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Abstract

We study a maximization problem for geometric network design. Given a set of n compact
neighborhoods in Rd, select a point in each neighborhood, so that the longest spanning tree on
these points (as vertices) has maximum length. Here we give an approximation algorithm with
ratio 0.511, which represents the first, albeit small, improvement beyond 1/2. While we suspect
that the problem is NP-hard already in the plane, this issue remains open.

Keywords: Maximum (longest) spanning tree, neighborhood, geometric network, metric
problem, approximation algorithm.

1 Introduction

In the Euclidean Maximum Spanning Tree Problem (EMST), given a set of points in the Euclidean
space Rd, d ≥ 2, one seeks a tree that connects these points (as vertices) and has maximum length.
The problem is easily solvable in polynomial time by Prim’s algorithm or by Kruskal’s algorithm;
algorithms that take advantage of the geometry are also available [14].

In this paper we study a natural generalization of the above problem. In the Longest Spanning
Tree with Neighborhoods (Max-St-N), each point is replaced by a point-set, called neighborhood
(or region), and the tree must connect n representative points, one chosen from each neighborhood
(duplicate representatives are allowed), and the tree has maximum length. The tree edges are
straight line segments connecting pairs of points in distinct neighborhoods. For obvious reasons
we refer to these edges as bichromatic. As one would expect, the difficulty lies in choosing the
representative points; once these points are selected, the problem is reduced to the graph setting
and is therefore easily solvable. An example of a spanning tree for 10 neighborhoods is shown in
Figure 1.

A SET OF TEN REGIONS
Figure 1: An example of a long (still suboptimal) spanning tree for 10 neighborhoods N = {A,S∪S,E∪E∪
E,T∪T,O∪O,F,N∪N,R,G, I} (five neighborhoods are disconnected). The blue segments form a spanning
tree on N and the green dots are the chosen representative points.

The input N consists of n (possibly disconnected) neighborhoods. For simplicity, it is assumed
that each neighborhood is a union of polyhedra and the total vertex complexity of the input is N .
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The greedy algorithm. A (natural) greedy algorithm chooses two points attaining a maximum
inter-point distance with points in distinct neighborhoods as representatives, and then repeatedly
chooses a point in another neighborhood as far as possible from some representative point. The
above algorithm does not necessarily find an optimal tree. Let N = {X1, X2, X3}, where X1 =
{a, c}, X2 = {b, c}, X3 = {d}, ∆abc is a unit equilateral triangle and d is the midpoint of ab; see
Figure 2. Here the selection a ∈ X1, b ∈ X2, d ∈ X3 yields a spanning tree in the form of a star
centered at a of length |ab| + |ad| = 3/2 (the edge lengths are 1, 1/2, and 1/2 in the underlying
complete graph). On the other hand, selecting vertices c ∈ X1, c ∈ X2, d ∈ X3 yields a spanning
tree in the form of a 2-edge star centered at d of length |dc|+ |dc| = 2×

√
3/2 =

√
3 which is better

(the edge lengths are
√

3/2,
√

3/2, and 0 in the underlying complete graph).

c

a b

X1 X2

X3

d

Figure 2: Left: an example on which the greedy algorithm is suboptimal.

Definitions and notations. A geometric graph G is a graph whose vertex set is a finite set of
points in Rd and whose edges consist of straight line segments [15, p. 223]. For two points p, q ∈ Rd,
the Euclidean distance between them is denoted by |pq|. The length of G, denoted by len(G), is
the sum of the Euclidean lengths of all edges in G.

For a neighborhood X ∈ N , let V (X) denote its set of vertices. Let V = ∪X∈NV (X) denote
the union of vertices of all neighborhoods in N and N = |V |.

Given a set N of n neighborhoods, we define the following parameters. A monochromatic
diameter pair is a pair of points in the same neighborhood attaining a maximum distance. A
bichromatic diameter pair is a pair of points from two neighborhoods attaining a maximum distance,
i.e., pi ∈ Xi, pj ∈ Xj , where Xi, Xj ∈ N , i 6= j, and |pipj | is maximum. A diameter pair is a pair
of points (in the same neighborhood or in different neighborhoods) attaining an overall maximum
distance.

