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ADJACENCY SPECTRA OF SEMIGRAPHS

PRALHAD M. SHINDE

Abstract. In this paper, we define the adjacency matrix of a semigraph. We give
the conditions for a matrix to be semigraphical and give an algorithm to construct
a semigraph from the semigraphical matrices. We derive lower and upper bounds
for largest eigenvalues. We study the eigenvalues of adjacency matrix of two types
of star semigraphs.
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1. Introduction

Graph theory is an old and very evolved subject having abundant number of
applications to industry as well as other subjects. There are several generalizations
of graph structure available in literature. Hypergraph [2] is one of the most studied
generalization of graphs and several graph theory results have been studied for
hypergraphs. Sampathkumar [3] defined the semigraph as a generalization of graph
which can be thought as a linear hypergraph with ordered edges. The ordering in
vertices of edges makes semigraphs different from hypergraphs. The most sought
after tool to study graph properties is linear algebra by associating a matrix to the
graph and so is for semigraphs. In [4], adjacency matrix for semigraphs is studied
but their adjacency matrix does not enjoy the symmetric property and hence loses
the advantage of rich theory of symmetric matrices. In this paper, we define the
adjacency matrix for a semigraph in a natural way so that it not only matches
with the adjacency matrix of graph when the semigraph is a graph but also enjoys
the symmetric property. Hence, it would turn out to be a powerful tool to study
semigraphs.

This paper is organized as follows. In Section 2, we define the adjacency matrix of
semigraphs and study some basic properties. In section 3, we obtain expressions for
degree sum and eigenvalues square sum. Further, we give lower and upper bounds to
the largest eigenvalue of adjacency matrix of a semigraph. In Section 4, we analyze
the eigenvalues of two types of star semigraphs.

http://arxiv.org/abs/2205.00715v1
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Preliminaries

For all basic definitions and standard notations please refer to [3].
We recall some definitions here;

Definition 1.1. Let V be a non-empty set having n elements. A semigraph is
a pair G= (V,E), where the elements of V are called vertices and E is a set of
ordered k -tuples of distinct vertices, whose elements are called edges of G ; for
n ≥ 2, satisfying the following conditions:

(1) Any two edges have at most one vertex in common
(2) Two edges (u1, u2, · · · , uk) and (v1, v2, · · · , vr) are considered to be equal if

(a) r = k and
(b) either ui = vi for 1 ≤ i ≤ k, or ui = vk−i+1 , for 1 ≤ i ≤ k.

Thus the edge (u1, u2, · · · , ur) is same as (ur, ur−1, · · · , u1) .

Two vertices vi, vj in a semigraph are said to be adjacent if they belong to
the same edge and are said to be consecutively adjacent if in addition they are
consecutive in order as well.

For the edge e = (u1, u2, · · · , un) , u1 and un are called the end vertices of e and
u2, u3, · · · , un−1 are called the middle vertices of e . Note that ui, uj are adjacent
for all 1 ≤ i, j ≤ n while ui, ui+1 are consecutively adjacent for all 1 ≤ i ≤ n− 1 .

For a semigraph, we define following types of vertices and edges:

(1) ui is said to be a pure end vertex if it is an end vertex of every edge to which
it belongs.

(2) ui is said to be a pure middle vertex if it is a middle vertex of every edge to
which it belongs.

(3) ui is said to be a middle end vertex if it is middle vertex of at least one edge
and end vertex of at least one other edge.

(4) An edge e = (u1, u2, · · · , uk), k ≥ 2 is said to be full edge if u1 and uk are
pure end vertices.

(5) An edge e = (u1, u2, · · · , uk), k > 2 is said to be an half edge if either u1

or uk (or both) are middle end vertices.
(6) An edge e = (u1, u2) is said to be a quarter edge if both u1 and u2 are

middle end vertices while e = (u1, u2) will be half edge if exactly one of u1

and u2 is a middle end vertex and other is a pure end vertex.

For a full edge e = (u1, u2, · · · , uk) , (ui, ui+1) ∀ 1 ≤ i ≤ k − 1 is called a partial
edge of e while for a half edge e = (u1, u2, · · · , uk−1, uk) , (u1, u2) is called partial
half edge of e if u1 is middle end vertex, (uk−1, uk) is a partial half edge of e if
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uk is middle end vertex and (ui, ui+1) ∀ 2 ≤ i ≤ k−2 are partial edges of e . Thus,
any half edge can have at most two partial half edges. Also an half edge is a partial
half edge iff it contains only two vertices and half edge with partial half edges must
have at least 3 vertices.

Example 1.2. Let G = (V,E) be a semigraph, with V = {v1, v2, · · · , v10} as a
vertex set and E = {(v1, v2, v3, v4, v5), (v1, v7, v8), (v2, v6, v8), (v1, v9), (v6, v7)}.
as an edge set.

v9

v1 v2 v3 v4 v5

v6

v8

v7

v10

Fig. 1

In Fig. 1, vertices v1, v5, v8, and v9 are the pure end vertices; v3, v4 are pure middle
vertices; v2 , v6, and v7 are the middle end vertices and v10 is an isolated vertex.
Further, (v1, v9) , (v1, v7, v8) , (v1, v2, v3, v4, v5) are full edges whereas (v2, v6, v8) is
an half edge with only (v2, v6) as a partial half edge. Note that (v6, v7) is the a
quarter edge.

