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Abstract. For a simple connected graphG of order n, the normalized Laplacian is a square matrix

of order n, defined as L(G) = D(G)−
1

2L(G)D(G)−
1

2 , where D(G)−
1

2 is the diagonal matrix whose

i-th diagonal entry is 1√
di
. In this article, we find the normalized Laplacian eigenvalues of the

joined union of regular graphs in terms of the adjacency eigenvalues and the eigenvalues of

quotient matrix associated with graph G. For a finite group G, the power graph P(G) of a group

G is defined as the simple graph in which two distinct vertices are joined by an edge if and only

if one is the power of other. As a consequence of the joined union of graphs, we investigate the

normalized Laplacian eigenvalues of power graphs of finite cyclic group Zn.

Keywords: Adjacency matrix, normalized Laplacian matrix, power graphs, finite cyclic groups, Euler’s totient

function
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1 Introduction

A simple graph is denoted by G(V (G), E(G)), where V (G) = {v1, v2, . . . , vn} is its vertex set and

E(G) is its edge set. The order of G is n = |V (G)| and size is m = |E(G)|. The neighborhood
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of a vertex v in G, denoted by N(v), is the set of all those vertices of G which are adjacent to

v. The degree dG(v) (or dv) of a vertex v is the number of vertices in G that are incident to v.

The adjacency matrix, denoted by A(G), is defined by

A(G) =







1 if vi ∼ vj ,

0 otherwise,

where vi ∼ vj denotes vi is adjacent to vj in G. The eigenvalues of A(G) are denoted by λi

and are called the adjacency eigenvalues of G. Let D(G) = diag(d1, d2, . . . , dn) be the diagonal

matrix of vertex degrees di = dG(vi), i = 1, 2, . . . , n, associated to G. The real symmetric and

positive semi-definite matrix L(G) = D(G)− A(G) is the Laplacian matrix and its eigenvalues

are known as Laplacian eigenvalues of G. More literature about adjacency and Laplacian matrix

can be found in [11].

The normalized Laplacian matrix of a graph G, denoted by L(G), is defined as

L(G) =







1 if vi = vj and vi 6= 0,
−1

√
dvidvj

if vi ∼ vj ,

0 otherwise.

This matrix was introduced by Chung [7] to study the random walks of G and is equivalently

defined as L(G) = D− 1

2L(G)D− 1

2 , where D− 1

2 is the diagonal matrix whose i-th diagonal entry

is 1√
di
. Clearly, L(G) is real symmetric and positive semi-definite matrix. Its eigenvalues are real

and are known as normalized Laplacian eigenvalues. We denote normalized Laplacian eigenvalues

by λi(L) and order them as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) = 2. In certain situations,

normalized Laplacian is a natural tool that works better than adjacency and Laplacian matrices.

More literature about L(G) can be seen in [5, 12, 13, 25] and the references therein.

As usual, we denote the complete graph, the bipartite graphs and the cycle graph by

Kn, Ka,b, Cn, respectively. For other notations and terminology, we refer to [11, 22].

The rest of the paper is organized as follows. In Section 2, we obtain the normalized Laplacian

eigenvalues of the joined union of regular graphs G1, G2, . . . , Gn in terms of their adjacency

eigenvalues and the eigenvalues of the quotient matrix associated with the joined union. In

Section 3, we discuss the normalized Laplacian eigenvalues of the power graphs of the finite

cyclic groups Zn.
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2 Normalized Laplacian eigenvalues of the joined union

of graphs

Consider the matrix

M =










m1,1 m1,2 · · · m1,s

m2,1 m2,2 · · · m2,s

...
...

. . .
...

ms,1 ms,2 · · · ms,s










n×n

,

whose rows and columns are partitioned according to a partition P = {P1, P2, . . . , Pm} of the

set X = {1, 2, . . . , n}. The quotient matrix Q of the matrix M is the s× s matrix whose entries

are the average row sums of the blocks mi,j. The partition P is said to be equitable if each

block mi,j of M has constant row (and column) sum and in this case the matrix Q is called as

equitable quotient matrix. In general, the eigenvalues of Q interlace the eigenvalues of M . In

case the partition is equitable, we have following lemma.

Lemma 2.1 [3, 11] If the partition P of X of matrix M is equitable, then each eigenvalue of

Q is an eigenvalue of M.

Let G(V,E) be a graph of order n and Gi(Vi, Ei) be graphs of order ni, where i = 1, . . . , n.

The joined union [24] G[G1, . . . , Gn] is the graph H(W,F ) with

W =

n⋃

i=1

Vi and F =

n⋃

i=1

Ei

⋃( ⋃

{vi,vj}∈E
Vi × Vj

)

.

Equivalently, the joined union G[G1, . . . , Gn] is obtained by joining edges from each vertex of Gi

to every vertex of Gj whenever vi ∼ vj in G. Thus, the usual join G1▽G2 is a particular case of

the joined union K2[G1, G2].

In [26], the authors discussed the normalized Laplacian eigenvalues of G[G1, G2, . . . , Gn] in

terms of the normalized Laplacian eigenvalues of Gi’s and the eigenvalues of another matrix

using the technique of Cardosa et. al. [10]. Using a different approach, we will discuss the

normalized Laplacian eigenvalues of G[G1, G2, . . . , Gn] in terms of the adjacency eigenvalues of

the graphs G1, G2, . . . , Gn and the eigenvalues of the quotient matrix, where each of the Gi is

an ri regular graph.
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Theorem 2.2 Let G be a graph of order n and size m. Let Gi be ri regular graphs of order

ni having adjacency eigenvalues λi1 = ri ≥ λi2 ≥ . . . ≥ λini
, where i = 1, 2, . . . , n. Then the

normalized Laplacian eigenvalues of the graph G[G1, . . . , Gn] are given by

1− 1

ri + αi

λik(Gi), for i = 1, . . . , n and k = 2, 3, . . . , ni,

where αi =
∑

vj∈NG(vi)

ni is the sum of the orders of the graphs Gj , j 6= i which correspond to the

neighbours of vertex vi ∈ G. The remaining n eigenvalues are given by the equitable quotient

matrix M of (2.2).

