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Abstract

We explore a variant of the game of Cops and Robber introduced by Bonato et
al. where the robber is invisible unless outside the common neighbourhood of the cops.
The hyperopic cop number is analogous to the cop number and we investigate bounds
on this quantity. We define a small common neighbourhood set and relate the minimum
cardinality of this graph parameter to the hyperopic cop number. We consider diameter
2 graphs, particularly the join of two graphs, as well as Cartesian products.

1 Introduction

In the original game of Cops and Robber, both the “cops” and the “robber” have equal
access to perfect information, as both the cops and the robber are visible throughout the
entire game. This idealistic situation, however, does not fully encapsulate many pursuit and
evasion scenarios. In recent years, there has been an increase in research that explores more
practical scenarios in which the cops or robber have varied visibility (see [3, 5, 6, 7, 8] for
example).

In [3], Bonato et al. introduce an imperfect information variant of Cops and Robber,
called “Hyperopic Cops and Robber”, where the robber is visible unless located on a vertex
that is in the neighbourhood of every cop (i.e. if the robber is “close” to every cop, then the
robber will be invisible). As described in [3], the motivation for this variant is a predator-
prey system, where the prey has a short-range defense mechanism such as a squid releasing
ink. Because these are short range defenses, when the cops are far away from the robber
they will be unaffected by the prey’s defense and continue to have perfect visibility.

More precisely, Hyperopic Cops and Robber is a pursuit-evasion game played on a reflex-
ive graph. There are two players: one player who controls a finite set of cops and another
player who controls a single robber. Initially, the cops choose a multiset of vertices to occupy
and then the robber chooses a vertex to occupy. At each time step, a subset of cops move to
an adjacent vertex, and the robber then moves to an adjacent vertex. As described above,
the cops play with imperfect information: when the robber is in the neighbourhood of every
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cop (i.e. the vertices occupied by the cops are each adjacent to the vertex occupied by the
robber), the robber is invisible. In contrast, the robber plays with perfect visibility and can
view the location of each cop at all times. Since each graph is reflexive, note that a cop or
robber can pass during a “move”, which equates to traversing the incident loop.

If, after a finite number of moves, at least one cop occupies the same vertex as the
robber, then we say the cops have captured the robber. The cops’ objective is to capture the
robber, while the robber attempts to avoid this situation indefinitely. Note that by initially
placing a cop on every vertex of the graph, the robber would be trivially captured. As a
result, this paper focuses on finding the minimum number of cops required to guarantee
the capture of the robber, defined as the hyperopic cop number of graph G and denoted
cH(G). The hyperopic cop number is the corresponding analogue to the cop number, c(G),
in the original game. We note that c(G) ≤ cH(G) as any strategy used by hyperopic cops to
capture a robber could also be used by cops to win in the original game.

In [3], Bonato et al. show that for a graph G with diameter 3 or greater, cH(G) ≤ c(G)+2,
and they provide an improved bound when, in addition to the diameter requirement, δ(G) ≤
c(G), namely cH(G) ≤ c(G) + 1 (where δ(G) is the minimum degree in G). For graphs of
diameter 2, the relationship between these two parameters is increasingly more complex.
In [3], the authors also show that the hyperopic cop number of a diameter 2 graph can be
unbounded as a function of either the cop number or the order of the graph, and consider
graph joins (defined below in the next paragraph), which are always of diameter at most 2.
We further study Hyperopic Cops and Robber in diameter 2 graphs and the main results of
this paper stem from an exploration of graph joins.

We begin, however, by exploring the relationship between Hyperopic Cops and Robber
and the original game by considering induced subgraphs and isometric paths in Section 2. In
Section 3 we define a new graph parameter to provide bounds on our parameter of interest,
particularly for graph joins. Recall G ∨ J is the join of graphs G and J where V (G ∨ J) =
V (G)∪V (J) and E(G∨J) = E(G)∪E(J)∪{uv : u ∈ V (G) and v ∈ V (J)}. In Section 4,
we focus on diameter 2 graphs and, in particular, graph joins to develop a general upper
bound and exact results in some specific cases. Finally, in Section 5, we consider Cartesian
products.

To avoid trivial cases, all graphs considered in this paper are finite, connected, and
undirected unless otherwise indicated.