Definition 1.3. A semigraph G = (V,E) is said to be connected if for any two
vertices u, v ∈ E , there exist a sequence of edges ei1 , · · · , eip for some p such
that u ∈ ei1 , v ∈ eip and |eij ∩ eij+1

| = 1, ∀ 1 ≤ j ≤ p− 1 .

Notation 1.4. Throughout this paper, we assume that semigraph is connected and
G = (V,E) denotes the semigraph with n vertices and m edges such that

• m1 is the number of full edges
• m2 is the number quarter edges
• m3 is the number of half edges with one partial half edge
• m4 is the number of half edges with two partial half edges

Note that m = m1 +m2 +m3 +m4 and if G is a graph then m2 = m3 = m4 = 0
and m = m1 .

Definition 1.5. Graph Skeleton of a semigraph

Let G = (V,E) be a semigraph. The graph skeleton of G is an underlined graph
structure GS of the semigraph on V , where two vertices vi , vj are adjacent in GS

iff vi and vj are consecutively adjacent in G. We write vi ∼S vj .
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v1 v2 v3 v4

v7

v8

v6
v9

v5

Fig. 2

v1 v2 v3 v4

v7

v8

v6
v9

v5

Fig. 3

Example 1.6. Consider the following semigraph

The graph skeleton of the semigraph in Fig. 2 is graph in Fig. 3

Note that given a semigraph, it determines a unique graph skeleton but not con-
versely.
For any edge e = (u1, u2, · · · , uk) ∈ E , the graph skeleton of e is a graph path
of length k − 1 . For example, graph skeleton of edge e = (v1, v2, v3, v3, v5) of the
semigraph Fig. 2 is graph path Fig. 4

v1 v2 v3 v4 v5

Fig. 4

2. Adjacency matrix

Adjacency matrix is a very powerful tool to study graph properties. To study
semigraph properties along the same lines we define the adjacency matrix of a sem-
igraph and study its properties.
Let G=(V,E) be a semigraph, with V = {v1, v2, · · · , vn} as a vertex set and
E = {e1, e2, · · · , em} as an edge set. Let ui, uj ∈ e = (u1, u2, · · · , uk) for some
e ∈ E . Let de(ui, uj) denote the distance between ui and uj in the graph skeleton
of e . The distance de(ui, uj) is well-defined as each pair of vertices in semigraph
belongs to at most one edge.
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Definition 2.1. We index the rows and columns of a matrix A = (aij)n×n by
vertices v1, v2, · · · , vn, where aij is given as follows:

aij =



























de(vi, vj), if vi, vj belong to a full edge or a half edge such that

(vi, vj) is neither a partial half edge nor a quarter edge
1
2
, if (vi, vj) is a partial half edge

1
4
, if (vi, vj) is a quarter edge

0, otherwise

The matrix A = (aij)n×n is called the adjacency matrix of semigraph G.

Example 2.2. Consider the semigraph in Fig. 5. The adjacency matrix A of G is

v1 v2 v3 v4

v7

v8

v6
v9

v5

Fig. 5

given by































v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 1 2 3 4 1 0 2 0
v2 1 0 1 2 3 0 1

2
2 0

v3 2 1 0 1 2 0 0 0 1
2

v4 3 2 1 0 1 0 0 0 0
v5 4 3 2 1 0 0 0 0 0
v6 1 0 0 0 0 0 1

4
1 0

v7 0 1
2

0 0 0 1
4

0 1 0
v8 2 2 0 0 0 1 1 0 0
v9 0 0 1

2
0 0 0 0 0 0































Remark 2.3. Note that each pair of vertices belongs to at most one edge and hence
aij in the adjacency matrix is well-defined. Adjacency matrix is symmetric and if
the semigraph is a graph then above adjacency matrix coincides with the adjacency
matrix of graph.

Let AS be the adjacency matrix of graph skeleton GS of a semigraph G . We
define an Excess adjacency matrix of Semigraph as follows
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Definition 2.4. Let G be a Semigraph with adjacency matrix A , let AS be the
adjacency matrix of graph skeleton of G . The matrix AE defined as AE = A− AS

is called Excess adjacency matrix of G . Thus, A = AS + AE .

Note that a semigraph is a graph if and only if AE is a zero matrix.

Example 2.5. Consider the Semigraph

v1 v2 v3

v6

v5

v4

Fig. 6

A =AS + AE

















0 1 2 1 2 0
1 0 1 0 2 1

2
2 1 0 0 0 0
1 0 0 0 1 1

4
2 2 0 1 0 1
0 1

2
0 1

4
1 0

















=















0 1 0 1 0 0
1 0 1 0 0 1
0 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 1 0 1 1 0















+

















0 0 2 0 2 0
0 0 0 0 2 −1

2
2 0 0 0 0 0
0 0 0 0 0 −3

4
2 2 0 0 0 0
0 −1

2
0 −3

4
0 0

















The matrix AE is an excess adjacency matrix of the semigraph in Fig. 6. It would
be interesting to study the properties of excess matrix of a semigraph.