Proof. Let V (G) = {v1, . . . , vn} be the vertex set of G and let V (Gi) = {vi1, . . . , vini
} be the

vertex set of the graph Gi, for i = 1, 2, . . . , n. Let H = G[G1, . . . , Gn] be the joined union of

ri regular graphs Gi, for i = 1, 2, . . . , n. It is clear that the order of H is N =
n∑

i=1

ni. Since

degree of each vertex vij ∈ V (H), is degree inside Gi and the sum of orders of Gj ’s, j 6= i, which

correspond to the neighbours of the vertex vi in G, where 1 ≤ i ≤ n and 1 ≤ j ≤ ni, therefore,

for each vij ∈ V (Gi), we have

dH(vij) = ri +
∑

vj∈NG(vi)

nj = ri + αi, (2.1)

where αi =
∑

vj∈NG(vi)

nj . Under suitable labelling of the vertices in H , the normalized Laplacian

matrix of H can be written as

L(H) =










g1 a(v1, v2) . . . a(v1, vn)

a(v2, v1) g2 . . . a(v2, vn)
...

...
. . .

...

a(vn, v1) a(vn, v2) . . . gn










,

where, for i = 1, 2, . . . , n,

gi = Ini
− 1

ri + αi

A(Gi) and a(vi, vj) =







1
√

(αi + ri)(αj + rj)
Jni×nj

, if vi ∼ vj in G

0ni×nj
, otherwise.

A(Gi) is the adjacency matrix of Gi, Jni×nj
is the matrix having all entries 1, 0ni×nj

is the zero

matrix of order ni × nj and Ini
is the identity matrix of order ni.

As each Gi is an ri regular graph, so the all one vector eni
= (1, 1, . . . , 1
︸ ︷︷ ︸

ni

)T is the eigenvector
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of the adjacency matrix A(Gi) corresponding to the eigenvalue ri and all other eigenvectors are

orthogonal to eni
. Let λik, 2 ≤ k ≤ ni, be any eigenvalue of A(Gi) with the corresponding

eigenvector X = (xi1, xi2, . . . , xini
)T satisfying eTni

X = 0. Clearly, the column vector X can be

regarded as a function defined on V (Gi) assigning the vertex vij to xij , that is, X(vij) = xij for

i = 1, 2, . . . , n and j = 1, 2, . . . , ni. Now, consider the vector Y = (y1, y2, . . . , yn)
T , where

yj =

{

xij if vij ∈ V (Gi)

0 otherwise.

Since, eTni
X = 0 and coordinates of the vector Y corresponding to vertices in ∪j 6=iVj of H are

zeros, we have

L(H)Y =



















0
...

0

X − 1

ri + αi

λikX

0
...

0



















=

(

1− 1

ri + αi

λik

)

Y.

This shows that Y is an eigenvector of L(H) corresponding to the eigenvalue 1− 1

ri + αi

λik, for

every eigenvalue λik, 2 ≤ k ≤ ni, of A(Gi). In this way, we have obtained
n∑

i=1

ni − n = N − n

eigenvalues. The remaining n normalized Laplacian eigenvalues of H are the eigenvalues of the

equitable quotient matrix

M =














α1

α1 + r1

−n2a12
√

(r1 + α1)(r2 + α2)
. . .

−nna1n
√

(r1 + α1)(rn + αn)−n1a21
√

(r2 + α2)(r1 + α1)

α2

α2 + r2
. . .

−nna2n
√

(r2 + α2)(rn + αn)
...

...
. . .

...
−n1an1

√

(rn + αn)(r1 + α1)

−n2an2
√

(rn + αn)(r2 + α2)
. . .

αn

αn + rn














, (2.2)

where, for i 6= j,

aij =







1, vi ∼ vj

0, otherwise.
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�

The next observation is a consequence of Theorem 2.2 and gives the normalized Laplacian

eigenvalues of Kn1,n2,...,np
.

Corollary 2.3 The normalized Laplacian eigenvalues of the complete p-partite graphKn1,n2,...,np
=

Kp[Kn1
, Kn2

, . . . , Knp
] with N =

p
∑

i=1

ni consists of the eigenvalue 1 with multiplicity N − p and

the remaining p eigenvalues are given by the matrix













1
−n2√
α1α2

. . .
−np√
α1αp

−n1√
α2α1

1 . . .
−np√
α2αp

...
...

. . .
...

−n1√
αpα2

−n2√
αpα2

. . . 1













.

Proof. This follows from Theorem 2.2, by taking Gi = Ki and λik(Gi) = 0 for each i and each

k. �

In particular, if partite sets are of equal size, say n1 = n2 = · · · = np = t, then we have the

following observation.

Corollary 2.4 Let G = Kt,t,...,t be a complete p-partite graph of order N = pt. Then the nor-

malized Laplacian eigenvalues of G consists of the eigenvalue 1 with multiplicity N − p, the

eigenvalue
p

p− 1
with multiplicity p− 1 and the simple eigenvalue 0.

Proof. By Theorem 2.2, we have αi = t(p − 1), for i = 1, 2, . . . , p. Also, by Corollary 2.3, we

see that 1 is an eigenvalue with multiplicity pt− p and other eigenvalues are given by

Mp =













1
−1

p− 1
. . .

−1

p− 1
−1

p− 1
1 . . .

−1

p− 1
...

...
. . .

...
−1

p− 1

−1

p− 1
. . . 1













.

