
ar
X

iv
:2

21
0.

13
84

9v
1 

 [
m

at
h.

C
O

] 
 2

5 
O

ct
 2

02
2

Euler numbers and diametral paths in Fibonacci cubes,

Lucas cubes and Alternate Lucas cubes
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Abstract

The diameter of a graph is the maximum distance between pairs of vertices in the

graph. A pair of vertices whose distance is equal to its diameter are called diametri-

cally opposite vertices. The collection of shortest paths between diametrically opposite

vertices are referred as diametral paths. In this work, we enumerate the number of di-

ametral paths for Fibonacci cubes, Lucas cubes and Alternate Lucas cubes. We present

bijective proofs that show that these numbers are related to alternating permutations

and are enumerated by Euler numbers.
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1 Introduction

Given a connected graph G = (V,E), one of the basic problem is to enumerate the num-
ber of shortest paths between pairs of vertices in G. The solution to this problem provides
an important topological property of an interconnection network, in terms of its connectiv-
ity, fault-tolerance, communication expense [17] and has important applications such as for5

counting minimum (s, t)-cut in planar graphs and route guidance systems [3].
The so-called single-source shortest paths problem consists of finding the shortest paths

between a given vertex and all other vertices in the graph. One can solve this problem
by using the algorithms such as Breadth-First-Search for unweighted graphs or Dijkstra’s
algorithm [8]. Similarly, Dijkstra’s algorithm can be used to solve the single-pair shortest10

paths problem in a weighted, directed graph with nonnegative weights.
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The process of finding all shortest paths between a pair of vertices in a graph is another
problem. This can be considered a search for the most efficient routes through the graph.
In [4], it is proved that finding the number of shortest paths in a general graph is NP-hard.

For planar graphs with m vertices an oracle is presented in [2] to find the number of15

shortest paths for a given pair of vertices whose time complexity is O(
√
m) with O(m1.5)

space. This approach is improved in [11] and a new oracle for counting shortest paths in
planar graphs is presented, where Voronoi diagrams are used to speed up the query time.

In the literature, the problem of enumerating the number of shortest paths have been
considered for some special families of graphs. Explicit formulas have been obtained for the20

hexagonal network [10], the star graph [13], the (n, k)-star graph [5, 7] and the arrangement
graph [6]. In an (n, k)-star graph the number of shortest paths is enumerated by counting
the minimum factorizations of a permutation in terms of the transpositions corresponding to
edges in that graph [7]. For the arrangement graph this number is enumerated by establishing
a bijection between these shortest paths and a collection of ordered forests of certain bi-25

colored trees [6].
The distance d(u, v) between two vertices u, v ∈ V is the number of edges in a shortest

path between u and v. The diameter of G is defined as the maximum distance between pairs
of vertices in V and is denoted by diam(G).

A pair of vertices u, v ∈ V with d(u, v) = diam(G), are called diametrically opposite30

vertices. The collection of shortest paths between diametrically opposite vertices are referred
to as diametral paths. For a pair of diametrically opposite vertices u, v ∈ V we let c(u, v;G)
denote the number of diametral paths from u to v in G.

As an example, for the n-dimensional hypercube Qn the number of diametral paths be-
tween any diametrically opposite pair u and v can be enumerated by establishing a bijection
between these shortest paths and the permutations on n symbols, so that

c(u, v;Qn) = n! .

In this paper we enumerate the number of diametral paths for three special subgraphs of
hypercube graphs, namely Fibonacci cubes [12], Lucas cubes [15] and Alternate Lucas cubes35

[9]. We present bijective proofs of our results. Surprisingly, these numbers are related to
alternating permutations and are enumerated by Euler numbers.

