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COUNTING SHORT CYCLES OF (C,D)-REGULAR BIPARTITE
GRAPHS

M. ALINEJAD AND K. KHASHYARMANESH

Abstract. Recently, working on the Tanner graph which represents a low
density parity check (LDPC) code becomes an interesting research subject.
Finding the number of short cycles of Tanner graphs motivated Blake and Lin
to investigate the multiplicity of cycles of length girth in bi-regular bipartite
graphs, by using the spectrum and degree distribution of the graph. Although
there were many algorithms to find the number of cycles, they preferred to
investigate in a computational way. Dehghan and Banihashemi counted the
number of cycles of length g + 2 and g + 4, where G is a bi-regular bipartite
graph and g is the length of the girth G. But they just proposed a descriptive
technique to compute the multiplicity of cycles of length less than 2g for bi-
regular bipartite graphs. In this paper, we find the number of cycles of length
less than 2g by using spectrum and degree distribution of bi-regular bipartite
graphs such that the formula depends only on the partitions of positive integers
and the number of closed cycle-free walks from a variable (resp. check) vertex
in Bc,d and Tc,d (resp. Td,c), which are known.

1. Introduction

Low density parity check (LDPC) codes are linear codes with error performance
near to the Shannon limit can represent as Tanner graphs, which proposed the
first time by Michael Tanner. It is shown that the structure of Tanner graphs, in
particular, distribution and number of short cycles, affect the error efficiency of
LDPC codes (see [8, 9, 13, 14]). Performance of the LDPC codes persuade many
researchers to investigate on cycles of Tanner graphs. In [2, 11], are shown that
for finding LDPC codes with a good performance, we should focus on the graphs
that the number of short cycles is not so many. It is proved that regularity of a
graph has a significant impact on LDPC codes [12]. Dehghan and Banihashemi
in [5], studied cycle distribution of random bipartite graphs.

Counting the number of cycles in a general graph is known to be NP-hrad [6].
The complexity of the problem led the researcher to use recursion methods and
algorithms to compute the number of cycles in bipartite graphs. For instance, in
[7], Halford and Chugg proposed a recursive algorithm for counting the cycles of
length at most g + 6. In [10], Karimi and Banihashemi presented an algorithm
to compute the number of cycles of length less than g. Recently, Blake and Lin
suggested a new way, independent from algorithms and complicated methods,
to compute the number of cycles by using spectrum and degree distribution of
bipartite graphs [1].

Key words and phrases. (c, d)-regular graph, bipartitel graph, closed walks, cycle-free walk.
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For a given graph G, the adjacency matrix A = [aij ] of G is defined such that
aij = 1, if ij ∈ E(G), and aij = 0, if ij /∈ E(G). The spectrum of a graph
G, denoted by {λi}, is the multiset of eigenvalues of adjacency matrix A. Since
there exists a close relationship between the number of walks of arbitrary length
and powers of matrix A, the spectrum of G is more useful to find the number
of cycles. Blake and Lin in [1] found the number of short cycles of length g
in bi-regular bipartite graphs without using complicated algorithms. They were
hoping this new method guided the researchers to find the number of cycles of
length greater than g. In [4], Dehghan and Banihashemi determined the exact
number of cycles of length g + 2 and g + 4 in a bi-regular bipartite graph. In
addition, by contradiction examples, they showed that the spectrum and degree
distribution conditions are not enough to find the number of cycles of length i for
a bi-regular bipartite graph, where i ≥ 2g. They also mentioned some facts for
the number of cycles of length less than 2g, but they did not proposed a formula
to compute the number of cycles. By using the eigenvalues and degree sequence
of bi-regular bipartite graphs, we present a new way to enumerate the number of
cycles of length less than 2g in bi-regular bipartite graphs.

In Section 2 of the paper, we present some definitions and preliminaries which
we need through this paper. In Section 3, by using the partitions of positive
integer numbers, we find the number of closed walks with a cycle in bi-regular
bipartite graphs in which initial vertex is in cycle. In Section 4, similar to section
3, we investigate the number of closed walks that consist a cycle and initial vertex
is out of cycle. Finally, from the results of sections 3 and 4, we determine the
number of closed walks with cycle. Since the number of closed cycle-free walks in
bi-regular bipartite graphs specified in [1], we can express the number of cycles
of length less than 2g.

