Euler numbers and diametral paths in Fibonacci cubes, Lucas cubes and Alternate Lucas cubes

Ömer Eğecioğlu * Elif Sayg ${ }^{\dagger}$ Zülfükar Sayg ${ }^{\ddagger}$

October 26, 2022

Abstract

The diameter of a graph is the maximum distance between pairs of vertices in the graph. A pair of vertices whose distance is equal to its diameter are called diametrically opposite vertices. The collection of shortest paths between diametrically opposite vertices are referred as diametral paths. In this work, we enumerate the number of diametral paths for Fibonacci cubes, Lucas cubes and Alternate Lucas cubes. We present bijective proofs that show that these numbers are related to alternating permutations and are enumerated by Euler numbers.

Keywords: Shortest path, diametral path, Fibonacci cube, Lucas cube, Alternate Lucas cube, Euler number.
MSC[2020]: 05C38 05A05 11B68

1 Introduction

Given a connected graph $G=(V, E)$, one of the basic problem is to enumerate the number of shortest paths between pairs of vertices in G. The solution to this problem provides an important topological property of an interconnection network, in terms of its connectivity, fault-tolerance, communication expense [17] and has important applications such as for counting minimum (s, t)-cut in planar graphs and route guidance systems [3].

The so-called single-source shortest paths problem consists of finding the shortest paths between a given vertex and all other vertices in the graph. One can solve this problem by using the algorithms such as Breadth-First-Search for unweighted graphs or Dijkstra's algorithm [8]. Similarly, Dijkstra's algorithm can be used to solve the single-pair shortest paths problem in a weighted, directed graph with nonnegative weights.

[^0]The process of finding all shortest paths between a pair of vertices in a graph is another problem. This can be considered a search for the most efficient routes through the graph. In [4], it is proved that finding the number of shortest paths in a general graph is NP-hard. vertices. The collection of shortest paths between diametrically opposite vertices are referred to as diametral paths. For a pair of diametrically opposite vertices $u, v \in V$ we let $c(u, v ; G)$ denote the number of diametral paths from u to v in G.

As an example, for the n-dimensional hypercube Q_{n} the number of diametral paths between any diametrically opposite pair u and v can be enumerated by establishing a bijection between these shortest paths and the permutations on n symbols, so that

$$
c\left(u, v ; Q_{n}\right)=n!.
$$

In this paper we enumerate the number of diametral paths for three special subgraphs of hypercube graphs, namely Fibonacci cubes [12], Lucas cubes [15] and Alternate Lucas cubes [9]. We present bijective proofs of our results. Surprisingly, these numbers are related to alternating permutations and are enumerated by Euler numbers.

2 Preliminaries

We let $[n]=\{1,2, \ldots, n\}$. The n-dimensional hypercube Q_{n} is the graph defined on the vertex set B_{n}, where

$$
B_{n}=\left\{b_{1} b_{2} \ldots b_{n} \mid b_{i} \in\{0,1\}, i \in[n]\right\} .
$$

Two vertices $u, v \in B_{n}$ are adjacent if and only if the Hamming distance $d(u, v)=1$, that is, u and v differ in exactly one coordinate. For convenience, $Q_{0}=K_{1}$. It is clear from the definition that $\operatorname{diam}\left(Q_{n}\right)=n$ and for any vertex $u \in B_{n}$ there exist a unique vertex $\bar{u} \in B_{n}$ such that $d(u, \bar{u})=n$, where \bar{u} denotes the complement of the binary string of u.

