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A NOTE ON OPTIMAL DEGREE-THREE SPANNERS OF THE SQUARE LATTICE

DAMIEN GALANT AND CÉDRIC PILATTE

Abstract. In this short note, we prove that the degree-three dilation of the square lattice Z
2 is 1 +

√

2. This
disproves a conjecture of Dumitrescu and Ghosh. We give a computer-assisted proof of a local-global property for
the uncountable set of geometric graphs achieving the optimal dilation.

1. Introduction

Let P be a set of points in the Euclidean plane. A
geometric graph G on P is an undirected graph drawn in
the plane whose vertices are the points of P and whose
edges are straight line segments between the correspond-
ing points. We write dG(p, q) for the length of the short-
est path between p and q that uses only edges of G (+∞
if there is no such path). A geometric graph is plane
if no two edges intersect (except possibly at a common
vertex).

We measure the efficiency of a geometric graph G with
a real number, called the dilation (or stretch factor, or
spanning ratio) of G. The dilation of a pair (p, q) of
distinct vertices of G is defined as

dilG(p, q) :=
dG(p, q)

|pq| ,

where |pq| is the Euclidean distance between p and q.
The dilation of G is the largest dilation between two
vertices of G,

dil(G) := sup
p 6=q

dilG(p, q).

In other words, the dilation of G is the least t ≥ 1 such
that, for any p and q in P , the graph distance dG(p, q)
is at most t times the Euclidean distance |pq|.

There has been extensive research on geometric graphs
with low dilation which also satisfy other sparseness
properties. We recall some of these results here, fo-
cussing on the following sparseness properties: being
plane and having small maximum degree. We refer the
reader to the survey by Bose and Smid [4] for more de-
tails and related problems.

For some constant C > 0, the following holds. For any
finite point set P , there is a plane geometric graph on P
with dilation at most C. The current best known con-
stant C is due to Xia [10], who gave a rather elaborate
proof that C = 1.998 works. The previous record was
C = 2, a very elegant result of Chew [5]. On the other
hand, it is known that C must be at least 1.4336 [8]. The

best possible constant C is conjectured to be very close
to this lower bound.

The previous result still holds (for a different value
of C) if we replace the condition of being plane by that
of having maximum degree 3 [6]. By considering points
arranged in a grid, it is readily seen that 3 is the lowest
possible maximum degree for which the result holds.

It is natural to ask whether we can simultaneously re-
quire planarity and small maximum degree. Define the
degree-k dilation of P by

dilk(P ) := inf
∆(G)≤k
G plane

dil(G),

where the infimum is taken over all plane geometric
graphs on P of maximum degree k. Bose et al. [3] were
the first to show the existence of a k (namely k = 23)
such that the degree-k dilation of every finite point set
P is bounded by an absolute constant. A lot of research
has been done to determine the best possible value of k.
Bonichon et al. [2] (and later Kanj et al. [9]) proved that
it is possible to take k = 4. It is a major open problem
to reduce the maximum degree down to 3.

Computing the exact value of dilk(P ) for a concrete
point set P is not easy in general, because the set of
geometric graphs to consider is often very large. Up-
per bounds for the degree-3 dilation of special classes of
point sets have been obtained by Biniaz et al. [1]. Let
us mention their upper bound of 3

√
2 for the degree-3

dilation of non-uniform rectangular grids.
The square lattice Z

2 and the hexagonal lattice Λ∆ =
Z⊕eiπ/3Z are among the few nontrivial examples of point
sets for which the values dilk(·) are known. The following
values were obtained by Dumitrescu and Ghosh [7].

dilk(Λ) k = 3 k = 4 k = 5 k ≥ 6

Λ = Z
2 ∗

√
2

√
2

√
2

Λ = Λ∆ 1 +
√
3 2 2 2√

3

For dil3(Z
2), Dumitrescu and Ghosh showed that

1 +
√
2 ≤ dil3(Z

2) ≤ (7 + 5
√
2)/
√
29. They later gave
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the improved upper bound dil3(Z
2) ≤ (3 + 2

√
2)/
√
5,

which they conjectured to be tight [7]. We disprove this
conjecture by giving examples of degree-3 plane geomet-
ric graphs of Z2 with dilation 1 +

√
2.