2 Preliminaries

We let [n] = {1, 2, . . . , n}. The n-dimensional hypercube Qn is the graph defined on the
vertex set Bn, where

Bn = {b1b2 . . . bn | bi ∈ {0, 1}, i ∈ [n]} .
Two vertices u, v ∈ Bn are adjacent if and only if the Hamming distance d(u, v) = 1, that
is, u and v differ in exactly one coordinate. For convenience, Q0 = K1. It is clear from the40

definition that diam(Qn) = n and for any vertex u ∈ Bn there exist a unique vertex ū ∈ Bn

such that d(u, ū) = n, where ū denotes the complement of the binary string of u.
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For n ≥ 1, let

FBn = {b1b2 . . . bn ∈ Bn | bi · bi+1 = 0, i ∈ [n− 1]} .

The n-dimensional Fibonacci cube Γn (n ≥ 1) is an induced subgraph of Qn with vertex set
FBn. We take Γ0 = K1. Similarly, for n ≥ 1, let

LBn = {b1b2 . . . bn ∈ FBn | b1 · bn = 0}

and for n ≥ 3,
ALBn = {b1b2 . . . bn ∈ FBn | bn · bn−2 = 0} .

The n-dimensional Lucas cube Λn and Alternate Lucas cube Ln are defined as the induced
subgraphs of Γn ⊆ Qn and with sets LBn and ALBn, respectively.

Qn has a useful decomposition in which its vertex set is partitions into two sets Bn =
0Bn−1 ∪ 1Bn−1, where 0Bn−1 denotes the vertices that start with a 0 and 1Bn−1 denotes the
vertices that start with a 1. Using this decomposition we can write

Qn = 0Qn−1 + 1Qn−1

where 0Qn−1 and 1Qn−1 denote the induced subgraphs of Qn with vertex sets 0Bn−1 and45

1Bn−1 respectively, and + denotes the perfect matching between 0Qn−1 and 1Qn−1. Similarly,
we have the following fundamental decompositions for Fibonacci cubes, Lucas cubes and
Alternate Lucas cubes:

Γn = 0Γn−1 + 10Γn−2 ,

where there is a perfect matching between 10Γn−2 and 00Γn−2 ⊂ 0Γn−1,

Λn = 0Γn−1 + 10Γn−30 ,

where there is a perfect matching between 10Γn−30 and 00Γn−30 ⊂ 0Γn−1,50

Ln = 0Ln−1 + 10Ln−2 ,

where there is a perfect matching between 10Ln−2 and 00Ln−2 ⊂ 0Ln−1.

2.1 Euler numbers

Following [18], a permutation σ = σ1σ . . . σn of [n] is alternating if σ1 > σ2, < σ3 > σ4 < · · · .
In other words, σi < σi+1 for i even and ai > ai+1 for i odd. σ is reverse alternating
if σ1 < σ2 > σ3 < σ4 · · · . Let En denote the number of alternating permutations of [n]55

with E0 = 1. These are known as the Euler numbers. The number of reverse alternating
permutations of [n] is also given by En.

By a result of Désiré André [1], we have

2En+1 =
n

∑

k=0

(

n

k

)

EkEn−k ,
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and the exponential generating function of the sequence of Euler numbers is given by

∑

n≥0

En

xn

n!
= sec x+ tan x

= 1 + x+
x2

2!
+ 2

x3

3!
+ 5

x4

4!
+ 16

x5

5!
+ 61

x6

6!
+ · · ·

First few terms of Euler numbers (sequence A000111 in the OEIS [16]) are E0 = 1, E1 = 1,
E2 = 1, E3 = 2, E4 = 5, E5 = 16, E6 = 61.60

3 Calculation for the Fibonacci cubes

In this section we determine the number of diametral paths in Γn. Since n = diam(Γn),
these paths are of length n. Γn is an induced subgraph of Qn with vertex set FBn. We have
the following easy result.

Proposition 1. There is a unique pair of diametrically opposite vertices in Γn. They are65

(i) u = (01)
n

2 and v = (10)
n

2 if n is even,

(ii) u = (01)
n−1

2 0 and v = (10)
n−1

2 1 if n is odd.