We define the degree of vertices in semigraph as sum of graph degree dS and
excess degree dE . Let AS

i , AE
i are ith rows of AS, AE respectively.

Definition 2.6. Let vi be a vertex of G , define degree of vertex vi by
d(vi) = dS(vi)+ dE(vi) , where dS(vi) = AS

i 1 and dE(vi) = AE
i 1 , 1 being a column

matrix with all entries 1.

The degree of vertex v2 in the Fig. 6 is 4.5, where graph degree dS = 3 and
excess degree dE = 1.5 .
Graph degree is always an integer; excess degree is a number of the form n + α ,
where n is an integer and α ∈ {0, 0.25, 0.5, 0.75}.

Remark 2.7. Why do fractional entries of adjacency matrix makes sense?
First of all, we want a natural generalization of graph adjacency as every graph
is an example of semigraph. Secondly, to respect the ordering of vertices, and to
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differentiate between middle end vs. pure end vertices of an edge we need to treat
them differently. If we treat these vertices normally and define aij = 1 if vi and
vj are consecutively adjacent then we get the same adjacency matrix for two non-
isomorphic semigraphs. In other words, given the matrix we cannot determine the
semigraph uniquely.

Example 2.8. Consider the following two semigraphs

v1 v2 v3 v4 v5

v6

v7

u1 u2 u3 u4 u5

u6

u7

Fig. 7

These two non-isomorphic semigraphs have the same adjacency matrix as follows.



















0 1 2 3 4 0 0
1 0 1 2 3 0 0
2 1 0 1 2 1 1
3 2 1 0 1 1 1
4 3 2 1 0 0 0
0 0 1 1 0 0 2
0 0 1 1 0 2 0



















Thus, if two vertices are consecutively adjacent and one of them or both are middle
end vertices then assigning less weight to an edge makes more sense as it helps us to
distinguish between consecutively adjacency where both vertices are pure end vertices.
Further, it helps us to achieve uniqueness, see theorem 2.9. We get two different
adjacency matrices for the above semigraphs with respect to our definition:





















v1 v2 v3 v4 v5 v6 v7

v1 0 1 2 3 4 0 0
v2 1 0 1 2 3 0 0
v3 2 1 0 1 2 1 1
v4 3 2 1 0 1 1

2
1
2

v5 4 3 2 1 0 0 0
v6 0 0 1 1

2
0 0 2

v7 0 0 1 1
2

0 2 0





















,





















u1 u2 u3 u4 u5 u6 u7

u1 0 1 2 3 4 0 0
u2 1 0 1 2 3 0 0
u3 2 1 0 1 2 1

2
1
2

u4 3 2 1 0 1 1 1
u5 4 3 2 1 0 0 0
u6 0 0 1

2
1 0 0 2

u7 0 0 1
2

1 0 2 0




















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2.1. Properties of Adjacency matrix. Some basic observations:
Let G be a semigraph with the adjacency matrix A = (aij)n×n , we note the fol-
lowing properties

(1) For every edge e = (u1, u2, · · · , ur) with r ≥ 2 which is not a quarter edge,

the submatrix Ae of the size r × r formed by uth
1 , u

th
2 , · · · , uth

r rows and
columns is given by



























u1 u2 u3 u4 · · · ur−2 ur−1 ur

u1 0 µ1 2 3 · · · r − 3 r − 2 r − 1
u2 µ1 0 1 2 · · · r − 4 r − 3 r − 2
u3 2 1 0 1 · · · r − 5 r − 4 r − 3
u4 3 2 1 0 · · · r − 6 r − 5 r − 4
...

...
...

...
...

...
...

...
...

ur−2 r − 3 r − 4 r − 5 r − 6 · · · 0 1 2
ur−1 r − 2 r − 3 r − 4 r − 5 · · · 1 0 µ2

ur r − 1 r − 2 r − 3 r − 4 · · · 2 µ2 0



























where, for i ∈ {1, 2}

µi =

{

1, if ui is pure end vertex
1
2 , if ui is middle end vertex

or

For a quarter edge e = (ui, uj) , the submatrix Ae is

(

ui uj

ui 0 1
4

uj
1
4 0

)

We call the matrix Ae as an edge sub-matrix of the semigraph.
(2) aij =

1
4 iff (vi, vj) is a quarter edge.

(3) The number of quarter edges is equal to half the number of occurrences of 1
4 in

the matrix.
(4) vi is pure middle vertex iff whenever aij = 1, ∃ k such that akj = 2 and aki = 1
(5) vi is a middle end vertex iff it satisfies exactly one of the following

a. aij =
1
4 , for some j

b. aij =
1
2 , and aik = 2, with ajk = 1, for some j

c. aij =
1
2 , and ∄ k such that aki = 2 and akj = 1 .