The lower bound dil3(Z
2) ≥ 1 +

√
2 is trivial. Indeed,

let G be a geometric graph on Z
2 of maximum degree 3.

Let p be an arbitrary point in Z
2 and let q1, . . . , q4 be the

points in Z
2 with |pqi| = 1 (see Fig. 1). Since p has de-

gree a most 3, there is some 1 ≤ i ≤ 4 with dG(p, qi) > 1,

and thus dil(G) ≥ dilG(p, qi) = dG(p, qi) ≥ 1 +
√
2. We

will see below that there do exist graphs G which match
this lower bound.

p

q1

q2

q3

q4

Figure 1. Lower bound on the degree-3
dilation of Z2.

Definition 1.1. Let M be the set of optimal graphs,
i.e. the geometric graphs on Z

2 of maximum degree 3
which have dilation 1 +

√
2.

Definition 1.2. We also define the set Mloc of lo-
cally optimal graphs: the geometric graphs G on Z

2 of
maximum degree 3 which satisfy the dilation constraint
dilG(p, q) ≤ 1 +

√
2 for every pair of vertices (p, q) with

|pq| ≤
√
5.

We claim that the geometric graphs represented in
Fig. 2 are optimal. Since they are periodic, it is easy to

check that they are locally optimal. That they indeed
have dilation 1 +

√
2 directly follows from the following

result.

Theorem 1.3 (“Local-global principle”). Mloc =M.

The goal of this paper is to study the class of optimal
graphs. Our main result is Theorem 1.3, which char-
acterizes the optimal graphs in terms of their structure
in every ball of radius

√
5. It will be proved in Sec-

tion 2, assuming a key lemma, Lemma 2.2. We will give
a computer-assisted proof of Lemma 2.2 in Section 3.

2. Degree-3 dilation of the square lattice

We start this section by showing that the set of (lo-
cally) optimal graphs is very large. This seems to in-
dicate that it might be difficult to give a fully explicit
description of the set of optimal graphs, and thus makes
Theorem 1.3 more interesting.

Proposition 2.1. There are uncountably many locally
optimal geometric graphs.

Proof. For every countable sequence (bi)i∈N of zeroes
and ones, we construct a geometric graph on Z

2 as fol-
lows. Consider the periodic geometric graph in solid lines
shown in Fig. 3, and let (Ci)i∈N be an enumeration of
the dashed circles. In the i-th circle, we add two vertical
segments if bi = 1 and two horizontal ones if bi = 0.

We obtain 2ℵ0 degree-3 geometric graphs in this way.
Verifying that these graphs are locally optimal is a fi-
nite check by “almost periodicity”. This verification is
performed by the python file proposition_2_1.py. �

Figure 2. Examples of periodic degree-3 spanners of Z2 with dilation 1 +
√
2.
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Figure 3. Uncountably many locally
optimal geometric graphs.

Assuming Theorem 1.3, the geometric graphs we con-
structed in the previous proof have dilation 1 +

√
2.

We state the following key fact, for which we will give
a computer-assisted proof in Section 3.

Lemma 2.2 (“Dilation boost”). Let G ∈ Mloc. If

p, q ∈ Z
2 are such that |pq| =

√
5, then dG(p, q) ≤ 3+

√
2.

Remark 2.3. The definition of Mloc only gives, a pri-
ori, that dG(p, q) ≤ (1 +

√
2)
√
5 ≈ 5.40. Lemma 2.2

improves this to dG(p, q) ≤ 3 +
√
2 ≈ 4.41.

Lemma 2.4. Define an undirected weighted (non-
geometric) graph H with vertex set Z

2 as follows: for
a, b ∈ Z

2,

• if |ab| ∈ {1,
√
2}, then there is an edge between a

and b of weight (1 +
√
2)|ab|;

• if |ab| =
√
5, then there is an edge between a and

b of weight 3 +
√
2;

• otherwise, there is no edge between a and b.