2. Preliminaries and Notations

For any graph G, we denote the set of all vertices and edges of G by V (G)
and E(G), respectively. For two vertices u, v ∈ V (G), we denote u ∼ v or uv
for brevity, if u and v are adjacent. The degree of a vertex v ∈ V (G), denoted
by d(v), is the number of adjacent vertices of v. A walk W is a sequence of the
vertices v1, v2, . . . , vk+1 such that vjvj+1 ∈ E(G), for 1 ≤ j ≤ k. In this case, vj is
called the j-th vertex of W and the length of W is defined as the number of edges
of W and is denoted by ℓ(W). We call v1 and vk+1 the initial and terminal vertex
of W, respectively. For integers j and s, a walk W

′ = vj, . . . , vvj+s
is a subwalk

of W = v1, v2, . . . , vk+1, if 1 ≤ j < k + 1 and 1 < j + s ≤ k + 1. A walk is called
a closed walk if the initial and terminal vertex are the same. A closed cycle-free

walk is a closed walk with no cycles. A closed walk W which is not a cycle is
called a closed walk with cycle, if the induced subgraph on the edges of the closed
walk has at least one cycle. For brevity, we denote the closed walk with cycle
by CWWC. If the vertices of a walk are distinct, then a walk or closed walk is
called path and cycle, respectively. For u, v ∈ V (G), d(u, v) denotes the length of
the shortest path between u and v. If there is no path between u and v, then we
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define d(u, v) = ∞. For a graph G, length of shortest cycle is called girth, and is
denoted by g. For j ≥ g, the number of cycles of length j is denoted by Nj.

Graph G is called bipartite, if V (G) can be partitioned into two sets U and V
such that if uv ∈ E(G), then u and v belong to different sets. A graph G is called
nonbipartite, if G is not bipartite. If the degree of vertices U and V are c and
d, respectively, then G is called (c, d)-regular bipartite graph, and is denoted by
Bc,d. In this case, we assume that |U | = n and |V | = m. For a bipartite graph
G = U ∪V, the m×n parity check matrix H(G) = [hij ] defined in which hij = 1,
if ij ∈ E(G), and hij = 0, otherwise. Clearly, H(G) constructs a linear code
C(G). In this case, G is called the Tanner graph of C(G). We denote bc,2k and
ac,2k (resp. bd,2k and ad,2k) as the number of closed cycle-free and return once
closed cycle-free walks of length 2k with initial vertex of degree c in Bc,d(resp. d).
For k = 0, we assume that bc,0 = bd,0 = 1.

Graph G is connected, if there is a path between each two vertices of G. A
connected graph with no cycle is called tree. For graph Bc,d, the related tree of
Bc,d, denoted by Tc,d (resp. Td,c), is defined as the rooted tree with root vertex
of degree c − 1 (resp. d − 1) and vertices of consecutive levels have alternating
degrees d (resp. c) and c (resp. d). In addition, we denote tc,2k and sc,2k (resp.
td,2k and sd,2k) as the number of closed cycle-free and return once closed cycle-free
walks of length 2k in Tc,d (resp. Td,c) with initial vertex of degree c (resp. d). For
k = 0, we assume that tc,0 = td,0 = 1.

Clearly, the adjacency matrix A is real and symmetric, and so the eigenvalues
of G are real. Moreover, it is known that if {λi} is the spectrum of G, then {λk

i }
is the eigenvalue of Ak, for a positive integer k. For a matrix A, tr(A) is defined
as the summation of diagonal entries of A. The following proposition play an
important role in the enumerating the number of cycles.

Proposition 2.1. [3, Proposition 1.3.4] If A is the adjacency matrix of a graph,

then (i, j)-entry akij of the matrix Ak is equal to the number of walks of length k
that start at vertex i and end at vertex j.

Since tr(A) is equal to the summation of eigenvalues of A, Proposition 2.1
implies that the number of closed walks of length k equals the summation of
eigenvalues of Ak. The Following theorem shows the difference of the spectrum
of bipartite and the spectrum nonbipartite graphs.

Theorem 2.2. [3, Theorem 3.2.3] A graph G is bipartite if and only if its spec-

trum is symmetric with respect to the origin.

Now, we express the following theorem from [4], which shows the number of
cycles of length i, where i < 2g.

Theorem 2.3. [4, Theorem 1] For a (c, d)-regular bipartite graph Bc,d, the number

of cycles of length i is equal to:

Ni = [

|V (G)|
∑

j=1

λi
j − Ωi(c, d,Bc,d)−Ψi(c, d,Bc,d)]/2i,
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where {λi
j} is the spectrum of Bc,d, and Ωi(c, d,Bc,d) and Ψi(c, d,Bc,d) are the

number of closed cycle-free walks of length i and closed walks with cycle of length

i in G, respectively.