For X ∈ N and p ∈ X, let dmax(p) denote the maximum distance between p and any point
of a neighborhood Y ∈ N \ {X}. It is well known and easy to prove that both a monochromatic
diameter and a bichromatic diameter pair are attained by pairs of vertices in the input instance.
An optimal (longest) spanning tree with neighborhoods is denoted by TOPT; it is a geometric graph
whose vertices are the representative points of the n neighborhoods.

Our results. We start by providing a factor 1/2 approximation to Max-St-N. We then offer
two refinement steps achieving a better ratio. The last refinement step proves the following.

Theorem 1. Given a set N of n neighborhoods in Rd (with total vertex complexity N), a ratio
0.511 approximation for the maximum spanning tree for the neighborhoods in N can be computed
in polynomial time.
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It is natural to try to include long edges (with endpoints in different neighborhoods) when
constructing a long spanning tree. However, in this regard we show that every algorithm that
always includes a bichromatic diameter pair in the solution is bound to have an approximation

ratio at most
√

2−
√

3 = 0.517 . . . (via Figure 5 in Section 3).

Background and related work. Computing the minimum or maximum Euclidean spanning
trees of a point set are classical problems in a geometric setting [14, 16]. The Traveling Salesman
Problem (TSP) is yet another related problem with a rich history of research in combinatorial
optimization. Several variants of the TSP including the Euclidean Traveling Salesman Problem
(ETSP) and Maximum Traveling Salesman Problem (MAX TSP) are surveyed in [10, 12, 13].

While past research has primarily focused on minimization problems, the maximization variants
usually require different techniques and so they are interesting in their own right and pose many
unmet challenges. See for instance the section devoted to longest subgraph problems in the survey
of Bern and Eppstein [5]. The results obtained in this area in the last 20 years are rather sparse;
the few articles [4, 9, 11] make a representative sample. Recently, Biniaz et al. [7] gave several
approximation algorithms for computing a longest noncrossing spanning tree in a multipartite
geometric graph.

Spanning trees for systems of neighborhoods have also been studied. For instance, given a set
of n (possibly disconnected) compact neighborhoods in Rd, select a point in each neighborhood
so that the minimum spanning tree on these points has minimum length [8, 20], or maximum
length [8], respectively. In the cycle version first studied by Arkin and Hassin [3], called TSP with
neighborhoods (TSPN), given a set of neighborhoods in Rd, one needs to find a shortest closed
curve (tour) intersecting each neighborhood.

Organization. The rest of the paper is organized as follows. Section 2 presents two approxima-
tion algorithms: one with ratio 0.5 (in Subsection 2.1) and one with ratio 0.511 (in Subsection 2.2).
The analysis of the latter algorithm is carried out in Section 3. We conclude in Section 4 with a
summary of the results in the context of related problems and some future research directions.

2 Approximation Algorithms

For simplicity, we present our algorithms for the plane i.e., d = 2. The extension to higher dimen-
sions is straightforward, and is briefly discussed at the end.

Let S = {p1, . . . , pn}, where pi = (xi, yi). Given a point p ∈ S, the star centered at p, denoted by
Sp, is the spanning tree on S whose edges connect p to the other points. Using a technique developed
in [9] (in fact a simplification of an earlier approach from [2]), we first obtain an approximation
algorithm with ratio 1/2 (Algorithm A1). Algorithm A2 described later in this section implements
a refinement of this technique.

2.1 A Simple 0.5-Approximation Algorithm

Algorithm A1. Compute a bichromatic diameter of the point set V , pick an arbitrary point
(vertex) from each of the other n − 2 neighborhoods, and output the longest of the two stars
centered at one of the endpoints of the diameter.
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Analysis. Let ab be a bichromatic diameter pair, and assume without loss of generality that ab
is a horizontal unit segment, where a = (0, 0) and b = (1, 0). We may assume that a ∈ X1 and
b ∈ X2; refer to Figure 3.

ba
ω

o

Figure 3: A bichromatic diameter pair a, b and the disk ω.