Then, for all p, q ∈ Z
2, we have

dH(p, q) ≤ (1 +
√
2)|pq|. (1)

Proof. By translation invariance of H, we may assume
that p = (0, 0) in Eq. (1). The python file lemma_2_4.py
checks that Eq. (1) holds for q ∈ Z

2 with |pq| < 5
√
2.

Suppose by contradiction that Eq. (1) does not hold
for some q ∈ Z

2. Choose such a point q with |pq| min-
imal. By the symmetries of H, we may assume that q
lies in the first octant, so q = (x, y) with 5 ≤ y ≤ x.

We know that the point r = (x − 2, y − 1) satisfies
Eq. (1), since |pr| < |pq|. Therefore,

dH(p, q) ≤ dH(p, r) + dH(r, q)

≤ (1 +
√
2)
√

(x− 2)2 + (y − 1)2 + (3 +
√
2)

≤ (1 +
√
2)
√

x2 + y2,

where the last inequality is true in the region 5 ≤ y ≤ x
by elementary calculus. This contradicts our assumption
that q does not satisfy Eq. (1). �

Theorem 1.3 (“Local-global principle”). Mloc =M.

Proof of Theorem 1.3, assuming Lemma 2.2. Let G be
a locally optimal graph and let H be the weighted
graph defined in Lemma 2.4. By definition of Mloc

and Lemma 2.2, we see that dG(p, q) ≤ dH(p, q) for
every p, q ∈ Z

2. By Lemma 2.4, we conclude that
dG(p, q) ≤ (1 +

√
2)|pq| for all p, q ∈ Z

2, i.e. G ∈ M. �

3. Proof of the dilation boost

This section is devoted to the proof of Lemma 2.2.
We start with an easy observation: there are only short
edges in a locally optimal graph.

Lemma 3.1. The edges of every G ∈ Mloc are of length
1 or

√
2.

Proof. Suppose that there is an edge in G of length
greater than

√
2. Without loss of generality, this edge

may be assumed to have endpoints a = (0, 0) and
b = (i, j) for some 1 ≤ i < j.

Assume for the moment that j > 2. Consider the
points p = (0, 1) and q = (1, 1). Since G ∈ Mloc, we
need to have dG(p, q) ≤ 1+

√
2. As G is plane, this forces

the segments pa and aq to be edges of G. However, we
also need to have dG(a, r) ≤ 1 +

√
2, where r = (0,−1).

This is not possible since a already has degree 3.
If j = 2, i.e. b = (1, 2), the same reasoning applies,

exchanging the roles of a and b if necessary. �

a

b

p q

r
?

Figure 4. Proof of Lemma 3.1.
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The previous lemma says that some “edge patterns”,
namely edges of length greater than

√
2, cannot appear

in a locally optimal graph. In Lemma 3.2, we give two
more such patterns. This time, the proof is computer-
assisted.

Lemma 3.2. Let G ∈ Mloc and let H1,H2 be the edge
configurations in Fig. 5. Then, neither H1 nor H2 (nor
any translation, rotation or reflection of one of these two
configurations) is a subgraph of G.

H1 H2

Figure 5. Two configurations that can-
not appear in a locally optimal graph.

Suppose that we wish to prove that a given set S of
edges on Z

2 is never contained in a locally optimal graph
(for example, S = H1 or H2). We start with some defi-
nitions.

Definition 3.3. A close pair is a pair (p, q) of points
in Z

2 such that |pq| ≤
√
5.

Definition 3.4. Let (p, q) be a close pair, and let
γ = (v1v2, v2v3, . . . , vn−1vn) be a path between v1 = p
and vn = q (each intermediate vertex vi is in Z

2, the
edges vivi+1 are not necessarily in S). We say that γ
is an S-admissible path between p and q if the following
conditions are verified:

• each edge vivi+1 has length 1 or
√
2;

• (Z2, S ∪ γ) is a plane geometric graph of maxi-
mum degree at most 3;
• the length of γ is at most (1 +

√
2)|pq|.