In [1], Blake and Lin have already found the value Ωi(c, d,Bc,d) and showed
that

Ωi(c, d,Bc,d) = nbc,i +mbd,i.

In this work, we compute the number of closed walks of length i + 2k, 1 ≤
k < g − i

2
, which contain a cycle of length i, i < 2g. For each walk of Bc,d we can

consider a direction. Let W be an arbitrary closed walk with cycle of length i.
By passing the walk sequence of W, if we traverse clockwise in the cycle, then
we define the direction of W is clockwise. Otherwise, we define the direction
of W is counterclockwise. A CWWC walk with direction counterclockwise is
denoted by CWDCC. Now, suppose that C is a cycle of length i with vertices
vj , 0 ≤ j ≤ i− 1(see Fig. 1). Throughout this paper, indices of vertices of C are
taken modulo i and d(v0) = c.

Fig 1.

v0

v2

v1

vi−1

.. .

3. Closed walks in (c, d)-regular graphs with initial vertex in

cycle

Definition 3.1. For integer k, where 1 ≤ k < g − i
2
, the set of closed walks of

length i+ 2k with cycle of length i such that the initial vertex is in cycle or out
of cycle is denoted by Φ(i, 2k) or Λ(i, 2k), respectively. Therefore,

Ψi(c, d,Bc,d) =
∑

k0+k1=g− i
2
−1

(

|Φ(g + 2k0, 2k1)|+ |Λ(g + 2k0, 2k1)|
)

.

Definition 3.2. Suppose that W is a CWDCC with walk sequence u1, . . . , uk+1.
For a positive integer j less than k + 1, a closed cycle-free walk W

′ with initial
vertex uj is called backward respect to the W, if ujuj+1 /∈ E(W′). The walks W∗

and W
∗∗ are defined as the CWDCC of Fig. 1 and Fig. 2 with starting vertex v0

and z0, respectively.

In this section, we investigate the number of walks of Φ(i, 2k) that consists
cycle C. We first determine the number of CWDCCs of Φ(i, 2k) with cycle C and
initial vertex v0, denoted Φv0(i, 2k).

Remark 3.3. Suppose that W ∈ Φv0(i, 2k). Then represent W as a sequence of

vertices. Denote the first v0 which appears in the sequence by v
(1)
0 , and the first
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vj that appears after v
(1)
j−1 denote by v

(1)
j , for every j, 0 < j ≤ i. Since W is a

CWDCC, we deduce that the vertex before v
(1)
j in the sequence is vj−1, where

0 < j ≤ i. Hence, we can represent W as follow:

v
(1)
0 , . . . , v0, v

(1)
1 , . . . , v1, v

(1)
2 , . . . , vi−1, v

(1)
i , . . . , v0.

Now, define closed subwalk Wj of W with initial vertex v
(1)
j and terminal vertex

v
(1)
j+1, for each j with 0 ≤ j ≤ i − 1. Moreover, the walk with initial vertex v

(1)
i

and terminal vertex v0(The last vertex of W) is denoted by Wi. Thus, we can
represent W uniquely as follow:

W = W0W1 · · ·Wi.

Now, put 2s′i = ℓ(Wi), and 2s′j = ℓ(Wj)− 1, for each j with 0 ≤ j ≤ i. By simple
computing, we have

s′0 + . . .+ s′i =
1

2

(

i
∑

j=0

ℓ(Wj)−
i−1
∑

j=0

1
)

=
1

2
(ℓ(W)− i)

=
1

2
(i+ 2k − i) = k.

Definition 3.4. We denote Φv0(2s0, . . . , 2si) for the walks W ∈ Φv0(i, 2k) such
that if W represent uniquely as W = W0W1 · · ·Wi, then 2sj = ℓ(Wj) − 1 for
0 ≤ j ≤ i− 1, and 2si = ℓ(Wi).

By the Remark 2.1, we have following result.

Corollary 3.5. For a positive integer k with 1 ≤ k < g − i
2
, we have:

Φv0(i, 2k) =
⋃

s0+...+si=k

Φv0(2s0, . . . , 2si).

It is easy to see that the number of CWDCCs with initial vertex v2j , 0 ≤ j ≤
i
2
− 1, is equal. Similar result satisfies for v2j+1, where 0 ≤ j ≤ i

2
− 1. Since the

number of vertices of degree c and d are i
2
and each CWWC has two directions,

we have following result.

Corollary 3.6. The number of walks of Φ(i, 2k) with cycle C is equal to:

i
(

∑

s0+...+si=k

|Φv0(2s0, . . . , 2si)|+ |Φv1(2s0, . . . , 2si)|
)

.