2 Relationship to Cops and Robber

Restricting the visibility of the cops adds a layer of complexity that prohibits us from using
or translating many results from the original game of Cops and Robber.

Let J be an induced subgraph of G formed by deleting one vertex. Then J is a retract
of G if there is a homomorphism f from G onto J so that f(x) = x, for x ∈ V (J); recall
that if J is a retract of G, then c(J) ≤ c(G) [2]. However, such a bound does not always
hold for the game of Hyperopic Cops and Robber. Let Gn be the graph obtained by adding
a leaf to one vertex of Kn; see Figure 1 for reference. Then cH(Kn) = dn

2
e [3], but it is easy

to see that cH(Gn) = 2: one cop occupies the leaf and the second cop occupies any other
vertex. The robber will be visible unless the robber occupies the vertex adjacent to the leaf.
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In either situation, the robber is captured immediately. Thus Kn is a retract of Gn and
cH(Kn) > cH(Gn) for n ≥ 5.

Remark 1. If graph J is a retract of graph G, then c(J) ≤ c(G), but it is not necessarily
true that cH(J) ≤ cH(G).

Figure 1: The graph G5

A path P in G is isometric if, for all vertices v and w in P , dP (v, w) = dG(v, w). In [1],
it is shown that in the original game of Cops and Robber, an isometric path is 1-guardable.
In other words, one cop can ensure that, after some time step, if the robber ever occupies a
vertex of the isometric path, the robber will immediately be caught. This useful result has
been used to prove many bounds on the cop number of a graph.

Remark 2. In the game of Cops and Robber, an isometric path is 1-guardable, but in the
game of Hyperopic Cops and Robber, an isometric path is not necessarily 1-guardable.

Figure 2 illustrates the strong product of P2 and P3 with an isometric path comprised of
vertices v1, v2, v3 depicted in bold. Observe that if the robber occupies (0,1) they will be
invisible to the cop. If the cop then occupies v2, the robber will be invisible and can move
to v1 or v3 unseen, and otherwise there is an unguarded path the robber can move onto.

Figure 2: An isometric path in P2 � P3 shown in bold

The following proof that an isometric path is 2-guardable mirrors that of Theorem 1.7
in [4].

Theorem 3. In the game of Hyperopic Cops and Robber, an isometric path is 2-guardable.
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Proof. Let P = v0, v1, . . . , vk be an isometric path in a graph G. For i ∈ {0, 1, . . . , k − 1},
let Di = {x ∈ V (G) : d(x, v0) = i} and Dk = {x ∈ V (G) : d(x, v0) ≥ k}. Since P is an
isometric path, it follows that vi ∈ Di, for i ∈ {0, 1, . . . , k}.

Two cops, restricted to P , play as if the robber is on vj when the robber is on some
vertex of Dj, for j ∈ {0, 1, . . . , k}; i.e. the cops play on the robber’s image. If the robber
is in Dj, their only choice is to move to a vertex in Dj−1, Dj, or Dj+1 and therefore their
image can only be one of vj−1, vj, or vj+1. (Note that if j = k, the robber can only move to
a vertex in Dj−1 or Dj.)

If k = 1, the cops occupy v0 and v1 and the robber can never occupy a vertex of P . If
k = 2 then place a cop, say C1, on v0 and a cop, say C2, on v1. The robber can only enter
P by moving to v2. In that case, the robber will be seen immediately, as there is no edge
between v0 and v2 so cop C2 can then move to v2 to capture the robber.

If k > 2, place cop C1 on v0 and cop C2 on v3. Note that v0 and v3 share no common
neighbours since P is isometric, and therefore the robber is initially visible. While the robber
is in Di where i /∈ {0, 1, 2}, cop C2 can move to capture the robber’s image. After cop C2

captures the robber’s image, if the robber moves to a vertex in Dj, j /∈ {0, 1, 2}, cop C2

moves to vj. So if the robber moves to vj for j ∈ {3, 4, . . . , k}, cop C2 will move to vj and
capture the robber.

If at any time the robber is located or moves to a vertex of D1 ∪ D2, cop C2 will be
located at v3. (Note that since cop C2 follows the image of the robber if the robber is not in
D1 ∪D2, we can assume that once the robber enters D2, cop C2 will be on v3.) If the robber
attempts to enter P from a vertex of D2 or D1, then the robber will move to either v1 or v2.
In either case, the robber will be visible to the cops and occupy a vertex adjacent to a cop;
that cop will move to the vertex occupied by the robber and capture the robber.