By simple calculations, we see that the normalized Laplacian eigenvalues of matrix Mp consists

of the eigenvalue
p

p− 1
with multiplicity p− 1 and the simple eigenvalue 0. �

Another consequence of Theorem 2.2, gives the normalized Laplacian eigenvalues of the join

of two regular graphs.
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Corollary 2.5 Let Gi be an ri regular graph of order ni for i = 1, 2. Let λik, 2 ≤ k ≤ ni, i =

1, 2 be the adjacency eigenvalues of Gi. Then the normalized Laplacian eigenvalues of G =

G1▽G2 consists of the eigenvalue 1 − 1

r1 + n2
λ1kA(G1), k = 2, . . . , n1, the eigenvalues 1 −

1

r2 + n1
λ2kA(G1), k = 2, . . . , n2 and the remaining two eigenvalues are given by the quotient

matrix 





n2

r1 + n2

−n2
√

(r1 + n2)(r2 + n1)−n1
√

(r1 + n2)(r2 + n1)

n1

r2 + n1







. (2.3)

Since G1 and G2 are regular graphs, we observe that the two eigenvalues of matrix (2.3) are

the largest and the smallest normalized Laplacian eigenvalue of G = G1▽G2.

Proposition 2.6 The largest and the smallest normalized Laplacian eigenvalues of G1▽G2 are

the eigenvalues of the matrix (2.3).

Proposition 2.7 (i) The normalized Laplacian eigenvalues of the complete bipartite graph

Ka,b = Ka▽Kb are
{
0, 1[a+b−2], 2

}
.

(ii) The normalized Laplacian eigenvalues of the complete split graph CSω,n−ω = Kω▽Kn−ω,

with clique number ω and independence number n− ω are given by

{

0,

(
n

n− 1

)[ω−1]

,
2n− ω + 1

n− 1

}

.

(iii) The normalized Laplacian eigenvalues of the cone graph Ca,b = Ca▽Kb consists of the

eigenvalues 1 − 1

2 + b
2 cos

(
2πk
n

)
, where k = 2, . . . , n − 1, the simple eigenvalues 0 and

2b+ 2

b+ 2
.

(iv) The normalized Laplacian eigenvalues of the wheel graph Wn = Cn−1▽K1 consists of the

eigenvalues 1− 1
3
2 cos

(
2πk
m

)
, where k = 2, . . . , n− 2, and the simple eigenvalues

{

0,
4

3

}

.

Proof. (i). This follows from Corollary 2.5, by taking n1 = a, n2 = b, r1 = r2 = 0 and λ1k = 0,

for k = 2, . . . , a and λ2k = 0 for each k = 2, . . . , b.

(ii). We recall that the adjacency spectrum of Kω is {ω − 1,−1(ω−1)}. Now, the result follows

from Corollary 2.5 by taking n1 = ω, n2 = n− ω, r1 = ω − 1, r2 = 0, λ1k = −1, for k = 2, . . . , ω
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and λ2k = 0 for k = 2, 3, . . . , n− ω.

(iii). Since adjacency spectrum of Cn is
{
2 cos

(
2πk
n

)
: k = 1, 2, . . . , n

}
, by taking n1 = a, n2 =

b, r1 = 2, r2 = 0 and λ1k = 2 cos
(
2πi
m

)
for k = 2, 3, . . . , a − 1 and λ2,k for k = 2, . . . , b − 1 in

Corollary 2.5, we get the required eigenvalues.

(iv). This is a special case of part (iii) with a = n− 1 and b = 1. �

A friendship graph Fn is a graph of order 2n+1, obtained by joining K1 with n copies of K2,

that is, Fn = K1▽(nK2) = K1,n[K1, K2, K2, . . . , K2
︸ ︷︷ ︸

n

], where K1 corresponds to the root vertex

(vertex of degree greater than one) in K1,n. In particular, replacing some of K2’s by K1’s in Fn

we get a firefly type graph, denoted by Fp,n−p and written as

Fp,n−p = K1,n[K1, K1, K1, . . . , K1
︸ ︷︷ ︸

p

K2, K2, . . . , K2
︸ ︷︷ ︸

n−p

].

A generalized or multi-step wheel network Wa,b is a graph derived from a copies of Cb and K1,

in such a way that all the vertices of each Cb are adjacent to K1. Its order is ab+ 1 and can be

written as Wa,b = K1▽(aCb) = K1,a[K1, Cb, . . . , Cb
︸ ︷︷ ︸

a

].

The normalized Laplacian eigenvalues of the friendship graph Fn, the firefly type graph Fp,n−p

and Wa,b are given by the following.

Proposition 2.8 (i) The normalized Laplacian eigenvalues of Fn are

{

0,

(
1

2

)n−1

,

(
3

2

)n+1}

.

(ii) The normalized Laplacian eigenvalues of Fp,n−p are

{

0,

(
1

2

)[n−p−1]

, 1[p−1],

(
3

2

)[n−p]

,
5
√
2n− p±√

2n+ 7p

4
√
2n− p

}

.

(iii) The normalized Laplacian eigenvalues of Wa,b consists of the eigenvalues 0, the eigenvalue
4

3
and the eigenvalues 1− 2

3
cos

(
2πk

b

)

, for k = 2, . . . , b.

Proof. (i). By Theorem 2.2 and the definition of Fn, we have

α1 = 2n, α2 = · · · = αn+1 = 1 and r1 = 0, r2 = · · · = rn+1 = 1.
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So, by Theorem 2.2, we see that
3

2
is the normalized Laplacian eigenvalues of Fn with multiplicity

n. The remaining eigenvalues are given by the block matrix

















1
−1√
n

. . .
−1√
n

−1√
n

−1

2
√
n

1

2
. . . 0 0

...
...

. . .
...

...
−1

2
√
n

0 . . .
1

2
0

−1

2
√
n

0 . . . 0
1

2

















. (2.4)

Clearly,
1

2
is the normalized laplacian eigenvalue of (2.4) with multiplicity n−1 and the remaining

two eigenvalues of block matrix (2.4) are given by the quotient matrix





1 −n√
n

−1

2
√
n

1

2



 .

(ii). Since α1 = p + 2(n − p) = 2n − p and α2 = · · · = α2n+1−p = 1, so by Theorem 2.2, with

r1 = · · · = rp+1 = 0, rp+2 = · · · = r2n+1−p = 1, we see that
3

2
is the normalized Laplacian

eigenvalue of Fp,n−p with multiplicity n − p. The other normalized Laplacian eigenvalues of

Fp,n−p are given by the block matrix
























1
−1√
2n− p

. . .
−1√
2n− p

−2
√

2(2n− p)
. . .