For $n \geq 1$, let

$$
\mathcal{F} \mathcal{B}_{n}=\left\{b_{1} b_{2} \ldots b_{n} \in B_{n} \mid b_{i} \cdot b_{i+1}=0, i \in[n-1]\right\} .
$$

The n-dimensional Fibonacci cube $\Gamma_{n}(n \geq 1)$ is an induced subgraph of Q_{n} with vertex set $\mathcal{F} \mathcal{B}_{n}$. We take $\Gamma_{0}=K_{1}$. Similarly, for $n \geq 1$, let

$$
\mathcal{L B _ { n }}=\left\{b_{1} b_{2} \ldots b_{n} \in \mathcal{F} \mathcal{B}_{n} \mid b_{1} \cdot b_{n}=0\right\}
$$

and for $n \geq 3$,

$$
\mathcal{A L B}_{n}=\left\{b_{1} b_{2} \ldots b_{n} \in \mathcal{F} \mathcal{B}_{n} \mid b_{n} \cdot b_{n-2}=0\right\}
$$

The n-dimensional Lucas cube Λ_{n} and Alternate Lucas cube \mathcal{L}_{n} are defined as the induced subgraphs of $\Gamma_{n} \subseteq Q_{n}$ and with sets $\mathcal{L B}_{n}$ and $\mathcal{A L B}_{n}$, respectively.
Q_{n} has a useful decomposition in which its vertex set is partitions into two sets $B_{n}=$ $0 B_{n-1} \cup 1 B_{n-1}$, where $0 B_{n-1}$ denotes the vertices that start with a 0 and $1 B_{n-1}$ denotes the vertices that start with a 1 . Using this decomposition we can write

$$
Q_{n}=0 Q_{n-1}+1 Q_{n-1}
$$

${ }^{45}$ where $0 Q_{n-1}$ and $1 Q_{n-1}$ denote the induced subgraphs of Q_{n} with vertex sets $0 B_{n-1}$ and $1 B_{n-1}$ respectively, and + denotes the perfect matching between $0 Q_{n-1}$ and $1 Q_{n-1}$. Similarly, we have the following fundamental decompositions for Fibonacci cubes, Lucas cubes and Alternate Lucas cubes:

$$
\Gamma_{n}=0 \Gamma_{n-1}+10 \Gamma_{n-2},
$$

where there is a perfect matching between $10 \Gamma_{n-2}$ and $00 \Gamma_{n-2} \subset 0 \Gamma_{n-1}$,

$$
\Lambda_{n}=0 \Gamma_{n-1}+10 \Gamma_{n-3} 0
$$

where there is a perfect matching between $10 \Gamma_{n-3} 0$ and $00 \Gamma_{n-3} 0 \subset 0 \Gamma_{n-1}$,

$$
\mathcal{L}_{n}=0 \mathcal{L}_{n-1}+10 \mathcal{L}_{n-2}
$$

where there is a perfect matching between $10 \mathcal{L}_{n-2}$ and $00 \mathcal{L}_{n-2} \subset 0 \mathcal{L}_{n-1}$.

2.1 Euler numbers

Following [18], a permutation $\sigma=\sigma_{1} \sigma \ldots \sigma_{n}$ of [n] is alternating if $\sigma_{1}>\sigma_{2},<\sigma_{3}>\sigma_{4}<\cdots$. In other words, $\sigma_{i}<\sigma_{i+1}$ for i even and $a_{i}>a_{i+1}$ for i odd. σ is reverse alternating ${ }_{55}$ if $\sigma_{1}<\sigma_{2}>\sigma_{3}<\sigma_{4} \cdots$. Let E_{n} denote the number of alternating permutations of $[n]$ with $E_{0}=1$. These are known as the Euler numbers. The number of reverse alternating permutations of $[n]$ is also given by E_{n}.