3 Small Common Neighbourhood Set

We begin by defining a small common neighbourhood set and later in the section, relate the
minimum cardinally of such a set to the hyperopic cop number.

3.1 Definition and Properties

Let G be a graph and note that G may be disconnected. Define a non-empty set S to be a
small common neighbourhood set of G if∣∣∣∣∣⋂

v∈S

N(v)

∣∣∣∣∣ ≤ |S|.
Let Υ(G) be the minimum cardinality of a small common neighbourhood set of G.

If we consider S = V (G), then clearly such a set is a small common neighbourhood set
of G; thus Υ(G) ≤ |V (G)|. We additionally note that since S is defined to be non-empty,
we know Υ(G) > 0 and hence, the parameter Υ is well-defined.

To further explain this new graph parameter, below is a pseudo algorithm that will
determine Υ(G) for any finite graph G.
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Let P(V (G)) be the power-set of all vertices in G.

1: Set Υ(G) = 0 and set i = 1. Start by labelling every set in P(V (G)) as unchecked
2: while Υ(G) = 0 do
3: while ∃ Z ∈ P(V (G)) that is unchecked and |Z| = i do
4: if |

⋂
v∈Z N(v)| ≤ i then

5: Set Υ(G) = i.
6: Identify Z as a minimum small common neighbourhood set.
7: else
8: Label the set Z as checked.
9: i = i +1

Clearly, the value produced by the algorithm is the minimum cardinality of a small
common neighbourhood set of G.

Proposition 4. For any graphs G and J , Υ(G ∨ J) ≤ Υ(G) + Υ(J).

Proof. Let SG, SJ be minimum small common neighbourhood sets of G and J , respectively.
Consider the set S = SG ∪ SJ . Clearly,⋂

v∈S

NG∨J(v) =
⋂

v∈SG

NG(v) ∪
⋂
v∈SJ

NJ(v).

It follows that S is a small common neighbourhood set of G ∨ J . Hence Υ(G ∨ J) ≤
Υ(G) + Υ(J).

Though the bound in Proposition 4 is obviously tight for some graphs, it is not always
the case. Let H be the strong product of P4 and P2; see Figure 3 for labeled vertices.
Clearly Υ(H) = 2 as the set {v, w} forms a minimum small common neighbourhood set.
Now consider the graph H ∨ H; here the set {v, w, z} forms a minimum small common
neighbourhood set (as indicated in Figure 3), so clearly Υ(H ∨H) < Υ(H) + Υ(H).

Figure 3: Two copies of graph H.

3.2 Connections to Hyperopic Cops and Robber

We next use the parameter Υ to provide a general upper bound for any graph. First, we
state an useful observation that identifies the position of the robber if they are invisible.
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Observation 5. Let G be a graph and S be a set of G. If there is a cop located on every
vertex in S and the robber is invisible, then the robber must be located on some vertex in⋂

v∈S N(v).

Theorem 6. For any graph G, cH(G) ≤ c(G) + Υ(G).

Proof. Let G be a graph and S be a small common neighbourhood set of minimum cardi-
nality. Place a cop on each vertex of S and place the remaining c(G) cops arbitrarily on
vertices of G.

If the robber is invisible, then the robber must be in ∩v∈SN(v), as per Observation 5.
The Υ(G) cops on set S can immediately move to ∩v∈SN(v) to capture the robber since
| ∩v∈S N(v)| ≤ Υ(G) by definition.

If the robber is visible, then the Υ(G) cops located on set S remain on the vertices of
S (to ensure the robber remains visible) while the remaining c(G) cops follow the winning
strategy from the original game of Cops and Robber in order to capture the robber.

The following results all appear in [3]; however, these results can all be proven in a simple
and direct way by utilizing the concept of a small common neighbourhood. Consequently,
we include the proofs below as an illustration of the usefulness of the parameter.

Theorem 7. Let G be a graph.
(1) If diam(G) ≥ 3 then cH(G) ≤ c(G) + 2.
(2) If G contains a cut-vertex, then cH(G) ≤ c(G) + 1.
(3) If G is triangle free, then cH(G) ≤ c(G) + 1.