−2
√

2(2n− p)
−1√
2n− p

1 . . . 0 0 . . . 0

...
...

. . .
...

... . . .
...

−1√
2n− p

0 . . . 1 0 . . . 0

−2
√

2(2n− p)
0 . . . 0

1

2
. . . 0

...
... . . .

...
...

. . .
...

−2
√

2(2n− p)
0 . . . 0 0 . . .

1

2
























. (2.5)

By simple calculations, 1 and
1

2
are the normalized Laplacian eigenvalues of (2.5) and the
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remaining eigenvalues of block matrix (2.5) are given by the quotient matrix











1
−p√
2n− p

−2(n− p)
√

2(2n− p)
−1√
2n− p

1 0

−1
√

2(2n− p)
0

1

2











. (2.6)

Now, it is easy to see that 0 and
5
√
2n− p±√

2n+ 7p

4
√
2n− p

are the normalized Laplacian eigenvalues

of quotient matrix (2.6).

(iii). As in part (iii) of Proposition 2.7, we see that 1− 2

3
cos

(
2πk

b

)

, for k = 2, . . . , b. are the

normalized Laplacian eigenvalues of Wa,b. The other eigenvalues are given by the block matrix

















1
−b√
3ab

. . .
−b√
3ab

−b√
3ab

−1√
3ab

1

3
. . . 0 0

...
...

. . .
...

...
−1√
3ab

0 . . .
1

3
0

−1√
3ab

0 . . . 0
1

3

















.

Now, as in part (i),

{

0,

(
1

3

)a−1

,
4

3

}

are the remaining normalized Laplacian eigenvalues of

Wa,b. �

3 Normalized Laplacian eigenvalues of the power graphs

of cyclic group Zn

In this section, we consider the power graphs of finite cyclic group Zn. As an application to

Theorem 2.2 and its consequences obtained in Section 2, we determine the normalized Laplacian

eigenvalues of power graph of Zn.

All groups are assumed to be finite and every cyclic group of order n is taken as isomorphic

copy of integral additive modulo group Zn with identity denoted by 0. Let G be a finite group

of order n with identity e. The power graph of group G, denoted by P(G), is the simple graph

with vertex set as the elements of group G and two distinct vertices x, y ∈ G are adjacent if and
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only if one is the positive power of the other, that is, xi = y or yj = x, for positive integers i, j

with 2 ≤ i, j ≤ n. These graphs were introduced in [16], see also [8]. Such graphs have valuable

applications and are related to automata theory [17], besides being useful in characterizing finite

groups. We let U∗
n = {x ∈ Zn : (x, n) = 1} ∪ {0}, where (x, n) denotes greatest common divisor

of x and n. Our other group theory notations are standard and can be taken from [20]. More

work on power graphs can be seen in [1, 4, 8, 9, 18] and the references therein.

The adjacency spectrum, the Laplacian and the signless Laplacian spectrum of power graphs

of finite cyclic and dihedral groups have been investigated in [2, 6, 15, 19, 21]. The normalized

Laplacian eigenvalues of power graphs of certain finite groups were studied in [14].

Let n be a positive integer and d divides n, written as d|n. The divisor d is the proper

divisor of n, if 1 < d < n. Let Gn be a simple graph with vertex set as the proper divisor set

{di : 1, n 6= di|n, 1 ≤ i ≤ t} and edge set {didj : di|dj, 1 ≤ i < j ≤ t}, for 1 ≤ i < j ≤ t. If

the canonical decomposition of n is n = pn1

1 pn2

2 . . . pnr
r , where r, n1, n2, . . . , nr are positive integers

and p1, p2, . . . , pr are distinct prime numbers, then the number of divisors of n are
r∏

i=1

(ni+1). So

the order of graph Gn is |V (Gn)| =
r∏

i=1

(ni + 1)− 2. Also, Gn is a connected graph [23], provided

n is neither a prime power nor the product of two distinct primes. In [18], Gn is used as the

underlying graph for studying the power graph of finite cyclic group Zn and it has been shown

that for each proper divisor di of n, P(Zn) has a complete subgraph of order φ(di).

The following theorem shows that
n

n− 1
is always the normalized Laplacian eigenvalue of

the power graph P(Zn).

Theorem 3.1 Let Zn be a finite cyclic group of order n ≥ 3. Then
n

n− 1
is normalized Lapla-

cian eigenvalue of P(Zn) with multiplicity at least φ(n).

Proof. Let Zn be the cyclic group of order n ≥ 3. Then the identity 0 and invertible elements

of the group Zn in the power graph P(Zn) are adjacent to every other vertex in P(Zn). Since it

is well known that the number of invertible elements of Zn are φ(n) in number, so the induced

power graph P(U∗
n) is the complete graph Kφ(n)+1. Thus, by Theorem 3.5, we see that P(Zn) =

Kφ(n)+1▽P(Zn \ U∗
n). By applying Corollary 2.5, we get

1− 1

r1 + α1
(−1) = 1 +

1

φ(n) + n− φ(n)− 1
=

n

n− 1
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as the normalized Laplacian eigenvalue with multiplicity at least φ(n), since
n

n− 1
can also be

the normalized Laplacian eigenvalue of quotient matrix (2.3). �

If n = pz, where p is prime and z is a positive integer, then we have following observation.

Corollary 3.2 If n = pz, where p is prime and z is a positive integer, then the normalized

Laplacian eigenvalues of P(Zn) are

{(
n

n− 1

)[(n−1)]

, 0

}

.

Proof. If n = pz, where p is prime and z is a positive integer, then as shown in [8], P(Zn) is

isomorphic to the complete graph Kn and hence the result follows. �

The next observation gives the normalized Laplacian eigenvalues of P(Zn), when n is the

product of two primes.