Even though Γn is undirected, here we view the edges on each such path to be directed
from u to v. By direct inspection we have c(u, v; Γ1) = 1, c(u, v; Γ2) = 1, c(u, v; Γ3) = 2,
c(u, v; Γ4) = 5, c(u, v; Γ5) = 16. For a path

u = s0 → s1 → · · · → sn = v ,

each vertex si+1 is obtained from the vertex si by flipping a 0 to a 1, or a 1 to a 0, with the
proviso that no consecutive 1s appear in any si. We see in particular that c(u, v; Γ3) = 2 as
there are two paths of length 3 from u to v when n = 3 as shown in the Table 1.70

Step b1 b2 b3
v = s3 1 0 1

s2 1 0 0
s1 0 0 0

u = s0 0 1 0

Step b1 b2 b3
v = s3 1 0 1

s2 0 0 1
s1 0 0 0

u = s0 0 1 0

Table 1: Two different paths from u = 010 to v = 101 in Γ3.

Here we write u in the bottom most row. The ith step shows the string si after i edges
on the path have been traversed. Note that in this representation, the path proceeds from
bottom up and the row indices are increasing from bottom up as well.

By using this representation we give a bijective proof that the sequence of the numbers
of diametral paths in Fibonacci cubes is precisely the sequence of Euler numbers.75
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Theorem 1. Let u, v ∈ Γn such that d(u, v) = n. Then for n ≥ 1, we have

c(u, v; Γn) = En ,

where En is the nth Euler number.

Proof. We give a bijection between paths of length n from u to v in FBn and alternating
permutations σ of [n]. The bijection is best communicated by an example. Suppose n = 8
and we are given the path from u = 01010101 to v = 10101010 whose steps are shown in
Table 2.80

Step b1 b2 b3 b4 b5 b6 b7 b8
v = s8 1 0 1 0 1 0 1 0

s7 1 0 1 0 1 0 0 0
s6 1 0 0 0 1 0 0 0
s5 1 0 0 0 1 0 0 1
s4 0 0 0 0 1 0 0 1
s3 0 1 0 0 1 0 0 1
s2 0 1 0 0 0 0 0 1
s1 0 1 0 0 0 1 0 1

u = s0 0 1 0 1 0 1 0 1

Table 2: A path from diametrically opposite vertices u = (01)4 to v = (10)4 in Γ8.

As the first step, we mark the first appearance of 1 as we go up the table in every column
with an odd index. In Table 3 these entries are circled.

Step b1 b2 b3 b4 b5 b6 b7 b8

v = s8 1 0 1 0 1 0 1 0

s7 1 0 1 0 1 0 0 0
s6 1 0 0 0 1 0 0 0

s5 1 0 0 0 1 0 0 1
s4 0 0 0 0 1 0 0 1

s3 0 1 0 0 1 0 0 1
s2 0 1 0 0 0 0 0 1
s1 0 1 0 0 0 1 0 1

u = s0 0 1 0 1 0 1 0 1

Table 3: First appearance of 1 as we go up in every column with an odd index is marked in
the path from u = (01)4 to v = (10)4 in Γ8.

Next, we mark the first appearance of 0 as we go up the table in every column with an
even index. Circling these entries gives Table 4.
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Step b1 b2 b3 b4 b5 b6 b7 b8

v = s8 1 0 1 0 1 0 1 0

s7 1 0 1 0 1 0 0 0

s6 1 0 0 0 1 0 0 0

s5 1 0 0 0 1 0 0 1

s4 0 0 0 0 1 0 0 1

s3 0 1 0 0 1 0 0 1

s2 0 1 0 0 0 0 0 1

s1 0 1 0 0 0 1 0 1
u = s0 0 1 0 1 0 1 0 1

Table 4: First appearance of 0/1 as we go up in every column with an even/odd index is
marked in the path from u = (01)4 to v = (10)4 in Γ8.