Proof. For (1), let G be a graph with diam(G) ≥ 3. Then there exist vertices v, w ∈ V (G)
such that d(v, w) ≥ 3. As |N(v) ∩ N(w)| = 0, the set {v, w} forms a small common
neighbourhood set and therefore Υ(G) ≤ 2. By Theorem 6, cH(G) ≤ c(G) + 2.

For (2), Let G be a graph with a cut-vertex u with non-adjacent neighbours v, w. Further,
let Sv and Sw be sets such that Sv ∪ {u} ∪ Sw = V (G) and v, w are in different components
of the induced subgraph G[Sv∪Sw]. Initially, place one cop on v, one cop on w, and c(G)−1
cops on u. Since {u, v, w} is a small common neighbourhood set (N(u)∩N(v)∩N(w) = ∅),
the robber is visible. Without loss of generality, suppose the robber is on a vertex in Sw.
The cop located at v remains at vertex v while the robber is visible (and in Sw), while the
remaining c(G) cops move on the vertices of the subgraph G[Sw ∪ {u}] to follow a winning
strategy from the original game of Cops and Robber and capture the robber. If, at any point
the robber becomes invisible, it must be because the robber has moved to u. In this case,
the cop at v moves to u to capture the robber.

For (3), let G be a triangle-free graph with no cut-vertex and consider the power set
P(V (G)). Since G is triangle-free, for all sets X ∈ P(V (G)) where |X| = 2, X satisfies the
conditions for a small common neighbourhood set on G. This is because for any adjacent
vertices v, w ∈ X, |NG(v) ∩ NG(w)| = 0 ≤ |X|. We place c(G) + 1 cops arbitrarily on
vertices of G. Suppose cop C1 is located on vertex x. If C1 remains on x, then no matter
the locations of the other c(G) cops, the robber cannot be in the common neighbourhood of
both x and all the vertices occupied by the other c(G) cops. Therefore we can conclude that
the robber will be visible throughout the game; C1 remains at x and the other c(G) cops
will follow a winning strategy for the original game of Cops and Robber.
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Corollary 8. Let G be a graph with a universal vertex. If there exists v ∈ V (G) such that
deg(v) ≤ 3, then cH(G) ≤ 2.

Proof. Let u be the universal vertex of G and v be a vertex with deg(v) ≤ 3. Note that the
set {v, u} forms a small common neighbourhood set because |N(v) ∩ N(u)| = 2 ≤ {v, u}.
Therefore, let S = {v, u}. Start by placing one cop on u and the other cop on v. If the
robber is visible, then the cop on u can easily move to the robber’s position to capture. If
the robber is invisible, then they must be in N(v)∩N(u), as per Observation 5. Since S is a
small common neighbourhood set, then the cops on u and v can move to capture the robber
in N(v) ∩N(u).

4 Diameter 2: Graph Joins

In [3], the authors determine the hyperopic cop number for diameter 1 graphs (i.e. complete
graphs). Furthermore, they bound the hyperopic cop number in terms of the original cop
number for graphs of diameter 3 or greater. Little is known, however, about the hyperopic
cop number of diameter 2 graphs, which motivates the work in this section. These dense
graphs provide many opportunities for the robber to be invisible initially and throughout
the game. From [3], we can see that when a graph has diameter 1, the hyperopic cop number
“blows up”: cH(Kn) = dn

2
e. It was additionally shown in [3] that some graphs of diameter

2 also have large hyperopic cop numbers. Consider the graph Kn − e, which is a complete
graph with one edge removed. From [3], diam(Kn − e) = 2 and cH(Kn − e) = bn

2
c. In this

section, we examine the hyperopic cop number for a large family of diameter 2 graphs: graph
joins.

Note that the join G ∨ J is connected, regardless of whether G or J are connected
themselves. Furthermore, the join of two graphs always has diam(G ∨ J) ≤ 2. As a result,
G∨J will have diameter 2, unless both G and J are complete graphs, in which case diam(G∨
J) = 1.

