and b.

Data: Positive integers a < b.
Result: C2(a, b).
C1(a,b) if a = gcd(a, b) then

return [0, 1, . . . , a− 1];
end

else

r ← the remainder of b divided by a;
R← C1(r, a);

return the extension sequence of (R, a);

end

Main(a,b) return the extension sequence of (C1(a, b), b);
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