The ratio 1/2 (or n
2n−2 which is slightly better) follows from the next lemma in conjunction

with the obvious upper bound
len(TOPT) ≤ n− 1. (1)

The latter is implied by the fact that each edge of TOPT is bichromatic and thus of length at most 1.

Lemma 1. Let Sa and Sb be the stars centered at the points a and b, respectively. Then len(Sa) +
len(Sb) ≥ n.

Proof. Assume that a = p1, b = p2. For each i = 3, . . . , n, the triangle inequality for the triple
a, b, pi gives

|api|+ |bpi| ≥ |ab| = 1.

By summing up we have

len(Sa) + len(Sb) =
n∑

i=3

(|api|+ |bpi|) + 2|ab| ≥ (n− 2) + 2 = n.

2.2 An Improved 0.511-Approximation Algorithm

We next refine the previous algorithm to achieve an approximation ratio of 0.511. The setting is the
same, where ab is a bichromatic diameter pair of unit length. The technique uses two parameters x
and y, introduced below. The smallest value of the ratio obtained over the entire range of admissible
x and y is determined and yields the approximation ratio of Algorithm A2.

Let o be the midpoint of ab, and ω be the disk centered at o, of minimum radius, say, x,
containing at least bn/2c of the neighborhoods X3, . . . , Xn. In particular, this implies that we can
consider bn/2c neighborhoods as contained in ω and dn/2e neighborhoods having points on the
boundary ∂ω or in the exterior of ω. We first argue that for x ≥ 0.2, the 0.511 approximation ratio
easily follows (with room to spare). Observe that for each of the neighborhoods not contained in ω,

one of the connections from an arbitrary point of the neighborhood to a or b is at least
√

1
4 + x2.

Let T be the spanning tree consisting of all such longer connections together with ab. Then,

len(T ) ≥ 1 +
⌊n

2

⌋ 1

2
+
(⌈n

2

⌉
− 2
)√1

4
+ x2. (2)

The above expression can be simplified as follows.

len(T ) ≥

1 + n
4
+
(
n
4
− 1
)√

1 + 4x2, if n is even,

1 + n−1
4

+
(
n+1
4
− 1
)√

1 + 4x2, if n is odd.
(3)
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Assume first that x ≥ 1/2. Then,

len(T ) ≥ 1 +
n

4
+
(n

4
− 1
)√

2 =

(
1

4
+

√
2

4

)
(n− 1) +

(
5− 3

√
2

4

)

≥

(
1 +
√

2

4

)
(n− 1), if n is even, and (4)

len(T ) ≥ 1 +
n− 1

4
+

(
n+ 1

4
− 1

)√
2 =

(
1

4
+

√
2

4

)
(n− 1) +

(
1−
√

2

2

)

≥

(
1 +
√

2

4

)
(n− 1), if n is odd. (5)

Together with (1), we have len(T ) ≥ 0.6 len(TOPT), for every n ≥ 2 and x ≥ 1/2.

Assume next that x ≤ 1/2. If n is even, (3) yields

len(T ) ≥ 1 +
n

4
+
(n

4
− 1
)√

1 + 4x2

=
n− 1

4

(
1 +

√
1 + 4x2

)
+

(
5

4
− 3

4

√
1 + 4x2

)
≥ n− 1

4

(
1 +

√
1 + 4x2

)
.

Indeed, the last term in the second line is non-negative for x ≤ 1/2.
If n is odd, (3) yields

len(T ) ≥ 1 +
n− 1

4
+

(
n+ 1

4
− 1

)√
1 + 4x2

=
n− 1

4

(
1 +

√
1 + 4x2

)
+

(
1− 1

2

√
1 + 4x2

)
≥ n− 1

4

(
1 +

√
1 + 4x2

)
.