For any close pair (p, q), exactly one of the following
cases must occur.

(1) Contradiction. There is no S-admissible path
between p and q.

(2) Satisfaction. There is at least one S-
admissible path between p and q which is entirely
contained in S.

(3) Deduction. There is exactly one S-admissible
path between p and q, and this path is not en-
tirely contained in S.

(4) Exploration. There are several S-admissible
paths between p and q, none of which is entirely
contained in S.

With this terminology, we can now present the back-
tracking algorithm that we will use. If G is a locally
optimal graph containing S, every close pair must have
an S-admissible path γ consisting of edges of G. Using
this fact we can, starting from S, try all possible ways of
reconstructing G and hope to eventually find a contra-
diction in all cases. More precisely, consider Algorithm 1.

Algorithm 1 Goal: prove that a set S0 of edges cannot
be contained in a locally optimal graph

Input: S0, a finite set of edges

1: function Expand(S)
2: if we detect at least one close pair

with Contradiction then

3: return

4: else if we detect at least one close pair
with Deduction then

5: (p, q) ← any close pair with Deduction
6: γ ← the S-admissible path between p and q
7: Expand(S ∪ γ)
8: else

9: (p, q) ← any close pair
10: L ← {S-admissible paths between p and q}
11: for γ in L do

12: Expand(S ∪ γ)
13: end for

14: end if

15: end function

16:

17: Expand(S0) ⊲ Terminates ⇒ valid proof

Remark 3.5. On lines [2:] and [4:] of Algorithm 1, by
“we detect”, it is meant that the algorithm spots a close
pair with the desired property, but it might not find any
even if one exists.

Claim 3.6. If Algorithm 1 terminates with input S, then
S cannot be contained in a locally optimal graph.

Proof of Claim 3.6. Suppose by contradiction that Algo-
rithm 1 terminates for a finite set of edges S0 which is
contained in a locally optimal graph G.

In the execution of Algorithm 1, there is a finite num-
ber of calls to Expand. Consider Expand(S), the last
of these calls where the argument S is a (finite) set of
edges of G.

Since G ∈ Mloc, any close pair (p, q) has at least one
S-admissible path γp,q consisting of edges of G. In par-
ticular, there is no close pair with Contradiction, and
either lines [5-7:] or [9-13:] will be executed.
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Let (p, q) be the pair chosen on line [5:] or [9:]. By
construction, there will be a call to Expand(S ∪γp,q) on
line [7:] or [12:]. However, S ∪ γp,q is a finite set of edges
of G, contradicting the assumption on S. �

Remark 3.7. Claim 3.6 holds regardless of how the
points p and q are chosen on lines [5:] and [9:]. In prac-
tice, on line [9:], it is important to choose the points p
and q in a such a way that the algorithm terminates in
a reasonable amount of time (or terminates at all1).

Proof of Lemma 3.2. We first apply (the implemented
version of) Algorithm 1 with input S0 = H1 and see that
the algorithm terminates. By Claim 3.6, Lemma 3.2 is
proved for H1.

Having just proved that H1 cannot be contained in
a locally optimal graph, we may use a slightly modi-
fied method for H2. We apply Algorithm 1 with input
S0 = H2 after inserting the following test between lines
[1:] and [2:] of Algorithm 1.

+1: if we detect a copy of H1 in S then

+2: return

+3: end if

Again, this modified version of Algorithm 1 termi-
nates. Thus Lemma 3.2 is proved for H2. �

A more general version of Algorithm 1 is implemented
in the Python file proof.py. Further explanations will
be given after Algorithm 2.

For the remainder of this section, fix, by contradiction,
a locally optimal graph G that violates the conclusion of
Lemma 2.2. There exist u, v ∈ Z

2 with |uv| =
√
5 that

satisfy dG(u, v) > 3+
√
2. Without loss of generality, we

may assume that u = (0, 0) and v = (1, 2).

Lemma 3.8. Any shortest path in G between u and v
must be, up to symmetry, one of the four possibilities
represented in Fig. 6.