Lemma 3.7. If s0 + . . .+ si = k, then

|Φv0(2s0, . . . , 2si)| = bc,2si

i
2
−1
∏

j=0

tc,2s2jtd,2s2j+1
,
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and

|Φv1(2s0, . . . , 2si)| = bd,2si

i
2
−1
∏

j=0

td,2s2j tc,2s2j+1
.

Proof. By the definition of Φv0(2s0, . . . , 2si), we know that 2sj is the length of
the closed cycle-free walk with initial vertex vj in which it is backward respect
to W

∗, for each j, 0 ≤ j ≤ i− 1. Hence, Dependes on whether the degree of vj is
c or d, the number of walks of length 2sj with this condition is equal to tc,2sj or
td,2sj , respectively. On the other hand, 2si is the length of closed cycle-free walks
with cycle and initial vertex v0. Hence, the number of these walks equals to bc,2si
or bd,2si . Similar result is satisfied for |Φv1(2s0, . . . , 2si)|. �

Since we computed the value |Φ(i, 2k)| for specific cycle C and we have Ni

cycles of length i, we have following result.

Corollary 3.8. For integer k, 1 ≤ k < g − i
2
, we have

|Φ(i, 2k)| = iNi

∑

s0+...+si=k

(bc,2si + bd,2si)

i
2
−1
∏

j=0

td,2s2j tc,2s2j+1
.

From [1], we observe that ac,2l = c td,2l−2, and ad,2l = d tc,2l−2 for l < g. Thus,
we can rewrite the equation of Corollary 3.8 by using just ac,2j, bc,2j, ad,2j and
bd,2j , for 1 ≤ j ≤ k.

4. Closed walks in (c, d)-regular graphs with initial vertex out of

cycle

In this section, we investigate on the size of Λ(i, 2k). In the following definition,
we classify the CWDCC’s of C with initial vertex out of cycle.

Definition 4.1. Let l and j be integers with 1 ≤ l ≤ k and 0 ≤ j < i. Then
W(vj , l) is defined as the set of the CWDCCs with cycle C and initial vertex z
such that satisfy in the following conditions:

(i) z ∈ V (G− C).
(ii) d(z, vj) = l.
(iii) If W ∈ W(vj , l), then the first vertex of C that appears in the walk se-

quence of W is vj .

The set of initial vertices of W(vj , l) is denoted by Nl(vj), where 1 ≤ l ≤ k. It
is not difficult to see that if d(vj) = c, then |Nl(vj)| is equal to:

(c− 2)(d− 1)⌈
l−1

2
⌉(c− 1)⌊

l−1

2
⌋.

Otherwise,

(d− 2)(c− 1)⌈
l−1

2
⌉(d− 1)⌊

l−1

2
⌋.

First, we find the number of walks W ∈ Λ(i, 2k) with cycle C such that v0 is
the first vertex of C appears in the walk sequence W. For z0 ∈ Nl(v0), since there
is not a cycle of length 2l, we have a unique path of length l between z0 and v0,
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say Pz0v0 . We denote this unique path by z0 ∼ z1 ∼ z2 . . . zl−1 ∼ v0(see Fig. 2).
The set of walks of W(v0, l) with initial vertex z0 is denoted by Λz0

v0
(l).

Fig. 2.

v0

v1

zl−1zl−2z1z0
vi−1

.. .

. . .

Remark 4.2. Suppose that W ∈ Λz0
v0
(l). Denote the initial and terminal vertex of

W by u0 and ui+2l+1, respectively. Denote the second vertex of W∗∗ that appears
in W after the u0 by u1, and the third vertex of W∗∗ which appears in W after
the u1 by u2. Continuing in this way, denote j-th vertex of W∗∗ that appears after
uj−2, by uj−1, for 2 ≤ j ≤ i+2l+1. Now, define the subwalks of W as follow. For
each j, 0 ≤ j ≤ i + 2l, define subwalk Wj of W with initial and terminal vertex
uj and uj+1. Hence, we can represent W uniquely as bellow:

W = W0 · · ·Wi+2l.

Similar to the Remark 2.1, assume that 2s′i+2l = ℓ(Wi+2l), and 2s′j = ℓ(Wj)− 1,
for each j with 0 ≤ j ≤ i+ 2l − 1. By simple computing, we have

s′0 + . . .+ s′i+2l =
1

2

(

i+2l
∑

j=0

ℓ(Wj)−
i+2l−1
∑

j=0

1
)

=
1

2

(

ℓ(W)− (i+ 2l)
)

=
1

2

(

(i+ 2k)− (i+ 2l)
)

= k − l.