Again, the last term in the second line is non-negative for x ≤ 1/2.
Consequently, for every n ≥ 2 and x ≤ 1/2 we have

len(T ) ≥ n− 1

4

(
1 +

√
1 + 4x2

)
. (6)

It is easy to check that

1 +
√

1 + 4x2

4
≥ 5 +

√
29

20
= 0.519 . . . , for x ≥ 0.2. (7)

Hence the approximation ratio is at least 0.519 . . . if x ≥ 0.2. We therefore subsequently assume
that x ≤ 0.2. Let the monochromatic diameter of V be 1 + y, for some y ∈ [−1,∞). The next
lemma shows that y ≤ 1, and so the monochromatic diameter of V is 1 + y, for some y ∈ [−1, 1].

Lemma 2. For every X ∈ N , diam(X) ≤ 2.
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Proof. Let pq be a diameter pair of neighborhood X. Let r be an arbitrary point of an arbitrary
neighborhood Y ∈ N \ {X}. By the triangle inequality, we have |pq| ≤ |pr|+ |rq| ≤ 1 + 1 = 2, as
required.

If y ≥ 0.2, let a1, b1 ∈ X be a corresponding diameter pair. Choose a point in every other
neighborhood and connect it to a1 and b1. Since |a1b1| = 1 + y ≥ 1.2, the longer of the two stars
centered at a1 and b1 has length at least (n − 1)(1 + y)/2 ≥ 0.6(n − 1); this candidate spanning
tree offers thereby this ratio of approximation. We will subsequently assume that y ∈ [−1, 0.2].

We have thus shown that a constant approximation ratio better than 0.511 can be obtained if
x or y is sufficiently large. In the complementary case, i.e., both x and y are small, we apply the
following algorithm.

Algorithm A2. The algorithm computes two candidate solutions T1 and T2 and returns the best
of the two. The setting is the same as in Subsection 2.1. In particular, it is assumed that x ∈ [0, 0.2]
and y ∈ [−1, 0.2] (outside this range, the approximation ratio exceeds 0.519).

The first candidate solution T1 for the spanning tree is only relevant for the range y ≥ 0 (if y < 0
its length could be smaller than (n− 1)/2 and T1 will be ignored). Suppose that a monochromatic
diameter pair in V is achieved by a pair a1, b1 ∈ X. Recall that |a1b1| = 1 +y. Choose an arbitrary
point in every other neighborhood and connect it to a1 and b1. Let T1 be the longer of the two
stars centered at a1 and b1.

The second candidate solution T2 for the spanning tree connects each of the neighborhoods
contained in ω with either a or b at a cost of at least 1/2 (based on the fact that max{|api|, |bpi|} ≥
|ab|/2 = 1/2). For each neighborhood Xi, i ≥ 3, select the vertex of Xi that is farthest from o and
connect it with a or b, whichever yields the longer connection. As such, if Xi is not contained in

ω, the connection length is at least
√

1
4 + x2. Finally add the unit segment ab.

Lower bounds on the lengths of candidate solutions. By the triangle inequality, the length
of the star T1 is bounded from below as follows:

len(T1) ≥ (n− 1)
1 + y

2
. (8)

The length of T2 is bounded from below by (6). As such, we have

len(T2) ≥
n− 1

4

(
1 +

√
1 + 4x2

)
. (9)

In order to prove the claimed approximation ratio 0.511 for Algorithm A2, we first derive a
sharper upper bound on the length of TOPT when both x and y are smaller than 0.2.

2.3 Upper bound on len(TOPT)

Let Ω be the disk of radius R(y) centered at o, where

R(y) =

{√
3
2 if y ≤ 0
√
3
2 + 2√

3
y if y ≥ 0

Lemma 3. V is contained in Ω.
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Proof. Assume for contradiction that there exists a point pi ∈ Xi at distance larger than R(y) from
o. By symmetry, we may assume that |api| ≤ |bpi| and that pi lies in the closed halfplane above
the line containing ab.

First consider the case y ≤ 0; it follows that |bpi| >
√

1
4 + 3

4 = 1. If i = 2, then b, pi ∈ X2, which

contradicts the definition of y. Otherwise, b ∈ X2 and pi ∈ Xi are points in different neighborhoods
at distance larger than 1, in contradiction with the original assumption on the bichromatic diameter
of V .