Corollary 3.3 Let n = pq be the product of two distinct primes. Then the normalized Laplacian

eigenvalues of P(Zn) are

{

0,

(
n

n− 1

)[φ(n)]

,

(

1 +
1

qφ(p)

)[φ(p)−1]

,

(

1 +
1

pφ(q)

)[φ(q)−1]
}

and the

zeros of polynomial

p(x) = x

(

x2 − x

(
φ(n) + 1

qφ(p)
+

φ(p) + φ(q)

qφ(p) + φ(q)
+

φ(n) + 1

pφ(q)

)

+
(φ(n) + 1)φ(p)

pφ(q)(qφ(p) + φ(q))

+
(φ(n) + 1)2

nφ(n)
+

(φ(n) + 1)φ(q)

qφ(p)(qφ(p) + φ(q))

)

.

Proof. If n = pq, where p and q, (p < q)) are primes, then P(Zn) [9] can be written as

P(Zn) = (Kφ(p) ∪Kφ(q))▽Kφ(n)+1 = P3[Kφ(p), Kφ(pq)+1, Kφ(q)].

By Theorem 3.1,
n

n− 1
is the normalized Laplacian eigenvalue with multiplicity φ(n). Again,

by Theorems 2.2 and 3.6, we see that
1

qφ(p)
and

1

qφ(p)
are the normalized Laplacian eigenvalues

of P(Zn) with multiplicity φ(p)− 1 and φ(q)− 1 respectively. The remaining three normalized

Laplacian eigenvalues are given by the following matrix











φ(n) + 1

qφ(p)

−(φ(n) + 1)
√

qφ(p)(qφ(p) + φ(q))
0

−φ(p)
√

qφ(p)(qφ(p) + φ(q))

φ(p) + φ(q)

qφ(p) + φ(q)

−φ(q)
√

pφ(q)(qφ(p) + φ(q))

0
−(φ(n) + 1)

√

pφ(q)(qφ(p) + φ(q))

φ(n) + 1

pφ(q)












.

�

By Corollaries 3.2 and 3.3, we have the following proposition.
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Proposition 3.4 Equality holds in Theorem (3.1), if n is some prime or product of two primes.

The following theorem [18] shows that the power graph of a finite cyclic group Zn can be

written as the joined union each of whose components are cliques.

Theorem 3.5 If Zn is a finite cyclic group of order n ≥ 3, then the power graph P(Zn) is given

by

P(Zn) = Kφ(n)+1▽Gn[Kφ(d1), Kφ(d2), . . . , Kφ(dt)],

where Gn is the graph of order t defined above.

Using Theorem 2.2 and its consequences, we can compute the normalized Laplacian eigenval-

ues of P(Zn) in terms of the adjacency spectrum of Kω and zeros of the characteristic polynomial

of the auxiliary matrix.

We form a connected graph H = K1▽Gn which is of diameter at most two if Gn is not com-

plete, otherwise its diameter is 1. In the following result, we compute the normalized Laplacian

eigenvalues of the power graph of Zn by using Theorems 2.2 and 3.5.

Theorem 3.6 The normalized Laplacian eigenvalues of P(Zn) are

{(
n

n− 1

)(φ(n))

,

(
φ(d1) + α2

d1 + α2 − 1

)[φ(d1)−1]

, . . . ,

(
φ(dt) + αr+1

dt + αt+1 − 1

)[φ(dt)−1]
}

and the t + 1 eigenvalues of the following matrix M

M =















n− 1− φ(n)

n− 1

−φ(d1)a12
√

(φ(n) + α1)(r2 + α2)
. . .

−φ(dt)a1(t+1)
√

(φ(n) + α1)(rt+1 + αt+1)
−φ(d1)a21

√

(r2 + α2)(φ(n) + α1)

α2

α2 + r2
. . .

−φ(dt)a2(t+1)
√

(r2 + α2)(rt+1 + αt+1)
...

...
. . .

...
−φ(d1)a(t+1)1

√

(rn + αt+1)(φ(n) + α1)

−φ(d2)a(t+1)2
√

(rn + αt+1)(r2 + α2)
. . .

αt+1

αt+1 + rt+1















,

(3.7)

where, for i 6= j,

aij =







1, vi ∼ vj

0, vi ≁ vj

and ri = φ(di)− 1, for i = 2, . . . , t+ 1.
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Proof. Let Zn be a finite cyclic group of order n. Since the identity element 0 and the φ(n)

generators of the group Zn are adjacent to every other vertex of P(Zn), therefore, by Theorem

3.5, we have

P(Zn) = Kφ(n)+1▽Gn[Kφ(d1), Kφ(d2), . . . , Kφ(dt)] = H [Kφ(n)+1, Kφ(d1), Kφ(d2), . . . , Kφ(dt)],

where H = K1▽Gn is the graph with vertex set {v1, . . . , vt+1}. Taking G1 = Kφ(n)+1 and

Gi = Kφ(di−1), for i = 2, . . . , t + 1, in Theorem 2.2 and using the fact that the adjacency

spectrum of Kω consists of the eigenvalue ω − 1 with multiplicity 1 and the eigenvalue −1 with

multiplicity ω − 1, it follows that

1− 1

r1 + α1
λ1kA(G1) = 1− 1

r1 + α1
(−1) = 1 +

1

φ(n) + n− φ(n)− 1
=

n

n− 1

is a normalized eigenvalue of P(Zn) with multiplicity φ(n). Note that we have used the fact

that vertex v1 of graph H is adjacent to every other vertex of H and α1 =
∑

d|n,d6=1,n

φ(d) =

n − 1 − φ(n), as
∑

d|s
φ(d) = s. Similarly, we can show that

φ(d1) + α2

φ(d1) + α2 − 1
, . . . ,

φ(dt) + αt+1

φ(dt) + αt+1 − 1

are the normalized Laplacian eigenvalues of P(Zn) with multiplicities φ(d1) − 1, . . . , φ(dt) − 1,

respectively. The remaining normalized Laplacian eigenvalues are the eigenvalues of the quotient

matrix M given by (3.7). �

From Theorem 3.6, it is clear that all the normalized Laplacian eigenvalues of the power

graph P(Zn) are completely determined except the t+ 1 eigenvalues, which are the eigenvalues

of the matrix M in Equation (3.7). Further, it is also clear that the matrix M depends upon the

structure of the graph Gn, which is not known in general. However, if we give some particular

value to n, then it may be possible to know the structure of graph Gn and hence about the matrix

M. This information may be helpful to determine the t + 1 remaining normalized Laplacian

eigenvalues of the power graph P(Zn).