(6) vi is a pure end vertex iff it is neither pure middle nor middle end vertex.

Let A be a matrix, it is said to be semigraphical if there exist a semigraph whose
adjacency matrix is A .
We give the necessary and sufficient conditions for a matrix to be semigraphical.
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In [4], authors obtained the necessary and sufficient for their adjaceny matrix being
semigraphical. Here, we take a similar approach.

Theorem 2.9. A square n× n matrix A = (aij) is semigraphical if and only if it
satisfies the following conditions:

(1) aij ∈ {0, 1
4
, 1
2
, 1, 2, · · · , n− 1}, aij = aji, ∀ i, j and aii = 0, ∀ i.

(2) Let X = {1, 2, · · · , n} be an indexing set of columns and rows of A . Let
e1, e2, · · · , em be subsets of X such that X = ∪m

i=1ei , where ∀ i, ei ≥ 2 and
|ei ∩ ej | ≤ 1; ∀ i 6= j . Also, the submatrix Ai of A with the indexing set ei
is a matrix described as in property 1(upto the permutations of indices).

Proof. Suppose A is a semigraphical matrix. Then the conditions (1) and (2) follow
from the definition 2.1 and the property 1.

Conversely, if A satisfies the above conditions then we show the existence of
semigraph. We define the vertex set X = {1, 2, 3, · · · , n} and edge set E =
{e1, e2, · · · , em} , where ei is an indexing set of the submatrix Ai . Thus, by the
second condition |ei| ≥ 2, ∀i and |ei ∩ ej | ≤ 1; ∀ i 6= j ; hence G = (X,E) is a
semigraph.

�

We give an algorithm to construct semigraph from a semigraphical matrix.

2.2. Algorithm to construct Semigraphs from the semigraphical matrices.

Let A be a semigraphical matrix with A = AS + AE satisfying the conditions of
Theorem 2.9

Step 1: Use AS to lay down the graph skeleton
Step 2: for i ∈ {1, 2, · · · , n} ,

set N(i) = {ij ∈ X | aSiij = 1, ∀ 1 ≤ j ≤ ki} , where ki is graph degree of i .

Step 3: set XPend = {p1, p2, · · · , pr} the set of pure end vertices,
XMend = {q1, q2, · · · , ql} the set of middle end vertices.
We create these sets using the properties 4, 5 and 6.

Step 4: Create edges starting with pure end vertices
For each pi ∈ XPend

For each j ∈ N(pi) in GS :
if apij =

1
2
then set (pi, j) as an edge and stop

elif apij = 1 , search for a sequence of column indices j1, j2, · · · , jr such that

pthi row has [1 : r] in the respective column indices with jthr row having a
sequence [r : 1] or [r : 2, 1

2
] in the pi, j1, j2, · · · , jr−1 columns.

set ei = (pi, j1, j2, · · · , jr) .
Step 5: Create edges starting with middle end vertices

For each qi ∈ XMend
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For each j ∈ N(qi) in GS :
if apij =

1
4
then set (pi, j) as an (quarter)edge and stop

elif apij =
1
2
, search for a sequence of column indices j1, j2, · · · , jr such that

pthi row has [1
2
, 2 : r] in the respective column indices with jthr row having

a sequence [r : 1] or [r : 2, 1
2
] in the pi, j1, j2, · · · , jr−1 columns.

set ei = (pi, j1, j2, · · · , jr) .
Step 6: Each edge constructed in step 4 or 5 appears twice, set E as the set of all

edges created in step 4 and 5.

There is a unique sequence in step 4 and 5(by definition of adjacency and semigraph).
Hence, edges created are unique thus the semigraph is unique. In step 5, apij = 1
can’t be a case as pi is a middle end vertex.

3. Bounds on eigenvalues

Let A denote the adjacency matrix of a Semigraph G . As the matrix is sym-
metric, its eigenvalues are real. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A.

We say that λ1 ≥ λ2 ≥ · · · ≥ λn are eigenvalues of G . In this section, we obtain
some bounds on the largest eigenvalues. For graph theory results please refer to [1].
In [4], authors were able to obtain similar results for their adjacency matrix but
their adjacency matrix is not symmetric, hence could give uniform treatments to all
semigraphs.

We use j ∼S i to represent ith and jth vertices form a partial edge, j ∼|− i

represent ith and jth vertices form a partial half edge, j ∼|−| i represent ith and

jth vertices form a quarter edge, j ∼l i represent ith and jth vertices belong to
the same edge and are l distance apart.

Theorem 3.1. Let G be a Semigraph, GS is the skeleton graph of G , r is the
rank(size of the largest edge), ∆S be the maximum degree in GS then

λ1 ≤
r(r − 1)

2
∆S

Also, if δ is the minimum degree of G then

δ ≤ λ1

Proof. Let X be an eigenvector of the largest eigenvalue λ1 . Then, for the ith

component xi of X, we get

λxi =
∑

j∼si

xj +
1

2

∑

j∼|−i

xj +
1

4

∑

j∼|−|i

xj +

r−1
∑

l=2

∑

j∼li

lxj
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Consider the maximum component xk > 0 of X .