Next consider the case y ≥ 0; it follows that |bpi| ≥
√

1
4 +

(√
3
2 + 2√

3
y
)2

> 1 + y. If i = 2,

then b, pi ∈ X2, which contradicts the definition of y. Otherwise, b ∈ X2 and pi ∈ Xi are points in
different neighborhoods at distance larger than 1, in contradiction with the original assumption on
the bichromatic diameter of V .

In either case (for any y) we have reached a contradiction, and this concludes the proof.

Recall that for a point p ∈ X ∈ N , dmax(p) is the maximum distance between p and a point of
a neighborhood Y ∈ N \ {X}.

Lemma 4. Let N = {X1, . . . , Xn} be a set of n neighborhoods and TOPT be an optimal spanning
tree assumed to connect points (vertices) pi ∈ Xi for i = 1, . . . , n. For every j ∈ [n], we have

len(TOPT) ≤
∑
i 6=j

dmax(pi).

Proof. Consider TOPT rooted at pj . Let π(v) denote the parent of a (non-root) vertex v. Uniquely
assign each edge π(v)v of TOPT to vertex v. The inequality len(π(v)v) ≤ dmax(v) holds for each
edge of the tree. By adding up the above inequalities, the lemma follows.

Lemma 5. If X ∈ N is contained in ω, and p ∈ X, then dmax(p) ≤ min(1, x+R(y)).

Proof. By definition, dmax(p) ≤ 1. By Lemma 3, the vertex set V is contained in Ω and thus all
neighborhoods inN are contained in Ω. By the triangle inequality, dmax(p) ≤ |po|+R(y) ≤ x+R(y),
as claimed.

Lemma 6. The following inequality holds:

len(TOPT) ≤ (n− 1) ·min

(
1,

1 + x+R(y)

2

)
. (10)

Proof. Let TOPT be a longest spanning tree of p1, . . . , pn, where pi ∈ Xi, for i = 1, . . . , n. View
TOPT as rooted at p1 ∈ X1; recall that a ∈ X1. By Lemma 4,

len(TOPT) ≤
n∑

i=2

dmax(pi).

If Xi is not contained in ω, dmax(pi) ≤ 1; otherwise, by Lemma 5, dmax(pi) ≤ min(1, x+R(y)). By
the setting of x in the definition of ω, we have

len(TOPT) ≤
(⌈n

2

⌉
− 1
)
· 1 +

⌊n
2

⌋
·min(1, x+R(y)). (11)
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If n is even, Inequality (11) yields (since the second term in the second line is ≤ 0)

len(TOPT) ≤
(n

2
− 1
)

+
n

2
·min(1, x+R(y))

≤ n− 1

2
(1 + x+R(y)) +

min(1, x+R(y))− 1

2

≤ n− 1

2
(1 + x+R(y)) .

If n is odd, Inequality (11) yields

len(TOPT) ≤ n− 1

2
+
n− 1

2
(x+R(y)) =

n− 1

2
(1 + x+R(y)) .

Therefore the above inequality holds for every n ≥ 2. The lemma follows by adjoining the trivial
upper bound in equation (1).

3 Analysis of Algorithm A2

We start with a preliminary argument for ratio 0.506 that comes with a simpler proof. We then
give a sharper analysis for ratio 0.511.

A preliminary estimate on the approximation ratio of Algorithm A2. First consider the
case y < 0. Then R(y) =

√
3/2, so the ratio of Algorithm A2 is at least

min
0 ≤ x ≤ 0.2

y < 0

len(T2)

len(TOPT)
≥ min

0 ≤ x ≤ 0.2

1 +
√

1 + 4x2

min
(
4, 2 +

√
3 + 2x

) .
A standard analysis shows that this ratio achieves its minimum

(
1 + 2

√
2−
√

3
)/

4 = 0.508 . . .

when x = 1−
√

3/2.
When y ≥ 0, the ratio of Algorithm A2 is at least

min
0 ≤ x, y ≤ 0.2

max

(
len(T1)

len(TOPT)
,

len(T2)

len(TOPT)

)
.