By a result of Désiré André [1], we have

$$
2 E_{n+1}=\sum_{k=0}^{n}\binom{n}{k} E_{k} E_{n-k}
$$

and the exponential generating function of the sequence of Euler numbers is given by

$$
\begin{aligned}
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!} & =\sec x+\tan x \\
& =1+x+\frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}+5 \frac{x^{4}}{4!}+16 \frac{x^{5}}{5!}+61 \frac{x^{6}}{6!}+\cdots
\end{aligned}
$$

First few terms of Euler numbers (sequence A000111 in the OEIS [16]) are $E_{0}=1, E_{1}=1$,

Step	b_{1}	b_{2}	b_{3}
$v=s_{3}$	1	0	1
s_{2}	1	0	0
s_{1}	0	0	0
$u=s_{0}$	0	1	0

Step	b_{1}	b_{2}	b_{3}
$v=s_{3}$	1	0	1
s_{2}	0	0	1
s_{1}	0	0	0
$u=s_{0}$	0	1	0

Table 1: Two different paths from $u=010$ to $v=101$ in Γ_{3}.
Here we write u in the bottom most row. The i th step shows the string s_{i} after i edges on the path have been traversed. Note that in this representation, the path proceeds from bottom up and the row indices are increasing from bottom up as well.

By using this representation we give a bijective proof that the sequence of the numbers of diametral paths in Fibonacci cubes is precisely the sequence of Euler numbers.

Theorem 1. Let $u, v \in \Gamma_{n}$ such that $d(u, v)=n$. Then for $n \geq 1$, we have

$$
c\left(u, v ; \Gamma_{n}\right)=E_{n}
$$

where E_{n} is the nth Euler number.
Proof. We give a bijection between paths of length n from u to v in $\mathcal{F} \mathcal{B}_{n}$ and alternating permutations σ of $[n]$. The bijection is best communicated by an example. Suppose $n=8$ and we are given the path from $u=01010101$ to $v=10101010$ whose steps are shown in Table 2.

Step	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	b_{8}
$v=s_{8}$	1	0	1	0	1	0	1	0
s_{7}	1	0	1	0	1	0	0	0
s_{6}	1	0	0	0	1	0	0	0
s_{5}	1	0	0	0	1	0	0	1
s_{4}	0	0	0	0	1	0	0	1
s_{3}	0	1	0	0	1	0	0	1
s_{2}	0	1	0	0	0	0	0	1
s_{1}	0	1	0	0	0	1	0	1
$u=s_{0}$	0	1	0	1	0	1	0	1

Table 2: A path from diametrically opposite vertices $u=(01)^{4}$ to $v=(10)^{4}$ in Γ_{8}.
As the first step, we mark the first appearance of 1 as we go up the table in every column with an odd index. In Table 3 these entries are circled.

Step	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	b_{8}
$v=s_{8}$	1	0	1	0	1	0	1	0
s_{7}	1	0	$\mathbf{1}$	0	1	0	0	0
s_{6}	1	0	0	0	1	0	0	0
s_{5}	$\mathbf{1}$	0	0	0	1	0	0	1
s_{4}	0	0	0	0	1	0	0	1
s_{3}	0	1	0	0	$\mathbf{1}$	0	0	1
s_{2}	0	1	0	0	0	0	0	1
s_{1}	0	1	0	0	0	1	0	1
$u=s_{0}$	0	1	0	1	0	1	0	1

Table 3: First appearance of 1 as we go up in every column with an odd index is marked in the path from $u=(01)^{4}$ to $v=(10)^{4}$ in Γ_{8}.

Next, we mark the first appearance of 0 as we go up the table in every column with an even index. Circling these entries gives Table 4.

Step	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	b_{8}
$v=s_{8}$	1	0	1	0	1	0	$\mathbf{1}$	0
s_{7}	1	0	$\mathbf{1}$	0	1	0	0	0
s_{6}	1	0	0	0	1	0	0	0
s_{5}	$\mathbf{1}$	0	0	0	1	0	0	1
s_{4}	0	0	0	0	1	0	0	1
s_{3}	0	1	0	0	$\mathbf{1}$	0	0	1
s_{2}	0	1	0	0	0	0	0	1
s_{1}	0	1	0	$\mathbf{0}$	0	1	0	1
$u=s_{0}$	0	1	0	1	0	1	0	1

Table 4: First appearance of $0 / 1$ as we go up in every column with an even/odd index is marked in the path from $u=(01)^{4}$ to $v=(10)^{4}$ in Γ_{8}.