We discuss some particular cases of Theorem 3.6.

Now, let n = pqr, where p, q, r with p < q < r are primes. From the definition of Gn, the ver-

tex set and edge set of Gn are {p, q, r, pq, pr, qr} and {(p, pq), (p, pr), (q, pq), (q, qr), (r, pr), (r, qr)}
respectively, and is shown in Figure (1). Let H = K1▽Gn. Then

P(Zn) = H [Kφ(n)+1, Kφ(p), Kφ(q), Kφ(r), Kφ(pq), Kφ(pr), Kφ(qr)].

By Theorem 2.2, we have

(
α1,α2, α3, α4, α5, α6, α7

)
=
(
n− φ(n)− 1, φ(n) + 1 + φ(pq) + φ(pr), φ(n) + 1 + φ(pq) + φ(qr)),
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p q r

pq pr qr

p q r

pq pr

qr

K1

Figure 1: Divisor graph Gpqr and H = K1▽Gpqr.

φ(n) + 1 + φ(pr) + φ(qr), φ(n) + 1 + φ(p) + φ(q), φ(n) + 1 + φ(p) + φ(r), φ(n) + 1 + φ(q) + φ(r)
)

and
(
α1 + r1, α2 + r2, α3 + r3, α4 + r4, α5 + r5, α6 + r6, α7 + r7

)
=
(
n− 1, φ(n) + φ(p) + φ(pq)

+φ(pr), φ(n) + φ(q) + φ(pq) + φ(qr)), φ(n) + φ(r) + φ(pr) + φ(qr), φ(n) + φ(pq) + φ(p) + φ(q),

φ(n) + φ(pr) + φ(p) + φ(r), φ(n) + φ(qr) + φ(q) + φ(r)
)
.

Also, by Theorem 3.1,
n

n− 1
is the normalized Laplacian eigenvalue with multiplicity φ(n). Using

the above information and Theorem 3.6, the second distinct normalized Laplacian eigenvalue is

1 +
1

r2 + α2

= 1 +
1

φ(n) + φ(p) + φ(pq) + φ(pr)
with multiplicity φ(p)− 1. In a similar way, we

see that the other eigenvalues are

1 +
1

φ(n) + φ(q) + φ(pq) + φ(qr)
, 1 +

1

φ(n) + φ(r) + φ(pr) + φ(qr)
, 1 +

1

φ(n) + φ(pq) + φ(q) + φ(q)
,

1 +
1

φ(n) + φ(pr) + φ(p) + φ(r)
, 1 +

1

φ(n) + φ(qr) + φ(q) + φ(r)

with multiplicities φ(q)−1, φ(r)−1, φ(pq)−1, φ(pr)−1, φ(qr)−1, respectively. The remaining

7 eigenvalues are given by the following matrix
















z1 −φ(p)c12 −φ(q)c13 −φ(r)c14 −φ(pq)c15 −φ(pr)c16 −φ(qr)c17

(φ(n) + 1)c21 z2 0 0 −φ(pq)c25 −φ(pr)c26 0

(φ(n) + 1)c31 0 z3 0 −φ(pq)c35 0 −φ(qr)c37

(φ(n) + 1)c41 0 0 z4 0 −φ(pr)c46 −φ(qr)c47

(φ(n) + 1)c51 −φ(p)c25 −φ(q)c35 0 z5 0 0

(φ(n) + 1)c61 −φ(p)c26 0 −φ(r)c64 0 z6 0

(φ(n) + 1)c71 0 −φ(q)c75 −φ(r)c74 0 0 z7

















,

where,

z1 =
n− φ(n)− 1

n− 1
, z2 =

φ(n) + 1 + φ(pq) + φ(pr)

φ(n) + φ(p) + φ(pq) + φ(pr)
, z3 =

φ(n) + 1 + φ(pq) + φ(qr)

φ(n) + φ(q) + φ(pq) + φ(qr)
,
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z4 =
φ(n) + 1 + φ(pr) + φ(qr)

φ(n) + φ(r) + φ(pr) + φ(qr)
, z5 =

φ(n) + 1 + φ(p) + φ(q)

φ(n) + φ(pq) + φ(p) + φ(q)
,

z6 =
φ(n) + 1 + φ(p) + φ(r)

φ(n) + φ(pr) + φ(p) + φ(r)
, z7 =

φ(n) + 1 + φ(q) + φ(r)

φ(n) + φ(qr) + φ(q) + φ(r)

and cij = cji =
1

√

(ri + αi)(rj + αj)
.

Next, we discuss the normalized Laplacian eigenvalues of the finite cyclic group Zn, with

n = pn1qn2, where p < q are primes and n1 ≤ n2 are positive integers. We consider the case

when both n1 and n2 are even, and the case when they are odd can be discussed similarly.

Theorem 3.7 Let P(Zpn1qn2 ) be the power graph of the finite cyclic group Zpn1qn2 of order

n = pn1qn2, where p < q are primes and n1 = 2m1 ≤ n2 = 2m2 are even positive integers. Then

the normalized Laplacian eigenvalues of P(Zpn1 qn2 ) consists of the eigenvalues

(
n

n− 1

)[φ(n)]

,

(
n− qn2 + 1

n− qn2

)[φ(p)−1]

,

...
(
pm1−1 + qn2(pn1 − pm1−1)

pm1−1 + qn2(pn1 − pm1−1)
− 1

)[φ(pm1 )−1]

,

...
(

pn1−1 + qn2φ(pn1)

pn1−1 + qn2φ(pn1)− 1

)[φ(pn1 )−1]

,

(
n− pn1 + 1

n− pn1

)[φ(q)−1]

,

...
(

qm2−1 + pn1(qn2 − qm2−1)

qm2−1 + pn1(qn2 − qm2−1)− 1

)[φ(qm2 )−1]