The inequalities (8), (9), (10) imply that this ratio is at least

max
(

1 + y, (1 +
√

1 + 4x2)/2
)

min (2, 1 + x+R(y))
=

max
(

1 + y, (1 +
√

1 + 4x2)/2
)

min
(

2, 1 +
√
3
2 + x+ 2√

3
y
) .

Since the analysis is similar to that for deriving the refined bound we give next, we state without
providing details that this piecewise function reaches its minimum value(

4
√

3− 1− 2

√
9− 3

√
3

)/
4 = 0.506 . . .

when

y =

(
4
√

3− 3− 2

√
9− 3

√
3

)/
2 = 0.0137 . . . and x =

√
3/2− 3 + 2

√
3−
√

3 = 0.1180 . . .

This provides a preliminary ratio 0.506 in Theorem 1.
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A refined bound. Let m = bn/2c. Assume for convenience that the neighborhoods X3, . . . , Xn

are relabeled so that X3, . . . , Xm+2 are contained in ω and Xm+3, . . . , Xn are not contained in the
interior of ω. Recall that pi ∈ Xi are the representative points in an optimal solution TOPT. Let
xi = |opi|, for i = 3, . . . ,m + 2; as such, x3, . . . , xm+2 ≤ x. Denote the average of x3, . . . , xm+2 by
z, i.e.,

∑m+2
i=3 xi = mz, and note that z ≤ x.

As in the proof of Lemma 5, by the triangle inequality we have

dmax(pi) ≤ |opi|+R(y) = xi +R(y), for i = 3, . . . ,m+ 2.

Consequently, the upper bound in (10) can be improved to

len(TOPT) ≤ (n− 1) ·min

(
1,

1 + z +R(y)

2

)
. (12)

We next obtain an improved lower bound on len(T2). Recall that Algorithm A2 selects the
vertex of Xi that is farthest from o for every i ≥ 3, and connects it with a or b, whichever

yields the longer connection. In particular, the length of this connection is at least
√

1
4 + x2i for

i = 3, . . . ,m+ 2. Let h : [0,∞)→ R be defined as follows

h(x) =
√

1 + 4x2. (13)

It is easy to check that

h′(x) =
4x√

1 + 4x2
≥ 0 and h′′(x) =

4

(1 + 4x2)3/2
> 0. (14)

As such, the function h(x) is convex, i.e.,

h

(
x+ y

2

)
≤ h(x) + h(y)

2
, for every x, y ≥ 0. (15)

and Jensen’s inequality yields:

m+2∑
i=3

√
1 + 4x2i ≥ m

√
1 + 4z2. (16)

We thereby obtain (noting that z ≤ x) the following sharpening of the lower bound in (9):

len(T2) ≥
n− 1

4

(√
1 + 4z2 +

√
1 + 4x2

)
≥ n− 1

2

√
1 + 4z2. (17)

To analyze the approximation ratio we relate the upper bound (12) to the lower bound (17)
and distinguish two cases:

Case 1: y ≤ 0. Then R(y) =
√

3/2, so the ratio of Algorithm A2 is at least

min
0 ≤ z ≤ 0.2

len(T2)

len(TOPT)
≥ min

0 ≤ z ≤ 0.2

2
√

1 + 4z2

min
(
4, 2 + 2z +

√
3
) .

When 4 ≤ 2 + 2z +
√

3, we have z ≥ 1−
√

3/2. Then

√
1 + 4z2

2
≥
√

8− 4
√

3

2
=

√
2−
√

3 = 0.517 . . . .
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When 2 + 2z +
√

3 ≤ 4, i.e., z ≤ 1−
√

3/2, let

f(z) =
2
√

1 + 4z2

2 +
√

3 + 2z
.

Then

f ′(z) =
8
(
2 +
√

3
)
z − 4

√
1 + 4z2

(
2 +
√

3 + 2z
)2 .