Definition 4.3. We denote Λz0
v0
(2s0, . . . , 2si+2l) for the walks of W ∈ Λz0

v0
(l) such

that if we represent W uniquely as W = W0W1 · · ·Wi+2l, then 2sj = ℓ(Wj)− 1,
for 0 ≤ j < i+ 2l, and 2si+2l = ℓ(Wi+2l).

Since for each walk of Λz0
v0
(l), there is a unique representation, by Remark 4.2,

we have the following result.

Corollary 4.4. For a positive integer l with 1 ≤ l ≤ k, we have

Λz0
v0
(l) =

⋃

s0+...+si+2l=k−l

Λz0
v0
(2s0, . . . , 2si+2l).

Moreover,

|Λz0
v0
(l)| =

∑

s0+...+si+2l=k−l

|Λz0
v0
(2s0, . . . , 2si+2l)|.
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Now, we can state the following lemma.

Lemma 4.5. For s0 + . . .+ si+2l = k − l. If l is even or odd, then we have

|Λz0
v0
(2s0, . . . , 2si+2l)| = bc,2si+2l

i
2
+l−1
∏

j=0

tc,2s2j td,2s2j+1
,

and

|Λz0
v0
(2s0, . . . , 2si+2l)| = bd,2si+2l

i
2
+l−1
∏

j=0

td,2s2j tc,2s2j+1
,

respectively.

Proof. Let W ∈ Λz0
v0
(2s0, . . . , 2si+2l). Then Remark 4.2 implies that there are

the unique subwalks Wj’s such that W = W1 · · ·Wi+2l and 2sj = ℓ(Wj)− 1, for
0 ≤ j < i+2l and 2si+2l = ℓ(Wi+2l). Hence, we can deduce that for 0 ≤ j < i+2l,
2sj is the length of backward closed cycle-free walk respect to theW∗∗ with (j+1)-
th vertex of W∗∗ as initial. Hence, the number of cycle-free walks in this case is
equal to tc,2sj or td,2sj , depends on the degree initial vertex is c or d, respectively.
In addition, since 2si+2l = ℓ(Wi+2l), we conclude that 2si+2l is the length of closed
cycle-free walk with initial vertex z0. Therefore, the number of cycle-free walks
in this case is bc,2si+2l

or bd,2si+2l
, if l is even or odd, respectively. Now, it is

enough to show that the walks which computed in the right side of the equation
are elements of Λz0

v0
(2s0, . . . , 2si+2l). Since the initial vertex of the walks is z0, we

just check that v0 is the first vertex of C that appears in our enumeration. By
contradiction assume that W′ ∈ Λz0

v0
(2s0, . . . , 2si+2l) and vertex vj, 0 < j ≤ i− 1,

appears before the v0 in W
′. Since d(z0, v0) = l, we have d(z0, vj) ≤ k− l. Hence,

there is a new cycle of length at most

d(z0, v0) + d(z0, vj) + d(v0, vj) ≤ l + (k − l) +
i

2
.

Since i+2k < 2g, the length of cycle is less than g, which is a contradiction. �

Lemma 4.6. Let l be a positive integer with 1 ≤ l ≤ k and z0 ∈ Nl(v0). Then

|W(v0, l)| = |Nl(v0)||Λ
z0
v0
(l)|

Proof. Suppose that w0 ∈ Nl(v0) and w0 6= z0. Since d(w0) = d(z0), d(w0, v0) =
d(z0, v0) = l and Λz0

v0
(l) ∩ Λw0

v0
(l) = ∅, we observe that |Λz0

v0
(l)| = |Λw0

v0
(l)|. Hence,

we only compute |Λz0
v0
(l)| and finally multiply by |Nl(v0)|. �

Lemma 4.7. The number of walks W ∈ Λ(i, 2k) with cycle C such that v0 is the

first vertex of C that appears in W is

k
∑

l=1

|W(v0, l)|

Proof. Let W ∈ Λ(i, 2k) with cycle C and initial vertex z0 such that the first
vertex of C that appears in W is v0. In this case, 1 ≤ d(z0, v0) ≤ k. Hence
W ∈ W(v0, l), where l = d(z0, v0). Since W(v0, l) ∩ W(v0, l

′) = ∅, for distinct l
and l′, the assertion holds. �
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Note that we have i
2
vertices of degree c and i

2
vertices of degree d in C. In

addition, for 0 ≤ j ≤ i
2
− 1, we have

|W(v0, l)| = |W(v2j , l)|,

and
|W(v1, l)| = |W(v2j+1, l)|.