,

...
(

qn2−1 + pn1φ(qn2)

qn2−1 + pn1φ(qn2)− 1

)[φ(qn2 )−1]

,

(
φ(p) + φ(q) + (qn2 − 1)(pn1 − 1) + 1

φ(p) + φ(q) + (qn2 − 1)(pn1 − 1)

)[φ(pq)−1]

,

...
(

qn2(pn1 − 1) + qm2 − qm2−1(pn1 − p)

qn2(pn1 − 1) + qm2 − qm2−1(pn1 − p)− 1

)[φ(pqm2)−1]

,

...
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(
pqn2 + φ(pn1)(qn2 − q)

pqn2 + φ(pn1)(qn2 − q)− 1

)[φ(pqn2)−1]

,

...
(

pm1 + pn1(qn2 − 1)− pm1−1(qn2 − q)

pm1 + pn1(qn2 − 1)− pm1−1(qn2 − q)− 1

)[φ(pm1q)−1]

,

...
(

n + pm1qm2 + pm1−1qm2−1 − φ(pm1qm2)− pn1qm2−1 − pm1−1qn2

n + pm1qm2 + pm1−1qm2−1 − φ(pm1qm2)− pn1qm2−1 − pm1−1qn2 − 1

)[φ(pm1qm2 )−1]

,

...
(

pm1qn2 + φ(qn2)(pn1 − pm1)

pm1qn2 + φ(qn2)(pn1 − pm1)− 1

)[φ(pm1qn2 )−1]

,

...
(

pn1q + φ(pn1)(qn2 − q)

pn1q + φ(pn1)(qn2 − q)− 1

)[φ(pn1q)−1]

,

...
(

pn2qm1 + φ(pn1)(qn2 − qm1)

pn2qm1 + φ(pn1)(qn2 − qm1)− 1

)[φ(pn1qm2 )−1]

,

...

(
pn1qn2−1 + φ(n)

pn1qn2−1 + φ(n)− 1

)[φ(pn1qn2−1)−1]

and the remaining eigenvalues are given by matrix (3.7).

Proof. Suppose that n = pn1qn2, where n1 = 2m1 and n2 = 2m2 are even with n1 ≤ n2 and m1

and m2 are positive integers. Since the total number of divisors of n are (n1 +1)(n2 +1), so the

order of Gpn1qn2 is (n1 + 1)(n2 + 1)− 2. The proper divisor set of n is

D(n) =

{

p, p2, · · · , pm1 , . . . , pn1, q, q2, . . . , qm2 , . . . , qn2, pq, pq2, . . . , pqm2 , . . . , pqn2 , · · · , pm1q, pm1q2,

. . . ,pm1qm2 , . . . , pm1qn2, . . . , pn1q, pn1q2, . . . , pn1qm2 , . . . , pn1qn2−1

}

.

By the definition of graph Gn, we see that p is not adjacent to p, q, q2, · · · , qm2, · · · , qn2 . So we

write adjacency of vertices in terms of iterations and avoid divisors outside the set D(n). Thus,

we observe that

p ∼ pi, pjqk, for i = 2, 3, . . . , n1, j = 1, 2, . . . , n1, k = 1, 2, . . . , n2,
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...

pm1 ∼ pi, pjqk, for i = 1, 2, . . . , n1, i 6= m1, j = m1, . . . , n1, k = 1, 2, . . . , n2,

...

pn1 ∼ pi, pn1qj , for i = 1, 2, . . . , n1 − 1, j = 1, 2, . . . , n2 − 1,

q ∼ qi, pjqk, for i = 2, 3, . . . , n2, j = 1, 2, . . . , n1, k = 1, 2, . . . , n2,

...

qm2 ∼ qi, pjqk, for i = 1, 2, 3, . . . , n1, i 6= m2, j = 1, 2, 3, . . . , n1, , k = m2, . . . , n2

...

qn2 ∼ qi, pjqn2 , for i = 1, 2, 3, . . . , n2 − 1, j = 1, 2, 3, . . . , n1 − 1,

pq ∼ p, q, piqj , for i = 1, 2, 3, . . . , n1, j = 1, 2, 3, . . . , n2,

...

pqm2 ∼ p, qi, pqj, pkqk for i = 1, 2, 3, . . . , m2, j = 1, 2, 3, . . . , n2, j 6= m2, k = 2, 3, . . . , n1,

l = m2, . . . , n2,

...

pqn2 ∼ p, qi, pqj, pkqn2, for i = 1, 2, . . . , n2, j = 1, 2, . . . , n2 − 1, k = 2, 3, . . . , n1 − 1,

...

pm1q ∼ pi, q, pm1qj, pkq, plqm for i = 1, 2, 3, . . . , m1, j = 2, 3, . . . , n2, k = 1, 2, . . . , m1 − 1,

l = m1 + 1, . . . , n1, m = 1, 2, . . . , n2,

...

pm1qm2 ∼ pi, qj, pkql for i = 1, 2, . . . , m1, j = 1, 2, . . . , m2, k = 1, 2, . . . , n1, l = 1, 2, . . . , n2,

...

pm1qn2 ∼ pi, qj, pkqn2, piqj for i = 1, 2, . . . , m1, j = 1, 2, . . . , n2, k = m1 + 1, m1 + 2, . . . , n1 − 1,

...

pn1q ∼ pi, q, pjq, pnqk for i = 1, 2, . . . , n1, j = 1, 2, . . . , n1 − 1, k = 2, 3 . . . , n2 − 1,

...

pn1qm2 ∼ pi, qj, pn1qk, piqj for i = 1, 2, . . . , n1, j = 1, 2, . . . , m2, k = m2 + 1, m2 + 2 . . . , n2 − 1,

...
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pn1qn2−1 ∼ pi, qj, piqj for i = 1, 2, . . . , n1, j = 1, 2, . . . , n2 − 1.