After this we record the corresponding step number in each column. For instance column 1 gives 5 , column 2 gives 4 , etc. by reading the indices of the corresponding rows. The resulting alternating permutation is below:

$$
\begin{array}{llllllll}
5 & 4 & 7 & 1 & 3 & 2 & 8 & 6
\end{array}
$$

These steps are reversible. Suppose this time that $n=7$ and we are given the alternating permutation 3164725 . We construct Table 5 in which the odd numbered columns 1, 3, 5,7 are assigned the label 1 in the rows $3,6,7,5$, which are the entries in the odd positions of the given permutation. The even numbered columns 2, 4, 6 are assigned the label 0 in the rows $1,4,2$, which are the entries in the even indexed positions of the given permutation.

Step	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}
$v=s_{7}$					(1)		
s_{6}			1				
s_{5}							(1)
s_{4}				0			
s_{3}	1					0	
s_{2}						0	
s_{1}		0					
$u=s_{0}$							

Table 5: First appearance of $0 / 1$ in every column with an even/odd index in the path from $u=(01)^{3} 0$ to $v=(10)^{3} 1$ in Γ_{7} corresponding to the alternating permutation 3164725 .

Now we fill in the odd indexed columns of this matrix by 0 , up to the marked 1 in the column, followed by 0 s all the way up; and we fill the even indexed columns by 1 up to the marked 0 in the column, followed by 1s all the way up. This results in the path of
length $n=7$ from u to v shown in Table 6 corresponding to the alternating permutation 3164725 .

Step	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}
$v=s_{7}$	1	0	1	0	1	0	1
s_{6}	1	0	$\mathbf{1}$	0	0	0	1
s_{5}	1	0	0	0	0	0	$\mathbf{1}$
s_{4}	1	0	0	0	0	0	0
s_{3}	$\mathbf{1}$	0	0	1	0	0	0
s_{2}	0	0	0	1	0	0	0
s_{1}	0	0	0	1	0	1	0
$u=s_{0}$	0	1	0	1	0	1	0

Table 6: The path from the diametrically opposite vertices $u=(01)^{3} 0$ to $v=(10)^{3} 1$ in Γ_{7} corresponding to the alternating permutation 3164725 .

Considering now the general case, we see that going from u to v in n steps, every bit in

4 Calculation for the Lucas cubes

It is shown in [15] that

$$
\operatorname{diam}\left(\Lambda_{n}\right)= \begin{cases}n & \text { for } n \text { even } \\ n-1 & \text { for } n \text { odd }\end{cases}
$$

We have
Proposition 2. The number of diametrically opposite pair of vertices in Λ_{n} is 1 if n is even and n if n is odd. They are

- (01) $\frac{n}{2}$ and $(10)^{\frac{n}{2}}$ if n is even,
- cyclic shifts of the pair $0(01)^{\frac{n-1}{2}}$ and $0(10)^{\frac{n-1}{2}}$ if n is odd.

Remark 1. Note that there is a typo in [15, Proposition 1]. For n odd, the number of pairs of vertices in Λ_{n} at distance equal to the diameter is n, not $n-1$.