Hence, we have the following consequence.

Corollary 4.8. For a positive integer k with 1 ≤ k < g − i
2
, we have

|Λ(i, 2k)| = iNi

k
∑

l=1

(|W(v0, l)|+ |W(v1, l)|).

Remark 4.9. It is not difficult to see that to find |Λ(i, 2k)|, we may only calculate
|W(v0, l)| for 1 ≤ l ≤ k. Because Bc,d is a bi-regular graph and we have similar
result for |W(v1, l)|. Since we know the value |Nl(v0)|, it is enough to check the
|Λz0

v0
(l)| to find |W(v0, l)| for 1 ≤ l ≤ k.

For finding the number of cycles of length i in Bc,d, it is enough to investigate
the value Ψi(c, d,Bc,d), by Theorem 2.3. In the next two theorems we enumerate
Ψj(c, d,Bc,d) for j = g+2, g+ 4. Our proof is simpler than the proof of Theorem
2 and Theorem 3 in [4]. Finally, we compute Ψg+6(c, d,Bc,d).

Theorem 4.10. Let G be a (c, d)-regular graph. Then

Ψg+2(c, d,Bc,d) = gNg(g + 2)(c+ d− 2).

Proof. To compute Ψg+2(c, d,Bc,d), we calculate the values |Φ(g, 2k)| and |Λ(g, 2k)|,
respectively. Since k = 1, Corollary 3.8 implies that

|Φ(g, 2)| = gNg

∑

s0+...+sg=1

(bc,2sg + bd,2sg)

g

2
−1
∏

j=0

td,2s2j tc,2s2j+1
.

In this case, we have g + 1 cases for (s0, . . . , sg). If sg = 0, then bc,0 + bd,0 = 2.
Since there are g

2
vertices of degree c and g

2
vertices of degree d, the number of

CWDCCs in this case is 2 g

2
tc,2 + 2 g

2
td,2. If sg = 1, then the number of CWDCCs

is bc,2+ bd,2. Therefore,

|Φ(g, 2)| = gNg

(

g(tc,2 + td,2) + bc,2 + bd,2

)

. (∗)

By the corollary 4.8, we have

|Λ(g, 2)| = gNg

1
∑

l=1

(|W(v0, l)|+ |W(v1, l)|)

= gNg(|W(v0, 1)|+ |W(v1, 1)|).

It is enough to find the value |Λz0
v0
(1)|, by Remark 4.9. So

|Λz0
v0
(1)| =

∑

s0+...+sg+2=0

|Λz0
v0
(2s0, . . . , 2sg+2)| = 1.
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Therefore, we deduce that |W(v0, 1)| = |N1(v0)| and |W(v1, 1)| = |N1(v1)|. Thus,

|Λ(g, 2)| = gNg

(

|N1(v0)|+ |N1(v1)|
)

. (∗∗)

By the equations (∗) and (∗∗) we conclude that

Ψg+2(c, d,Bc,d) = gNg

(

g(tc,2 + td,2) + (bc,2 + bd,2) + (|N1(v0)|+ |N1(v1)|)
)

.

�

Theorem 4.11. Let G be a (c, d)-regular graph. Then

Ψg+4(c, d,Bc,d) = (g + 2)Ng+2(g + 4)(c+ d− 2)

+gNg[g(c+ d− 2)2 + (c+ d)(c+ d− 1)]

+gNg

(

2

(

g

2
2

)

[(c−1)2+(d−1)2]+2(
g

2
)2(c−1)(d−1)

)

+gNg

g

2
[(c+ d)(c+ d− 2)]

+gNg

(

(
g

2
+1)(c+d−2)(c+d−4)+(c−2)(2d−1)+(d−2)(2c−1)

)

.

Proof. To compute the number of CWWCs of the length g + 4, we need to know
the number of cycles of length g and g+2 which have already enumerated. Thus,
we arise the following two cases:
Case 1. The closed walk of length g + 4 contains a cycle of length g. We first
compute |Φ(g, 4)|. In this case, k = 2 and Corollary 3.8 implies that

|Φ(g, 4)| = gNg

∑

s0+...+sg=2

(bc,2sg + bd,2sg)

g

2
−1
∏

j=0

td,2s2j tc,2s2j+1
.

Depending on sj is one or two, we consider the following subcases:
Case 1.1. Each sj is two or zero. In this case, if sg is zero or not, then the
number of closed CWDCCs is equal to

2
g

2
tc,4 + 2

g

2
td,4,

or

bc,4 + bd,4,

respectively.
Case 1.2. Each sj is one or zero. Suppose that sg = 0. In this sense, there are
three cases to select two ones for sj’s. If both vertices have the same degree, then
the number of CWDCCs is

2

(

g

2
2

)

[t2c,2 + t2d,2].