Furthermore, we note that for two graphs G and J , γ(G ∨ J) ≤ 2, where γ denotes the
domination number. From this, it is clear that in the original game of Cops and Robber,
the cop number of a graph join G ∨ J is always at most 2: place one cop on a vertex of G
and the other cop on a vertex of J . If we place a hyperopic cop on a vertex u ∈ V (G) and
a vertex v ∈ V (J), then |NG∨J(u) ∩NG∨J(v)| = degG(u) + degJ(v) and a robber located on
one of the degG(u) + degJ(v) vertices in the common neighbourhood would be invisible and
therefore in most cases would not immediately be captured.

Consider two complete graphs Km and Kn. From the definition of graph joins, we know
that Km ∨Kn = Km+n and cH(Km+n) = dm+n

2
e and c(Km+n) = 1. This example illustrates

how cH(G ∨ J) may be very different from c(G ∨ J) and that the hyperopic cop number of
the join of two graphs acts independently from the hyperopic cop number of its two factors.
We begin with a useful observation.

Observation 9. Let G and J be graphs and consider the game of Hyperopic Cops and Robber
played on G∨ J . If the robber becomes visible during any round and there is at least one cop
in each of G and J , then the robber will be captured during the cops’ next move.
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Note that γ(G ∨ J) ≤ 2 and diam(G ∨ J) ≤ 2. If γ(G ∨ J) = 1 then both G ∼= Kn

and J ∼= Km for some m,n ≥ 1. Therefore, the robber will never be visible. Assume then
γ(G ∨ J) = 2 and, without loss of generality, the robber is in G. If the robber becomes
visible and there is a cop in J , then the cop can move to G to capture the robber.

Theorem 10. For any graphs G and J , cH(G ∨ J) ≤ Υ(G) + Υ(J).

Proof. Let SG and SJ be minimum small common neighbourhood sets of G and J , respec-
tively. Note that |SG| = Υ(G) and |SJ | = Υ(J) by definition. Start by placing Υ(G) cops on
all vertices in SG and Υ(J) cops on all vertices in SJ . If the robber is visible then, by Obser-
vation 9, they will be caught on the cops’ next move. Therefore, we can assume the robber is
invisible and thus located in

⋂
w∈SG

N(w) or ∩v∈SJ
N(v). Since |∩w∈SG

N(w)| ≤ |SG| = Υ(G)
and | ∩v∈S N(v)| ≤ |SJ | = Υ(J), the Υ(G) cops on SG can move to ∩w∈SG

N(w) and the
Υ(J) cops on SJ can move to ∩v∈SJ

N(v) to capture the robber.

Recall from Proposition 4 that for some graphs G and J , Υ(G∨J) ≤ Υ(G) + Υ(J). This
property motivates the following theorems which, for some graphs, improve upon Theorem
10.

Theorem 11. Let G and J be graphs. If there exists a set S such that S 6⊆ V (G), S 6⊆ V (J),
and S is a minimum small common neighbourhood set of G∨J then cH(G∨J) ≤ Υ(G∨J).

Proof. Let S be a minimum small common neighbourhood set of G ∨ J where S 6⊆ V (G)
and S 6⊆ V (J). Start by placing a cop on each vertex in S. If the robber is visible (since S
has vertices in both G and J), by Lemma 9 the robber will be caught. Therefore, we can
assume that the robber is invisible from the start. By Observation 5 the robber is located in
∩v∈SN(v) and as | ∩v∈S N(v)| ≤ Υ(G ∨ J), the cops can move to ∩v∈SN(v) to capture the
robber.

Theorem 12. Let G and J be graphs. Let S be the set of all minimum small common
neighbourhood sets. If for all sets S ∈ S, S ⊆ V (G) or S ⊆ V (J) then cH(G ∨ J) ≤
Υ(G ∨ J) + 1.

Proof. Let S be a minimum small common neighbourhood set of graph G∨J . Without loss of
generality, assume that S ⊆ V (G). Start by placing cops on all vertices in S and one cop on
some vertex w ∈ V (J). If the robber is initially visible, they will be caught by Observation 9
(as there is a cop in both G and J). If the robber is invisible, by Observation 5, we know
that the vertex occupied by the robber is in the set

⋂
v∈S(N(v) ∩N(w)) =

⋂
v∈S∪{w}N(v).

Since |
⋂

v∈S N(v)| ≤ Υ(G∨J), the Υ(G∨J) cops in S can move to
⋂

v∈S N(v) to capture
the robber.