λxk =
∑

j∼sk

xj +
1

2

∑

j∼|−k

xj +
1

4

∑

j∼|−|k

xj +
r−1
∑

l=2

∑

j∼lk

lxj

λxk ≤
∑

j∼sk

xj +
∑

j∼|−k

xj +
∑

j∼|−|k

xj +

r−1
∑

l=2

l

(

∑

j∼lk

xj

)

≤ ∆Sxk +

r−1
∑

l=2

l∆Sxk

≤ ∆Sxk +∆Sxk

(

r(r − 1)

2
− 1

)

≤
(

∆S +
∆S(r2 − r − 2)

2

)

xk

≤ ∆S

(

1 +
r2 − r − 2

2

)

xk

≤ ∆S

(

r2 − r

2

)

xk

Thus,

λ1 ≤
r(r − 1)

2
∆S

For second part, we know that λ1 = max
||X||=1

X tAX = max
X 6=0

XtAX
XtX

. Thus,

λ1 ≥
1tA1

1t1
=

n
∑

i=1

d(vi)

n
≥ nδ

n

Hence, δ ≤ λ1 . �

We note that when Semigraph is graph, we get the graph theory result [1, Theorem
3.10] as the consequence of above result.

To prove the next result, we look at the expression for degree sum in semigraph.
If a semigraph has m edges then we decompose m as m = m1 + m2 + m3 + m4

where m1 is the number of full edges, m2 is the number of quarter edges, m3 is
the number of half edges with one partial half edge and m4 is the number of half
edges with two partial half edges.
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Lemma 3.2. Let E = {e1, e2, · · · , em} be an edge set of semigraph G on n vertices
such that |ei| = ri , d1, d2, · · · , dn are the degrees, then

n
∑

i=1

di =
1

3

m
∑

i=1

ri(r
2
i − 1)− 3

2
m2 −

1

2
m3 −m4.

Proof. Consider an edge ei = (vi1 , vi2, · · · , viri ) , assume that vi1 , viri are pure end

vertices. The degree of the ithj vertex with respect to the edge ei is given by

(j − 1) + · · ·+ 2 + 1 + 1 + 2 + · · ·+ (ri − j)

=
j(j − 1)

2
+

(ri − j)(ri − j + 1)

2

=
1

2
[2j2 − 2j − 2jri + ri(ri + 1)]

=j2 − j − jri +
ri(ri + 1)

2

Thus, the degree contribution of this edge to the total degree sum is
ri
∑

j=1

[

j2 − j − jri +
ri(ri + 1)

2

]

Simplifying this, we get

=

ri
∑

j=1

j2 −
ri
∑

j=1

j − ri

ri
∑

j=1

j +
ri(ri + 1)

2

ri
∑

j=1

1

=
ri(ri + 1)(2ri + 1)

6
− ri(ri + 1)

2
− r2i (ri + 1)

2
+

r2i (ri + 1)

2

= ri(ri + 1)

[

1

6
(2ri + 1)− 1

2

]

= ri(ri + 1)

[

ri

3
− 1

3

]

=
1

3
ri(r

2
i − 1)

Thus, total degree contribution of all edges having both end vertices as pure end

vertices is
1

3

m1
∑

i=1

ri(r
2
i − 1) .

For a quarter edge (u, v) , its degree contribution to the total degree is 1
4
+ 1

4
. Thus,

total degree contribution to the total degree sum due to quarter edges is 1
2
m2 , which
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can be written as
1

3

m2
∑

i=1

2(22 − 1)− 3

2
m2 .

If one of the end vertices of an edge say v1 is a middle end vertex, then the total
degree contribution of that edge to the total degree would be 1

3
ri(r

2
i − 1) − 1

2
as

the degree contribution due to vi1 is 1
2
+ 2 + · · · + (ri − 1) . Thus, total degree

contribution of all edges having one of end vertices as middle end vertex is

1

3

m3
∑

i=1

ri(r
2
i − 1)− 1

2
m3

If both end vertices of an edge are middle end vertices, then the total degree contri-
bution of that edge to the total degree would be 1

3
ri(r

2
i − 1)− 1

2
− 1

2
as the degree

contribution due to vi1 and viri is 1
2
+2+ · · ·+(ri−1) for each. Thus, total degree

contribution of all edges having both end vertices as middle end vertices is

1

3

m4
∑

i=1

ri(r
2
i − 1)−m4

Thus, the degree sum
n
∑

i=1

di =
1

3

m
∑

i=1

ri(r
2
i − 1)− 3

2
m2 −

1

2
m3 −m4

�

When G is a graph then we can see that ri = 2, ∀i and m2 = m3 = m4 = 0 ,
thus we get

n
∑

i=1

di =
1

3

m
∑

i=1

2(22 − 1) = 2m.