Therefore, by Theorem 3.5, we have

P(Zn) =Kφ(n)+1▽Gn[Kφ(p), . . . , Kφ(pm1), . . . , Kφ(pn1 ), Kφ(q), . . . , Kφ(qm2 ), . . . , Kφ(qn2 ), Kφ(pq), . . . ,

Kφ(pqm2 ), . . . , Kφ(pqn2 ), . . . , Kφ(pm1q), . . . , Kφ(pm1qm2 ), . . . , Kφ(pm1qn2), . . . , Kφ(pn1q), . . . ,

Kφ(pn1qm2 ), . . . , Kφ(pn1qn2−1)].

Now, by using Theorem 2.2, we calculate the values of αi’s and ri + αi = r
′

i’s. We recall some

number theory identities, like φ(xy) = φ(x)φ(y), provided that (x, y) = 1,
k∑

i=1

φ(pi) = pk − 1 and
∑

d|s
φ(d) = s. Using this information and definition of αi’s, we have

α1 =
∑

1,n 6=d|n
φ(d) = n− 1− φ(n)

and

α2 = φ(p2) + · · ·+ φ(pm1) + · · ·+ φ(pn1) + φ(pq) + · · ·+ φ(pqm2) + . . . φ(pqn2)

+ φ(pm1q) + · · ·+ φ(pm1qm2) + . . . φ(pm1qn2) + · · ·+ φ(pn1q) + · · ·+ φ(pn1qm2)

+ . . . φ(pn1qn2−1) + φ(n) + 1

=
∑

1,p,n 6=d|n
φ(d)− [φ(q) + · · ·+ φ(qm1) + · · ·+ φ(qn1)] + φ(n) + 1

= n− 1− φ(p)− φ(n)− [qn2 − 1] + φ(n) + 1 = n− φ(p)− qn2 + 1.

Proceeding in the same way as above, other αi’s are

α3 =qn2(pn1 − p) + p− φ(p2),

...

αm1+1 =pm1−1 + qn2(pn1 − pm1−1)− φ(pm1),

...

αn1+1 =pn1−1 + φ(pn1)(qn2−1 − 1), αn1+2 = n− φ(q)− pn1 + 1,

...

αn1+m1+1 =qm2−1 + pn1(qn2 − qm2−1)− φ(qm2),
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...

αn1+n2+1 =qn2−1 + φ(qn2)(pn1 − 1),

αn1+n2+2 =φ(p) + φ(q) + 1− φ(pq) + (qn2 − 1)(pn1 − 1),

...

αn1+n2+m1+1 =qn2(pn1 − 1) + qm2 − qm2−1(pn1 − p)− φ(pqm2),

...

α2n1+n2+1 =pqn2 − φ(pqn2) + φ(pn1)(qn2 − q),

...

αm1n2+n1+2 =pm1 − φ(pm1q) + pn1(qn2 − 1)− pm1−1(qv1 − q),

...

αm1n2+n1+m1+1 =n + pm1−1qm2−1 + pm1qm2 − 2φ(pm1qm2)− qn2pm1−1 − pn2qm2−1,

...

α(m1+1)n2+n1+1 =pm1qn2 − φ(pm1qn2) + φ(qn2)(pn1 − pm1),

...,

αn1n2+n1+2 =pn1q + φ(pn1)(qn2 − q)− φ(pn1q),

...,

αn1n2+n1+m1+1 =pn1qm2 + φ(pn1)(qn2 − qm2)− φ(pn1qm2),

...

α(n1+1)n2+n1
=pn1qn2−1 + φ(n)− φ(pn1qn2−1).

Also, value of ri + αi = r
′

i’s are given by

r
′

1 =n− 1, r
′

2 = n− qn2,

...

r
′

m1+1 =pm1−1 + qn2(pn1 − pm1−1)− 1,

...

r
′

n1+1 =pn1−1 + φ(pn1)qn2 − 1, r
′

n1+2 = n− pn1 ,

...

r
′

n1+m1+1 =qm2−1 + pn1(qn2 − qm2−1)− 1,
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...

r
′

n1+n2+1 =qn2−1 + φ(qn2)pn1 − 1, r
′

n1+n2+2 = φ(p) + φ(q) + (qn2 − 1)(pn1 − 1),

...

r
′

n1+n2+m1+1 =qn2(pn1 − 1) + qm2 − qm2−1(pn1 − p)− 1,

...

r
′

2n1+n2+1 =pqn2 + φ(pn1)(qn2 − q)− 1,

...

r
′

m1n2+n1+2 =pm1 + pn1(qn2 − 1)− pm1−1(qn1 − q)− 1,

...

r
′

m1N2+N1+m1+1 =n + pm1−1qm2−1 + pm1qm2 − φ(pm1qm2)− qn2pm1−1 − pn2qm2−1 − 1,

...

r
′

(m1+1)n2+n1+1 =pm1qn2 + φ(qn2)(pn1 − pm1)− 1,

...

r
′

n1n2+n1+2 =pn1q + φ(pn1)(qn2 − q)− 1,

...

r
′

n1n2+n1+m1+1 =pn1qm2 + φ(pn1)(qn2 − qm2)− 1,

...

r
′

n1n2+n1+m1+1 =pn1qn2−1 + φ(n)− 1.

We note that each of Gi = Ki and by Theorems 3.1 and 2.2, we get the desired eigenvalues as

in the statement. By substituting the values of αi’s, r
′

i’s and using the adjacency relations, the

remaining normalized Laplacian eigenvalues are the eigenvalues of matrix (3.7). �
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[24] D. Stevanović, Large sets of long distance equienergetic graphs, Ars Math. Contemp. 2(1)

(2009) 35–40.

[25] S. Sun and K. C. Das, Normalized Laplacian spectrum of complete multipartite graphs,

Discrete Applied Math. 284 (2020) 234–245.

[26] B. F. Wu, Y. Y. Lou and C. X. He, Signless Laplacian and normalized Laplacian on

the H-join operation of graphs, Discrete Math. Algorithm. Appl. 06 (2014) [13 pages]

DOI:http://dx.doi.org/10.1142/S1793830914500463.

http://dx.doi.org/10.1142/S1793830914500463

	1 Introduction
	2 Normalized Laplacian eigenvalues of the joined union of graphs
	3 Normalized Laplacian eigenvalues of the power graphs of cyclic group  Zn  