Note that the join of two disconnected graphs will result in a connected graph. Thus, we
can consider G and J to be disconnected.

Corollary 13. Let G and J be disconnected graphs with n components and m components
respectively. If n,m ≥ 2, then cH(G ∨ J) ≤ 4.

8



Proof. Let Gi be a component of G, for i ∈ {1, 2, . . . , n} and Jj a component of J , for
j ∈ {1, 2, . . . ,m}.

Clearly, for some vertex v1 ∈ G1 and for some vertex v2 ∈ G2, NG(v1) ∩NG(v2) = ∅ as
v1 and v2 are in different components of G. Similarly, for some vertex w1 ∈ V (J1) and for
some vertex w2 ∈ V (J2), NJ(w1) ∩NJ(w2) = ∅ as w1 and w2 are in different components
of J . Therefore {v1, v2} ∪ {w1, w2} form small common neighbourhood sets for G and J ,
respectively. By Theorem 10 we can see that cH(G ∨ J) ≤ 4.

With respect to Corollary 13, if a component of either G or J contains a vertex z of
degree 1 or an isolated vertex, then cH(G ∨ J) ≤ 3 as {z} would form a small common
neighbourhood set.

Theorem 14. Let G be a connected graph, and J be a disconnected graph with n components,
n ≥ 2. Then cH(G ∨ J) ≤ cH(G) + 2.

Proof. Let Ji be a component of J , for i ∈ {1, 2, . . . , n}. In G ∨ J , we place one cop
on a vertex v1 ∈ V (J1), one cop on a vertex v2 ∈ V (J2), and we place the remaining
cH(G) on vertices of G. If the robber moves to a vertex of J , the robber will be visible as
NJ(vi) ∩NJ(vi+1) = ∅. The robber can then be caught immediately because there are cops
in both G and J , satisfying Observation 9. Thus the robber must remain on vertices of G
where the cH(G) cops can carry out their winning strategy and catch the robber.

5 Graph Products: Cartesian Product

Graph joins enable us to construct a new graph based on two input graphs. Cartesian
products also allow us to construct new graphs based on input graphs. In this section, we
bound the hyperopic cop number of the Cartesian product of graphs.

Let G and J be connected, finite graphs with V (G) = {x0, x1, . . . , xm} and V (J) =
{y0, y1, . . . , yn}. The Cartesian product of G and J , denoted G�J , is the graph with V (G)×
V (J) as its vertex set. An edge e ∈ E(G�J) if and only if e = (xi, yj)(xk, yl) where either:
i = k and yjyl ∈ E(J) or j = l and xixk ∈ E(G).

Note that, unlike graph joins, Cartesian products do not guarantee a graph of diameter
2 or less. Instead, diam(G�J) = diam(G) + diam(J). If diam(G) ≥ 2 or diam(J) ≥ 2,
clearly diam(G�J) ≥ 3. This property allows us to exploit Theorem 6 from [3], which states
that if diam(G) ≥ 3 then cH(G) ≤ c(G) + 2.

Corollary 15. Let G and J be graphs where diam(G) ≥ 2 or diam(J) ≥ 2. Then
cH(G�J) ≤ c(G) + c(J) + 2.

If we instead consider the situation where diam(G) 6≥ 2 and diam(J) 6≥ 2, then it must
be that diam(G) = diam(J) = 1, which implies G and J are complete graphs. We consider
this situation next.

Theorem 16. If n,m ≥ 2 then cH(Kn�Km) ≤ 4.

9



Proof. Label the vertices of Kn and Km as v1, v2, . . . vn and w1, w2, . . . wm, respectively.
Clearly, N((v1, w1)) ∩ N((v2, w2)) = {(v2, w1), (v1, w2)}. Therefore {(v1, w1), (v1, w2)}

forms a small common neighbourhood set and thus Υ(Kn�Km) = 2. By Theorem 6, we can
see that cH(Kn�Km) ≤ c(Kn�Km) + 2. Furthermore, from [9], we know that c(Kn�Km) ≤
c(Kn) + c(Km) = 2. Thus, cH(Kn�Km) ≤ 4.