Since 8
(
2 +
√

3
)
z−4 ≤ 4

(
2 +
√

3
) (

2−
√

3
)
−4 = 0, the function is non-increasing on [0, 1−

√
3/2]

and so

f(z) ≥ f
(

1−
√

3/2
)

=

√
2−
√

3 = 0.517 . . . .

This concludes the proof for the first case.

Case 2: y ≥ 0, then the ratio of Algorithm A2 is at least

min
0 ≤ y, z ≤ 0.2

max

(
len(T1)

len(TOPT)
,

len(T2)

len(TOPT)

)
.

For 0 ≤ y, z ≤ 0.2, let

g(z, y) =
max

(
1 + y,

√
1 + 4z2

)
min (2, 1 + z +R(y))

=
max

(
1 + y,

√
1 + 4z2

)
min

(
2, 1 +

√
3
2 + z + 2√

3
y
) .

The inequalities (8), (12), (17) imply that the ratio of Algorithm A2 is at least

min
0 ≤ y, z ≤ 0.2

g(z, y).

The curve γ : 1 + y =
√

1 + 4z2 and the line ` : 2 = 1 +
√
3
2 + z + 2√

3
y split the feasible region

[0, 0.2]× [0, 0.2] into four subregions; see Figure 4. The curve γ intersects line ` at point p = (z0, y0),

p

o

0.2

0.2q

I

II

III

IV

y

z

`

γ

Figure 4: The feasible region of the function g(z, y).

where z0 =
(
8 4
√

3−
√

3− 6
)/

26 = 0.1075 . . . and y0 =
(
8
√

3− 2 4
√

27− 9
)/

13 = 0.0228 . . . Set

ρ := (1 + y0)/2 =
(

4
√

3 + 2− 4
√

27
)/

13 = 0.511 . . . (18)
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In region I, g(z, y) = (1 + y)/2. It reaches the minimum value ρ when y is minimized, i.e.,
y = y0.

In region II, g(z, y) =
1 + y

1 +
√

3/2 + z + 2y/
√

3
. Its partial derivative is positive, i.e.,

∂g

∂y
=

1−
√

3/6 + z(
1 +
√

3/2 + z + 2y/
√

3
)2 > 0,

so g(z, y) reaches its minimum value on the curve γ. On this curve, let

G(z) = g (z, y(z)) =

√
1 + 4z2

1−
√

3/6 + z + 2
√

1 + 4z2/
√

3
.

Its derivative is

G′(z) =

(
4− 2

√
3/3
)
z − 1

√
1 + 4z2

(
1−
√

3/6 + z + 2
√

1 + 4z2/
√

3
)2 .

Note that the numerator of G′(z) is negative, i.e.,
(
4− 2

√
3/3
)
z − 1 < 4z − 1 < 0 for z ∈ [0, 0.2],

thus G′(z) < 0. So the minimum value is ρ, and is achieved when z is maximized, i.e., z = z0.
In region IV, g(z, y) =

√
1 + 4z2/2 which increases monotonically with respect to z. So the

minimum value is again ρ and is achieved when z is minimized, i.e., z = z0.
In region III,

g(z, y) =

√
1 + 4z2

1 +
√

3/2 + z + 2y/
√

3
.

Its partial derivative is negative, i.e.,

∂g

∂y
=

−2
√

1 + 4z2
√

3
(
1 +
√

3/2 + z + 2y/
√

3
)2 < 0,

so g(z, y) reaches its minimum value on the arc op ⊂ γ or the segment pq ⊂ `, where q = (1−
√

3/2, 0)
is the intersection point of ` and the z-axis. Since these two curves are shared with region II and
IV respectively, by previous analyses, g(z, y) reaches its minimum value ρ at point p.

In summary, we showed that

min
0 ≤ y, z ≤ 0.2

g(z, y) ≥ ρ = 0.511 . . . ,

establishing the approximation ratio in Theorem 1.

Remarks. 1. The algorithm can be adapted to work in Rd for any d ≥ 3. In the analysis, the disk
ω becomes the ball of radius x with the same defining property and the disk Ω becomes the ball
of radius R(y). All arguments and relevant bounds still hold since they only rely on the triangle
inequality; the verification is left to the reader. Consequently, the approximation guarantee remains
the same.