If the degree of vertices are different, then the number of CWDCCs is

2(
g

2
)2tc,2td,2.
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Now, suppose that sg 6= 0. In this case, sg = 1 and so there is another j′ such
that 0 ≤ j′ < g and s′j = 1. Hence, the number of CWDCCs is

g

2
(bc,2 + bd,2)(tc,2 + td,2).

Thus,

|Φ(g, 4)| = gNg

(

g(tc,4 + td,4) + (bc,4 + bd,4) + 2

(

g

2
2

)

[t2c,2 + t2d,2]

+2(
g

2
)2tc,2td,2 +

g

2
(bc,2 + bd,2)(tc,2 + td,2)

)

.

Now, we want to find |Λ(g, 4)|. By the Corollary 4.8, we have

|Λ(g, 4)| = gNg

2
∑

l=1

(|W(v0, l)|+ |W(v1, l)|)

It is enough to find the values |Λz0
v0
(1)| and |Λz0

v0
(2)|, by Remark 4.9. First consider

l = 1 and Lemma 4.5 implies that

|Λz0
v0
(1)| =

∑

s0+...+sg+2=1

|Λz0
v0
(2s0, . . . , 2sg+2)|

= (
g

2
+ 1)tc,2 + (

g

2
+ 1)td,2 + bd,2.

Since |Λz0
v0
(2)| = 1, we have

|Λ(g, 4)| = gNg

(

(
g

2
+ 1)

(

|N1(v0)|+ |N1(v1)|
)

(tc,2 + td,2)

+|N1(v0)|bd,2 + |N1(v1)|bc,2 +N2(v0) +N2(v1)
)

.

Case 2. The closed walk of length g + 4 that contains a cycle of length g + 2.
From the proof of Theorem 4.10, the number of CWDCCs in this case is

(g + 2)Ng+2

(

(g + 2)(tc,2 + td,2) + (bc,2 + bd,2) + (|N1(v0)|+ |N1(v1)|)
)

.

�

Now, we find the value Ψg+6(c, d,Bc,d) in the following three lemmas.

Lemma 4.12. Let G be a (c, d)-regular graph. Then we have

|Φ(g, 6)| = gNg

(

((c− 1)2 + (d− 1)2)(c+ d− 2)
[

g + 2

(

g

2
2

)

+ 2

(

g

2
3

)

]

+((c− 1)2 + (d− 1)2)(c+ d)
[

(

g

2
2

)

+ 1
]

+(c− 1)(d− 1)(c+ d− 2)
[

3g + g2 + g

(

g

2
2

)

− 2

(

g

2
3

)

]

+(c+ d)
[

(3cd− c− d) +
g2

4
(c− 1)(d− 1)

])

,
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and

|Λ(g, 6)| = gNg

(

(c+d−4)
[

(
g

2
+1)(c+d−2)2+((

g

2
+1)2+1)(c−1)(d−1)

+

(

g

2
+ 1
2

)

((c− 1)2 + (d− 1)2)
]

+(2cd− 2c− 2d)
[

(c+ d− 1) + (
g

2
+ 1)(c+ d− 2)

]

+(
g

2
+ 2)(c+ d− 2)

[

(c− 2)(d− 1) + (d− 2)(c− 1)
]

+c(c− 2)(d− 1) + d(d− 2)(c− 1)
)

.

Proof. To enumerate the number of CWDCCs in this case, we first investigate
|Φ(g, 6)|. From the Corollary 3.8, we have

|Φ(g, 6)| = gNg

∑

s0+...+sg=3

(bc,2sg + bd,2sg)

g

2
−1
∏

j=0

td,2s2j tc,2s2j+1
.

In our proof, we avoid using gNg in our calculating. Now, consider the following
three subcases:
Case 1. Each sj is zero or three. In the above summation, if sg = 0, then the
number of CWDCCs is

2
g

2
tc,6 + 2

g

2
td,6.

If sg = 3, then the number of CWDCCs in this case is equal to:

bc,6 + bd,6.

Case 2. Each sj is zero, one, or two. Depending on whether sg is zero or not,
the number of CWDCCs is

2

(

g

2
2

)

(tc,2tc,4 + td,2td,4) + 2
g2

4
(tc,2td,4 + tc,4td,2),

and
g

2

(

(bc,4 + bd,4)(tc,2 + td,2) + (bc,2 + bd,2)(tc,4 + td,4)
)

,

respectively.
Case 3. Each sj is zero or one. Again, suppose that sg = 0, then we have three
ones in distinct sj’s. Hence, the number of CWDCCs is equal to

2

(

g

2
3

)

(t3c,2 + t3d,2) + 2

(

g

2
2

)(

g

2
1

)

(t2c,2td,2 + tc,2t
2
d,2).