We next improve the bound for graphs where c(G) = cH(G). The following proof mirrors
that of Theorem 1 in [9] which proves c(G�J) ≤ c(G) + c(J).

Theorem 17. If G and J are finite connected graphs then cH(G× J) ≤ cH(G) + cH(J).

Proof. Let G and J be graphs and V (G) = {u1, u2, . . . , um} and V (J) = {v1, v2, . . . , vn}.
For i ∈ [n], let Gi denote the induced subgraph of G�J with vertex set V (Gi) = {(u1, vi),
(u2, vi), . . . , (um, vi)} and, for k ∈ [m], let Jk denote the induced subgraph of G�J with
vertex set V (Jk) = {(uk, v1), (uk, v2), . . . , (uk, vn)}. Further observe that Gi

∼= G for all
i ∈ [n] and Jk ∼= J for all k ∈ [m]. In describing how the robber will be captured, the cops
will move in two phases.

Phase 1: Initially, cH(G) cops are placed on vertices of subgraph G1 and one cop is placed
on a vertex of Gi, for 2 ≤ i ≤ cH(J) + 1.

The cH(G) cops in G1 follow a hyperopic winning strategy on G1 in order to capture
the first coordinate of the robber; that is, although the robber plays on vertices of G�J ,
the cops will restrict their movements to subgraph G1 and follow a winning strategy on G1.
Once a cop, g1 moves to occupy the same first coordinate of the robber, we say the cops on
G1 have captured the first coordinate of the robber. Cop g1 remains on the vertices of G1

for the remainder of phase 1 and, whenever the robber changes his first coordinate, cop g1
will change his first coordinate to match. (Note that g1 can maintain capture of the first
coordinate because there can always be at least one cop on the graph that is not adjacent
to the robber, so g1 will always know where the robber is.)

Inductively, once cop gi has captured the first coordinate of the robber, the other cH(G)−1
cops on Gi will move to Gi+1. Now there are cH(G) cops on Gi+1. Similarly to the previous
situation, the cH(G) cops on Gi+1 follow a hyperopic winning strategy until a cop gi+1 moves
to occupy the same first coordinate of the robber. Cop gi+1 remains on the vertices of Gi+1

for the remainder of phase 1 and whenever the robber changes their first coordinate, cop
gi+1 will change their first coordinate to match.

Once cops g1, g2, . . . , gcH(J) have captured (and maintained) the first coordinate of the
robber, we move to Phase 2.

Phase 2: For i ∈ {1, 2, . . . , cH(H)}, cop gi has the same first coordinate as the robber just
before the robber’s turn. In this phase, whenever the robber changes their first coordinate,
the cops g1, g2, . . . , gcH(J) change their first coordinate to match the robber’s. Whenever the
robber changes his second coordinate, the cops g1, g2, . . . , gcH(J) move according to a hyper-
opic winning strategy. More precisely, suppose the robber moves from (uk, v`) to (uk, vp).
We observe that the robber is located in Jk before and after they move. And the cops are
also located in subgraph Jk. Thus, they can move according to a hyperopic winning strategy
on J .
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The only issue is if the robber continually changes their first coordinate. In this case,
because there are an additional cH(G) cops that are not currently in use (i.e. the cops other
than g1, g2, . . . , gcH(J)), these cops will prevent the robber from continually changing their
first coordinate. To see this, suppose the robber continually changed their first coordinate.
Then their second coordinate, say vq, would remain constant. The cH(G) currently unused
cops would move to subgraph Gq and apply a hyperopic winning strategy on Gq; this would
force the robber to either be captured or change their second coordinate.

From [3] we know that cH(Kn) = dn
2
e and, since Pm is a tree, that cH(Pm) = 1. Therefore,

by Theorem 17, we can see that cH(Kn�Pm) ≤ dn
2
e + 1. In Theorem 19, we determine

cH(Kn�Pm), which illustrates where Theorem 17 provides too large of an upper bound on
cH(Kn�Pm). First, we state a useful lemma.

Lemma 18. Let Kn be a complete graph where |V (Kn)| = n and P2 be a path with 2 vertices.
Two cops are sufficient to capture a robber in Kn�P2 in at most one move.