Lemma 3.3. Let E = {e1, e2, · · · , em} be an edge set of semigraph G on n vertices
such that |ei| = ri , λ1, λ2, · · · , λn are the eigenvalues of G , then

n
∑

i=1

λ2
i =

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4.

Proof. We know that if λ1, λ2, · · · , λn are eigenvalues of A then λ2
1, λ

2
2, · · · , λ2

n are

eigenvalues of A2 . And trace of A2 is
n
∑

i=1

λ2
i .

Consider an edge ei = (vi1 , vi2 , · · · , viri ) , assume that vi1, viri are pure end vertices.
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The contribution of the ithj vertex with respect to the edge ei to the trace of A2 is
given by

(j − 1)2 + · · ·+ 22 + 12 + 12 + 22 + · · ·+ (ri − j)2

=
j(j − 1)(2j − 1)

6
+

(ri − j)(ri − j + 1)(2ri − 2j + 1)

6

=
1

6
[2j3 − 3j2 + j + 2r3i + 3r2i − 6r2i j + 6rij

2 − 6rij + ri − 2j3 + 3j2 − j]

=
1

6

[

2r3i + 3r2i + ri − 6r2i j + 6rij
2 − 6rij

]

Thus, the contribution of this edge to the trace of A2 is

1

6

ri
∑

j=1

[

2r3i + 3r2i + ri − 6r2i j + 6rij
2 − 6rij

]

Simplifying this, we get

=
1

6

[

2

ri
∑

j=1

r3i + 3

ri
∑

j=1

r2i +

ri
∑

j=1

ri − 6r2i

ri
∑

j=1

j + 6ri

ri
∑

j=1

j2 − 6ri

ri
∑

j=1

j

]

=
1

6

[

2r4i + 3r3i + r2i − 6r2i
ri(ri + 1)

2
+ 6ri

ri(ri + 1)(2ri + 1)

6
− 6ri

ri(ri + 1)

2

]

=
1

6

[

r4i − r2i
]

=
1

6
r2i (r

2
i − 1)

Thus, the total contribution of all edges having both end vertices as pure end vertices

to the trace of A2 is
1

6

m1
∑

i=1

r2i (r
2
i − 1) .

For a quarter edge (u, v) , its contribution to the trace of A2 is 1
16
+ 1

16
. Thus, total

contribution to the trace of A2 due to quarter edges is 1
8
m2 , which can be written

as
1

6

m2
∑

i=1

22(22 − 1)− 15

8
m2 .

If only one of the end vertices of an edge say vi1 is a middle end vertex, then the
total contribution of that edge to the the trace of A2 would be 1

6
r2i (r

2
i − 1)− 1

4
as

the contribution due to vi1 is 1
4
+ 22 + · · ·+ (ri − 1)2 . Thus, total contribution of
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all edges having one of end vertices as middle end vertex is

1

6

m3
∑

i=1

r2i (r
2
i − 1)− 3

4
m3

If both end vertices of an edge are middle end vertices, then the total contribution
of that edge to the trace of A2 would be 1

6
r2i (r

2
i − 1) − 1

4
− 1

4
as the contribution

due to vi1 and viri is 1
4
+ 22 + · · ·+ (ri − 1)2 for each. Thus, total contribution of

all edges having both end vertices as middle end vertices is

1

6

m4
∑

i=1

r2i (r
2
i − 1)− 1

2
m4

Thus, the trace of A2 is
n
∑

i=1

λ2
i =

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4

�

When G is a graph then we can see that ri = 2, ∀i and m2 = m3 = m4 = 0 ,
thus we get

n
∑

i=1

di =

n
∑

i=1

λ2
i =

1

6

m
∑

i=1

22(22 − 1) = 2m.

Theorem 3.4. Let G = (X,E) be a semigraph with |X| = n, |E| = m , and let
λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of G then

λ1 ≤

√

√

√

√

(

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4

)

(

n− 1

n

)

Proof. Notice that

n
∑

i=1

λi = 0 , implies λ1 ≤
n
∑

i=2

|λi|.

By lemma 3.3, we have

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4 =

n
∑

i=1

λ2
i

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4 − λ2

1 =

n
∑

i=2

λ2
i
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By Cauchy-Schwarz inequality and λ1 ≤
n
∑

i=2

|λi| , we get

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4 − λ2

1 ≥
1

n− 1

(

n
∑

i=2

|λi|
)2

≥ λ2
1

n− 1

Simplifying it further, we get

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4 − λ2

1 ≥
λ2
1

n− 1

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4 ≥ λ2

1

(

1 +
1

n− 1

)

(

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4

)

(

n− 1

n

)

≥ λ2
1

Thus,

λ2
1 ≤

(

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4

)

(

n− 1

n

)

λ1 ≤

√

√

√

√

(

1

6

m
∑

i=1

r2i (r
2
i − 1)− 15

8
m2 −

3

4
m3 −

1

2
m4

)

(

n− 1

n

)