2. It is apparent from the context that our methods extend to a broader class of neighborhoods,
namely those that are approximable within a prescribed accuracy by unions of polyhedra (this class
includes curved objects, for instance balls of arbitrary radii).
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An almost tight example. Let ∆abc be an isosceles triangle with |ca| = |cb| = 1− ε, |ab| = 1,
for a small ε > 0, e.g., set ε = 1/(n − 1). Let N = {X1, . . . , Xn}, where X1 = ac, X2 = bc, and
X3, . . . , Xn are n − 2 points at distance 1 − ε from c, below ab and whose projections onto ab are
close to the midpoint of ab; see Figure 5. Note that ab is the unique (bichromatic) diameter of V
(the set of vertices in N ). Algorithm A2 selects a ∈ X1, b ∈ X2, and X3, . . . , Xn.

c

a b

X1 X2

X3, . . . , Xn

Figure 5: A tight example.

The edge ab has unit length and each of the remaining edges has length close to
√

2−
√

3.

Therefore, the spanning tree constructed by Algorithm A2 is of length close to 1+
√

2−
√

3(n−2),
while the longest spanning tree has length at least (1−ε)(n−1) = n−2. As such, the approximation

ratio of Algorithm A2 approaches
√

2−
√

3 = 0.517 . . . for large n. Note that this is a tight example

for the case y ≤ 0, for which the ratio of Algorithm A2 is at least
√

2−
√

3; and an almost tight
example in general, since the overall approximation ratio of Algorithm A2 is 0.511. Moreover,
the example shows that every algorithm that always includes a bichromatic diameter pair in the
solution (as the vertices of the corresponding neighborhoods) is bound to have an approximation

ratio at most
√

2−
√

3.

Time complexity of Algorithm A2. It is straightforward to implement the algorithm to run
in quadratic time for any fixed d. All interpoint distances can be easily computed in O(N2)
time. Similarly the farthest point from o in each neighborhood (over all neighborhoods) can all
be computed in O(N) time. Subquadratic algorithms for computing the diameter and farthest
bichromatic pairs in higher dimensions can be found in [1, 6, 17, 18, 19]; see also the two survey
articles [10, 12].

4 Conclusion

We gave two simple approximation algorithms for Max-St-N: one with ratio 0.5 and one with ratio
0.511 (the latter with a slightly more elaborate analysis but equally simple principles). The first
algorithm outputs a star centered at one of the endpoints of a bichromatic diameter. The second
algorithm outputs either a star centered at one of the endpoints of a monochromatic diameter or
a 2-star with the endpoints of a bichromatic diameter as its centers. A 2-star with centers a, b
consists of an edge connecting a, b and n − 2 edges connecting every other vertex with one of the
two centers.

The following variants represent extensions of the Euclidean maximum TSP for the neighbor-
hood setting. In the Euclidean Maximum Traveling Salesman Problem, given a set of points in the
Euclidean space Rd, d ≥ 2, one seeks a cycle (a.k.a. tour) that visits these points (as vertices) and
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has maximum length; see [4]. In the Maximum Traveling Salesman Problem with Neighborhoods
(Max-Tsp-N), each point is replaced by a point-set, called neighborhood (or region), and the cycle
must connect n representative points, one chosen from each neighborhood (duplicate representa-
tives are allowed), and the cycle has maximum length. Since the original variant with points is
NP-hard when d ≥ 3 (as shown in [4]), the variant with neighborhoods is also NP-hard for d ≥ 3.
The complexity of the original problem in the plane is unsettled, although the problem is believed
to be NP-hard [11]. In the path variant, one seeks a path of maximum length.

The following problems remain open for future investigation:

1. What is the computational complexity of Max-St-N?

2. Can a better approximation be obtained by constructing candidate spanning trees in the form
of a 3-star? (A 3-star with centers a, b, c consists of two edges connecting a, b, c and n − 3
edges connecting every other vertex with one of the 3 centers.)

3. What approximations can be obtained for the cycle or path variants of Max-Tsp-N?
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