Proof. Let V (Kn) = {k1, k2, . . . , kn} and V (P2) = {p1, p2}. For i ∈ {1, 2}, let Ki
n denote

the induced subgraph of Kn�P2 with vertex set V (Ki
n) = {(k1, pj), (k2, pj), . . . , (kn, pj)}, for

j ∈ [n]. If n = 1 or n = 2, the cop’s strategy is straightforward; we will consider n ≥ 3.
Start by placing one cop on vertex (ku, p1), where u ∈ [n], and the other cop on vertex

(kv, p2), where v ∈ [n] and v > u. Notice that (ku, p1) and (kv, p2) share only 2 common
neighbours (ku, p2) and (kv, p1). If the robber is invisible, the cops can infer the robber is
situated on either of the common neighbours and move to (ku, p2) and (kv, p1) to catch the
robber in one move.

If the robber is visible then they are either in K1
n or K2

n. If the robber is in K1
n the cop

on (ku, p1) can move to capture the robber. Otherwise if the robber is in K2
n, the robber on

(kv, p2) can move to capture the robber in one move.

Theorem 19. For a complete graph Kn with |V (Kn)| = n and a path Pm with |V (Pm)| = m,
then cH(Kn�Pm) = 2.

Proof. From [3], we know cH(G) = 1 if and only if G is a tree. Since Kn�Pm contain cycles,
cH(Kn�Pm) ≥ 2.

Let V (Kn) = {k1, k2, . . . , kn} and V (Pm) = {p1, p2, . . . , pm}. For i ∈ [m], let Ki
n denote

the induced subgraph of Kn�Pm with vertex set V (Ki
n) = {(k1, pj), (k2, pj), . . . , (kn, pj)},

for j ∈ [n].
Start by placing one cop on (ku, p1), where u ∈ [n], and the other on (kv, pm), where

v ∈ [n], v < u. Notice (ku, p1) ∈ K1
n and (kv, pm) ∈ Km

n . Since the cops do not share any
common vertices at this point, we can assume that the robber is visible. Additionally, the
robber will be restricted to the induced subgraph Kn�Pm \K1

n ∪Km
n because if the robber

is placed on K1
n or Km

n the robber will be seen and caught by the cop on (ku, p1) or (kv, pm),
respectively.

We will proceed using the following strategy: leave one cop on (ku, p1) to guard K1
n and

move the cop on (kv, pm) along the path P = (kv, pm), (kv, pm−1), . . . , (kv, p2). Each time the
cops access a new Ki

m, the robber is restricted to the induced subgraph Kn�Pm \
⋃m

x=iK
x
n ∪

K1
n.
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As the induced subgraph that the robber can be situated on decreases, they will eventually
be on K2

n. Once the robber travelling down P is on (kv, p2), the cops will be able to catch
the robber during their next move using the strategy outlined in Theorem 18.

6 Open Questions

There still exist a variety of open problems associated with the hyperopic cop number.
Most notably, the following conjectures involving small common neighbourhood sets remain
unproven.

Conjecture 20. For any connected graphs G and J ,

cH(G ∨ J) ≤ min{cH(G),Υ(G)}+ min{cH(J),Υ(J)}.

We have seen cH(G ∨ J) ≤ c(G ∨ J) + Υ(G ∨ J) and cH(G ∨ J) ≤ Υ(G) + Υ(J). The
proof of this upper bound provides an interesting challenge as the robber has access to any
vertex on the other graph, which may interfere with cH(G) cops and cH(J) cops carrying
out their respective winning strategies.

Conjecture 21. For connected graphs G and J , cH(G ∨ J) ≤ Υ(G ∨ J).

Although this would only improve the bound by one, it is a natural extension from
the previous work done with small common neighbourhood sets. Since Υ(G ∨ J) does not
guarantee that the smallest common neighbourhood set contains vertices in both G and J ,
we cannot utilize Observation 9. As a result, it is not simple to make the logical jump from
Theorem 10 to Conjecture 21. Furthermore, it would also serve useful to determine which
graph classes have the property that Υ(G∨J) = Υ(G)+Υ(J). This would further narrow the
question of how frequently there is a discrepancy between Theorem 10 and Conjecture 21.

Determining a lower bound using a small common neighbourhood set would also be
useful, ideally, a general lower bound that would accompany that given by Theorem 6.
Another natural extension of this work would be results on other graph products such as the
lexicographic and strong products.
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