�

When G is a graph, ri = 2, ∀ i and m2 = m3 = m4 = 0 , we get

λ1 ≤

√

√

√

√

(

1

6

m
∑

i=1

22(22 − 1)− 0

)

(

n− 1

n

)

λ1 ≤
√

2m

(

n− 1

n

)

4. Spectra of Star Semigraphs

In this section, we study the spectra of two types of Star semigraphs.
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Definition 4.1. If λ1, λ2, · · · , λn are eigenvalues of a matrix A with multiplicities
k1, k2, · · · , kn then spectrum of A is

(

λ1 λ2 · · · λn

k1 k2 · · · kn

)

4.1. Spectra of Star semigraphs- type I. Let S3
2,n denote a star semigraph

having one edge of 3 vertices and n edges of 2 vertices incident on the middle vertex
of the edge of 3 vertices.

v2

v1

v3

v4

vr

vn+3

vr+1

v2

v1

v3

Star semigraphs: S3
2,n S3

2,0

Fig. 8

The adjacency matrix A is as follows:























v1 v2 v3 v4 v5 · · · vn+3

v1 0 1 1 1
2

1
2

· · · 1
2

v2 1 0 2 0 0 · · · 0
v3 1 2 0 0 0 · · · 0
v4

1
2

0 0 0 0 · · · 0

v5
1
2

0 0 0 0 · · · 0
...

...
...

...
...

...
. . .

...
vn+3

1
2

0 0 0 0 · · · 0























Lemma 4.2. The characteristic polynomial of adjacency matrix of S3
2,n is

Pn(λ) = λn−1(λ+ 2)

(

λ3 − 2λ2 − n + 8

4
λ+

n

2

)
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Proof. Consider the characteristic polynomial Pn(λ) = det(λI − A)

Pn(λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ −1 −1 −1
2

· · · −1
2

−1
2

−1 λ −2 0 · · · 0 0
−1 −2 λ 0 · · · 0 0
−1

2
0 0 λ · · · 0 0

...
...

...
...

. . .
...

...
−1

2
0 0 0 · · · λ 0

−1
2

0 0 0 · · · 0 λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n+3)×(n+3)

Using cofactor expansion along the last column, we get

= (−1)n+4 (−1)

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 λ −2 0 · · · 0
−1 −2 λ 0 · · · 0
−1

2
0 0 λ · · · 0

...
...

...
...

. . .
...

−1
2

0 0 0 · · · λ

−1
2

0 0 0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+(−1)2n+6λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ −1 −1 −1
2

· · · −1
2

−1 λ −2 0 · · · 0
−1 −2 λ 0 · · · 0
−1

2
0 0 λ · · · 0

...
...

...
...

. . .
...

−1
2

0 0 0 · · · λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Observe that the second term is the characteristic polynomial of S3
2,n−1 .

Thus, we get

= (−1)n
(−1)

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 λ −2 0 · · · 0
−1 −2 λ 0 · · · 0
−1

2
0 0 λ · · · 0

...
...

...
...

. . .
...

−1
2

0 0 0 · · · λ

−1
2

0 0 0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n+2)×(n+2)

+ λPn−1(λ)

By using the cofactor expansion for the first term along the last row, we get

= (−1)n(−1)n+3 (−1)

2

(−1)

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ −2 0 · · · 0
−2 λ 0 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ λPn−1(λ)
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The determinant of the above (n+ 1)× (n+ 1) matrix is (λ2 − 4)λn−1.

Pn(λ) =− 1

4

(

λ2 − 4
)

λn−1 + λPn−1(λ)

=− 1

4

(

λ2 − 4
)

λn−1 + λ

[

−1

4

(

λ2 − 4
)

λn−2 + λPn−2(λ)

]

=− 1

4
λn−1

(

λ2 − 4
)

(2) + λ2Pn−2(λ)

=− 1

4
λn−1

(

λ2 − 4
)

(2) + λ2

[

−1

4

(

λ2 − 4
)

λn−3 + λPn−3(λ)

]

=− 1

4
λn−1

(

λ2 − 4
)

(3) + λ3Pn−3(λ)

...

=− 1

4
λn−1

(

λ2 − 4
)

(n) + λnP0(λ)

Here, P0(λ) is the characteristic polynomial of S3
2,0 , Fig. 8.

P0(λ) =

∣

∣

∣

∣

∣

∣

λ −1 −1
−1 λ −2
−1 −2 λ

∣

∣

∣

∣

∣

∣

P0(λ) =λ3 − 6λ− 4

Thus,

Pn(λ) =− 1

4
λn−1

(

λ2 − 4
)

(n) + λn(λ3 − 6λ− 4)

Pn(λ) =λn+3 − n+ 24

4
λn+1 − 4λn + nλn−1

Pn(λ) =λn−1

(

λ4 − n+ 24

4
λ2 − 4λ+ n

)

Pn(λ) =λn−1(λ+ 2)

(

λ3 − 2λ2 − n + 8

4
λ+

n

2

)

�

Thus, the spectra of star semigraphs are:
(

0 −2 λ1 λ2 λ3

n− 1 1 1 1 1

)
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where λ1, λ2, λ3 are roots of the cubic polynomial λ3 − 2λ2 − n+8
4

+ n
2
.