After this we record the corresponding step number in each column. For instance column85

1 gives 5, column 2 gives 4, etc. by reading the indices of the corresponding rows. The
resulting alternating permutation is below:

5 4 7 1 3 2 8 6

These steps are reversible. Suppose this time that n = 7 and we are given the alternating
permutation 3 1 6 4 7 2 5. We construct Table 5 in which the odd numbered columns 1, 3,90

5, 7 are assigned the label 1 in the rows 3, 6, 7, 5, which are the entries in the odd positions
of the given permutation. The even numbered columns 2, 4, 6 are assigned the label 0 in the
rows 1,4, 2, which are the entries in the even indexed positions of the given permutation.

Step b1 b2 b3 b4 b5 b6 b7

v = s7 1

s6 1

s5 1

s4 0

s3 1

s2 0

s1 0

u = s0

Table 5: First appearance of 0/1 in every column with an even/odd index in the path from
u = (01)30 to v = (10)31 in Γ7 corresponding to the alternating permutation 3 1 6 4 7 2 5.

Now we fill in the odd indexed columns of this matrix by 0, up to the marked 1 in the
column, followed by 0s all the way up; and we fill the even indexed columns by 1 up to95

the marked 0 in the column, followed by 1s all the way up. This results in the path of
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length n = 7 from u to v shown in Table 6 corresponding to the alternating permutation
3 1 6 4 7 2 5.

Step b1 b2 b3 b4 b5 b6 b7

v = s7 1 0 1 0 1 0 1

s6 1 0 1 0 0 0 1

s5 1 0 0 0 0 0 1

s4 1 0 0 0 0 0 0

s3 1 0 0 1 0 0 0

s2 0 0 0 1 0 0 0

s1 0 0 0 1 0 1 0
u = s0 0 1 0 1 0 1 0

Table 6: The path from the diametrically opposite vertices u = (01)30 to v = (10)31 in Γ7

corresponding to the alternating permutation 3 1 6 4 7 2 5.

Considering now the general case, we see that going from u to v in n steps, every bit in
u has to change exactly once. This means that the row indices of the marked entries in the100

matrix in Table 4 is a permutation σ of [n]. Now consider an element t = σi with odd i with
1 < i < n. This means that in step t of the path, that is in st, the entry in the ith column
goes from 0 to 1. But since all of the vertices that appear in the table as rows are Fibonacci
strings. This means that in st−1 the entries in columns i − 1 and i + 1 which are adjacent
to the entry at column i must already be 0. Therefore these entries were flipped from 1 to105

0 in earlier steps. It follows that σi > σi+1 and σi > σi−1. The two extreme cases with i = 1
and i = n are handled the same way. Therefore σ is an alternating permutation. The other
direction is proved similarly.

4 Calculation for the Lucas cubes

It is shown in [15] that

diam(Λn) =

{

n for n even ,
n− 1 for n odd .

We have110

Proposition 2. The number of diametrically opposite pair of vertices in Λn is 1 if n is even
and n if n is odd. They are

• (01)
n

2 and (10)
n

2 if n is even,

• cyclic shifts of the pair 0(01)
n−1

2 and 0(10)
n−1

2 if n is odd.

Remark 1. Note that there is a typo in [15, Proposition 1]. For n odd, the number of pairs115

of vertices in Λn at distance equal to the diameter is n, not n− 1.

7



Similar to the proof of Theorem 1 we obtain the following result for Λn.

Theorem 2. Let u, v ∈ Λn such that d(u, v) = diam(Λn). Then for n ≥ 2, we have

c(u, v; Λn) =

{

n

2
En−1 for n even ,

En−1 for n odd .