Proof. Let P be a shortest path between u and v. By
assumption, 3 +

√
2 < length(P ) ≤

√
5(1 +

√
2). This

leaves only a small number of possibilities for P , which
are enumerated by the Python program lemma_3_8.py.

Not all paths whose lengths are in this range can ac-
tually be shortest paths between u and v. Some paths
can be discarded using the constraint dilG(x, y) ≤ 1+

√
2

not only for u and v but also for intermediate vertices in
the path P (execute lemma_3_8.py for the details). �

u

v
P1

u

v
P2

u

v
P3

u

v
P4

Figure 6. List of the possible shortest
paths between u and v, up to symmetry.

We can now adapt Algorithm 1 to give a computer-
assisted proof of the dilation boost.

Algorithm 2 Goal: prove that there is no G ∈Mloc

that contains a set S0 of edges and such that a certain
constraint of the form dG(u, v) ≥ c is satisfied

Input: S0, a finite set of edges
two points u, v ∈ Z

2 and a constant c > 0

1: function Expand(S)
2: if we detect that dG(u, v) < c

for all G ∈ Mloc containing S then

3: return

4: else if we detect a copy of H1 or H2 in S then

5: return

6: else if we detect at least one close pair
with Contradiction then

7: return

8: else if we detect at least one close pair
with Deduction then

9: (p, q) ← any close pair with Deduction
10: γ ← the S-admissible path between p and q
11: Expand(S ∪ γ)
12: else

13: (p, q) ← any close pair
14: L ← {S-admissible paths between p and q}
15: for γ in L do

16: Expand(S ∪ γ)
17: end for

18: end if

19: end function

20:

21: Expand(S0) ⊲ Terminates ⇒ valid proof

1It may be the case that, given two different ways of choosing the pairs (p, q) in Algorithm 1, the algorithm terminates for one but
not for the other (with the same input S0 in both cases). However, if it terminates for some choices of pairs (p, q), we are certain that
S0 cannot be contained in a locally optimal graph.
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Proof of Lemma 2.2. Let P be a shortest path between
u and v. By Lemma 3.8, we may suppose that P is one
of P1, . . . , P4. Suppose P = Pi for some 1 ≤ i ≤ 4. Let
ci = length(Pi).

We want to prove that there is no locally optimal
graph G containing Pi such that dG(u, v) ≥ ci. We
can use the same method as in the proof of Lemma 3.2,
adding the constraint dG(u, v) ≥ ci to the algorithm.

Concretely, we execute Algorithm 2 with S0 = Pi,
u = (0, 0), v = (1, 2) and c = ci, and we do so for
1 ≤ i ≤ 4. In each case, we observe that the algorithm
terminates.

Algorithms 1 and 2 have a common implementation
in the Python file proof.py. The file interface.py al-
lows the reader to visualize the proof in real time, while
launch.py contains the input data.

Please check README.md to see how to execute the dif-
ferent parts of the proof with customized visualization
options. Implementation details and configuration in-
structions may also be found in the README.md file.

All files can be found on GitHub at https://git.

io/JTiCD or on arXiv at https://www.arxiv.org/src/
2010.13473/anc. �

(1) (2)

(3)

u

v

a b

(4)

Figure 7. Graphical Interface examples.

We end this section by explaining the visualization
produced by the interface.py file. Figure 7 shows an
example for each type of behavior. The segments in black
form the current edge set S.

(1) Contradiction: there is no S-admissible path
between the two endpoints of the red string. This
corresponds to line [6:] of Algorithm 2.

(2) Deduction: the path represented in green is
the only S-admissible path between the two end-
points (line [8:] of Algorithm 2).

(3) We detect a (rotated) copy of H1 in S (line [4:]).

(4) The condition on line [2:] of Algorithm 2 is veri-
fied with c = 5. Indeed, let G be a locally opti-
mal graph containing S. There is already a path
(through a) between u and b in S of length 2,
and dG(b, v) ≤ 1 +

√
2 as G ∈ Mloc. Thus, we

must have dG(u, v) ≤ 3 +
√
2 < 5.
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