4.2. Spectra of 3-uniform Star semigraphs- type II. Let S3
n denote a star

semigraph having all edges with 3 vertices and having middle vertex as the common
vertex to all. This is special type of 3-uniform semigraph. The adjacency matrix A

v1

v0

v2

v3

v2n−1

v2n

v4

S3
n

Fig. 9

is as follows:

































v0 v1 v2 v3 v4 · · · v2n−3 v2n−2 v2n−1 v2n

v0 0 1 1 1 1 · · · 1 1 1 1
v1 1 0 2 0 0 · · · 0 0 0 0
v2 1 2 0 0 0 · · · 0 0 0 0
v3 1 0 0 0 2 · · · 0 0 0 0
v4 1 0 0 2 0 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
v2n−3 1 0 0 0 0 · · · 0 2 0 0
v2n−2 1 0 0 0 0 · · · 2 0 0 0
v2n−1 1 0 0 0 0 · · · 0 0 0 2
v2n 1 0 0 0 0 · · · 0 0 2 0

































Lemma 4.3. The characteristic polynomial of adjacency matrix of S3
n is

Pn(λ) = (λ+ 2)(λ2 − 4)n−1
[

λ2 − 2λ− 2n
]
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Proof. Consider the characteristic polynomial S3
n(λ) = det(λI − A)

Pn(λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ −1 −1 −1 −1 · · · −1 −1 −1 −1
−1 λ −2 0 0 · · · 0 0 0 0
−1 −2 λ 0 0 · · · 0 0 0 0
−1 0 0 λ −2 · · · 0 0 0 0
−1 0 0 −2 λ · · · 0 0 0 0
...

...
...

...
. . .

...
...

−1 0 0 0 0 · · · λ −2 0 0
−1 0 0 0 0 · · · −2 λ 0 0
−1 0 0 0 0 · · · 0 0 λ −2
−1 0 0 0 0 · · · 0 0 −2 λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2n+1)×(2n+1)

Using co-factor expansion along the last column, we get

Pn(λ) =λA(2n+1)(2n+1) + 2A(2n)(2n+1) − 1A1(2n+1)

where Aij is the determinant of the submatrix of A obtained by deleting ith row

and jth column. Further, using the co-factor expansion of A(2n+1)(2n+1) along the
last column and evaluating the determinant, we get

λA(2n+1)(2n+1) = λ2Pn−1 − λ(λ2 − 4)n−1.

Taking the co-factor expansion of A(2n)(2n+1) along the along the last column and
simplifying we get

2A(2n)(2n+1) = −4Pn−1 − 2(λ2 − 4)n−1.

And, taking the co-factor expansion of A1(2n+1) along the last row and simplifying
it we get

−A1(2n+1) = −2(λ2 − 4)n−1 − λ(λ2 − 4)n−1

Thus,

Pn(λ) =λ2Pn−1 − λ(λ2 − 4)n−1 − 4Pn−1 − 2(λ2 − 4)n−1 − 2(λ2 − 4)n−1 − λ(λ2 − 4)n−1

=(λ2 − 4)Pn−1 − 2(λ+ 2)(λ2 − 4)n−1

Applying the above formula for Pn−1 and simplifying it we get

Pn(λ) =(λ2 − 4)
[

(λ2 − 4)Pn−2 − 2(λ+ 2)(λ2 − 4)n−2
]

− 2(λ+ 2)(λ2 − 4)n−1

Pn(λ) =(λ2 − 4)2Pn−2 − 2× 2(λ+ 2)(λ2 − 4)n−1

Continuing this recursively we get

Pn(λ) =(λ2 − 4)n−1P1 − 2(n− 1)(λ+ 2)(λ2 − 4)n−1

Note that P1(λ) = λ3 − 6λ− 4 . Hence,

Pn(λ) =(λ2 − 4)n−1
[

λ3 − 6λ− 4
]

− 2(n− 1)(λ+ 2)(λ2 − 4)n−1
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Simplifying this we get

Pn(λ) = (λ2 − 4)n−1
[

λ3 − 2(n+ 2)λ− 4n
]

We can see that λ+ 2 is a factor. Thus, we get

Pn(λ) = (λ+ 2)(λ2 − 4)n−1
[

λ2 − 2λ− 2n
]

�

Thus, the spectra of star semigraphs are:
(

−2 2 1−
√
2n+ 1 1 +

√
2n+ 1

n n− 1 1 1

)

Conclusion

By defining the adjacency matrix of a semigraph in a unique way such that this
matrix is symmetric opens up a pandora’s box from which one can choose any
problem starting with spectra of various semigraphs to defining/generlizing results
similar to graphs. We have just initiated this study which is expected to result in
rich theory regarding semigraphs and also generate many applications, especially in
the field of upcoming IOT and AI.
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