Proof. Assume first that n is even. By Proposition 2 we only need to consider the vertices
u = (01)

n

2 and v = (10)
n

2 . Mimicking the bijective proof of Theorem 1, we arrive at
permutations σ of [n] satisfying σi > σi+1 for any odd index i with 1 ≤ i < n, σi > σi−1120

for any odd index i with 1 < i ≤ n and the extra condition σ1 > σn, since in Λn we have
b1 · bn = 0. This last requirement on σ is easily verified by tracing the first appearance
of a 1 in the first and the last columns of the table of paths that define the bijection for
Γn. Therefore, σ must be a circular alternating permutation, and these were enumerated by
Kreweras [14].125

For n odd, assume that u1 = 0(01)
n−1

2 and v1 = 0(10)
n−1

2 . Then we know that u1, v1 ∈
0Γn−1 and since Λn = 0Γn−1 + 10Γn−30 we have

c(u1, v1; Λn) = c(u1, v1; 0Γn−1) = En−1 .

Let ui and vi be the i − 1 right cyclic shifts of the vertices u1 and v1 for i = 2, . . . , n,
respectively. Then for any shortest path P from u1 to v1, the i− 1 right cyclic shifts of all
the vertices in P gives a shortest path from ui to vi for all i ∈ {2, . . . , n}, which completes
the proof.

5 Calculation for the Alternate Lucas cubes130

For any integer n ≥ 3, it is shown in [9] that diam(Ln) = n− 1. We have

Proposition 3. For any integer n ≥ 4, the number of diametrically opposite pair of vertices
in Ln is 4. For n ≥ 4, they are

(i) u = 0s(10)k001 and v = 1s(01)k010,

(ii) u = 0s(10)k010 and v = 1s(01)k001,135

(iii) u = 0s(10)k100 and v = 1s(01)k001,

(iv) u = 0s(10)k100 and v = 1s(01)k010,

where n = 2k + 3 + s, k is a nonnegative integer and s ∈ {0, 1}.

Theorem 3. Let n = 2k + 3 + s, k be a nonnegative integer and s ∈ {0, 1}. For n ≥ 4, we
have

c(0s(10)k100, 1s(01)k001;Ln) = c(0s(10)k100, 1s(01)k010;Ln) = En−1

c(0s(10)k001, 1s(01)k010;Ln) = c(0s(10)k010, 1s(01)k001;Ln) =

(

n− 1

2

)

En−3 .
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Proof. We sketch the proof. As in the proof of Theorem 1, we need to consider the permu-
tations σ of [n] satisfying extra conditions depending on the pair of vertices. We will give140

the proof for n even (s = 1) and only for the pairs u = 0s(10)k100 and v = 1s(01)k001 and
u = 0s(10)k001 and v = 1s(01)k010. The other cases can be obtained similarly.

For the pair u = 0(10)k100 and v = 1(01)k001 as we consider the shortest paths we
will not change the (n − 1)st position since it is 0 for each vertex. Therefore we need to
consider the permutations σ of [n] \ {n − 1} satisfying σi > σi+1 for any odd index i with145

1 ≤ i ≤ n− 3, σi > σi−1 for any odd index i with 1 < i ≤ n− 3 and σn > σn−2, since in Ln

we have bn−2 · bn = 0. By setting τi = σi for i = 1, . . . , n− 2 and τn−1 = σn we observe that
τ is an alternating permutation of [n− 1].

Now consider the pair u = 0(10)k001 and v = 1(01)k010. In the shortest paths under
consideration, we will not change the (n−2)nd position since it is 0 for each vertex. Therefore150

we need to consider the permutations σ of [n]\{n−2} satisfying σi > σi+1 for any odd index
i with 1 ≤ i < n − 3, σi > σi−1 for any odd index i with 1 < i ≤ n − 3 and σn−1 > σn. By
setting τi = σi for i = 1, . . . , n− 3 we observe that τ is an alternating permutation of [n− 3]
and we have

(

n−1

2

)

different choices for σn−1, σn which gives the desired result.
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