If sg 6= 0, then sg = 1 and the number of CWDCCs is

(bc,2 + bd,2)
(

(

g

2
2

)

(t2c,2 + t2d,2) + (
g

2
)2tc,2td,2

)

.
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To complete the proof in this case, we find the value |Λ(g, 6)|. By the corollary
4.8, we have

|Λ(g, 6)| = gNg

3
∑

l=1

(|W(v0, l)|+ |W(v1, l)|).

It is enough to find |Λz0
v0
(l)| for 1 ≤ l ≤ 3. Hence, we consider the following three

subcases:
Case a. Suppose that l = 1. Since l is odd, Corollary 4.4 and Lemma 4.5 imply
that

|Λz0
v0
(1)| =

∑

s0+...+sg+2=2

bd,2sg+2

g

2
∏

j=0

td,2s2j tc,2s2j+1
.

If sj ∈ {0, 2}, then the number of CWDCCs in this case is equal to:

(
g

2
+ 1)(tc,4 + td,4) + bd,4.

Now, suppose that sj ∈ {0, 1}. Depending on whether sg+2 is zero or not, the
number of CWDCC’s is

(

g

2
+ 1
2

)

(t2c,2 + t2d,2) + (
g

2
+ 1)2tc,2td,2,

and

(
g

2
+ 1)bd,2(tc,2 + td,2),

respectively.
Case b. Suppose that l = 2. Since l is even, we have

|Λz0
v0
(2)| =

∑

s0+...+sg+4=1

bc,2sg+4

g

2
+1
∏

j=0

tc,2s2jtd,2s2j+1
.

Depending on sj is zero or not, we have the following number as the CWDCCs.

(
g

2
+ 2)(tc,2 + td,2) + bc,2.

Case c. Assume that l = 3. Therefore, by Corollary 4.4 and Lemma 4.5 we have

|Λz0
v0
(3)| =

∑

s0+...+sg+6=0

bd,2sg+6

g

2
+2
∏

j=0

td,2s2j tc,2s2j+1
= 1.

�

Lemma 4.13. Let G be a (c, d)-regular graph. Then the number of CWWCs of

length g + 6 with cycle of length g + 2 is equal to

(g + 2)Ng+2[(g + 2)(c+ d− 2)2 + (c+ d)(c+ d− 1)]

+(g+2)Ng+2

(

2

(

g+2
2
2

)

[(c−1)2+(d−1)2]+2(
g + 2

2
)2(c−1)(d−1)

)

+(g + 2)(
g + 2

2
)Ng+2[(c+ d)(c+ d− 2)]
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+(g+2)Ng+2

(

(
g + 2

2
+1)(c+d−2)(c+d−4)+(c−2)(2d−1)+(d−2)(2c−1)

)

.

Proof. We already computed the values of |Φ(g, 4)| and |Λ(g, 4)| in the case 1 of
the proof of Theorem 4.11. Hence, we have

|Φ(g+2, 4)| = (g+2)Ng+2

(

(g+2)(tc,4+td,4)+(bc,4+bd,4)+2

(

g+2
2
2

)

[t2c,2+t2d,2]

+ 2(
g + 2

2
)2tc,2td,2 +

g + 2

2
(bc,2 + bd,2)(tc,2 + td,2)

)

,

and

|Λ(g + 2, 4)| = (g + 2)Ng+2

(

(
g + 2

2
+ 1)

(

|N1(v0)|+ |N1(v1)|
)

(tc,2 + td,2)

+|N1(v0)|bd,2 + |N1(v1)|bc,2 +N2(v0) +N2(v1)
)

.

�

Lemma 4.14. Let G be a (c, d)-regular graph. Then the number of CWWCs of

length g + 6 with cycle of length g + 4 is equal to

(g + 4)Ng+4(g + 6)(c+ d− 2).

Proof. Since the values |Φ(g, 2)| and |Λ(g, 2)| are known by the proof of Theorem
4.10. Thus,

|Φ(g + 4, 2)| = (g + 4)Ng+4

(

(g + 4)(tc,2 + td,2) + bc,2 + bd,2

)

,

and

|Λ(g + 4, 2)| = (g + 4)Ng+4

(

|N1(v0)|+ |N1(v1)|
)

.

�
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