Similar to the proof of Theorem 1 we obtain the following result for Λ_{n}.
Theorem 2. Let $u, v \in \Lambda_{n}$ such that $d(u, v)=\operatorname{diam}\left(\Lambda_{n}\right)$. Then for $n \geq 2$, we have

$$
c\left(u, v ; \Lambda_{n}\right)= \begin{cases}\frac{n}{2} E_{n-1} & \text { for } n \text { even } \\ E_{n-1} & \text { for } n \text { odd }\end{cases}
$$

Proof. Assume first that n is even. By Proposition 2 we only need to consider the vertices $u=(01)^{\frac{n}{2}}$ and $v=(10)^{\frac{n}{2}}$. Mimicking the bijective proof of Theorem 11, we arrive at permutations σ of $[n]$ satisfying $\sigma_{i}>\sigma_{i+1}$ for any odd index i with $1 \leq i<n, \sigma_{i}>\sigma_{i-1}$ for any odd index i with $1<i \leq n$ and the extra condition $\sigma_{1}>\sigma_{n}$, since in Λ_{n} we have $b_{1} \cdot b_{n}=0$. This last requirement on σ is easily verified by tracing the first appearance of a 1 in the first and the last columns of the table of paths that define the bijection for Γ_{n}. Therefore, σ must be a circular alternating permutation, and these were enumerated by Kreweras [14].

For n odd, assume that $u_{1}=0(01)^{\frac{n-1}{2}}$ and $v_{1}=0(10)^{\frac{n-1}{2}}$. Then we know that $u_{1}, v_{1} \in$ $0 \Gamma_{n-1}$ and since $\Lambda_{n}=0 \Gamma_{n-1}+10 \Gamma_{n-3} 0$ we have

$$
c\left(u_{1}, v_{1} ; \Lambda_{n}\right)=c\left(u_{1}, v_{1} ; 0 \Gamma_{n-1}\right)=E_{n-1} .
$$

Let u_{i} and v_{i} be the $i-1$ right cyclic shifts of the vertices u_{1} and v_{1} for $i=2, \ldots, n$, respectively. Then for any shortest path P from u_{1} to v_{1}, the $i-1$ right cyclic shifts of all the vertices in P gives a shortest path from u_{i} to v_{i} for all $i \in\{2, \ldots, n\}$, which completes the proof.

5 Calculation for the Alternate Lucas cubes

For any integer $n \geq 3$, it is shown in [9] that $\operatorname{diam}\left(\mathcal{L}_{n}\right)=n-1$. We have
Proposition 3. For any integer $n \geq 4$, the number of diametrically opposite pair of vertices in \mathcal{L}_{n} is 4 . For $n \geq 4$, they are
(i) $u=0^{s}(10)^{k} 001$ and $v=1^{s}(01)^{k} 010$,
(ii) $u=0^{s}(10)^{k} 010$ and $v=1^{s}(01)^{k} 001$,
(iii) $u=0^{s}(10)^{k} 100$ and $v=1^{s}(01)^{k} 001$,
(iv) $u=0^{s}(10)^{k} 100$ and $v=1^{s}(01)^{k} 010$,
where $n=2 k+3+s, k$ is a nonnegative integer and $s \in\{0,1\}$.
Theorem 3. Let $n=2 k+3+s$, k be a nonnegative integer and $s \in\{0,1\}$. For $n \geq 4$, we have

$$
\begin{gathered}
c\left(0^{s}(10)^{k} 100,1^{s}(01)^{k} 001 ; \mathcal{L}_{n}\right)=c\left(0^{s}(10)^{k} 100,1^{s}(01)^{k} 010 ; \mathcal{L}_{n}\right)=E_{n-1} \\
c\left(0^{s}(10)^{k} 001,1^{s}(01)^{k} 010 ; \mathcal{L}_{n}\right)=c\left(0^{s}(10)^{k} 010,1^{s}(01)^{k} 001 ; \mathcal{L}_{n}\right)=\binom{n-1}{2} E_{n-3} .
\end{gathered}
$$

Proof. We sketch the proof. As in the proof of Theorem 1 , we need to consider the permu- tations σ of $[n]$ satisfying extra conditions depending on the pair of vertices. We will give the proof for n even $(s=1)$ and only for the pairs $u=0^{s}(10)^{k} 100$ and $v=1^{s}(01)^{k} 001$ and $u=0^{s}(10)^{k} 001$ and $v=1^{s}(01)^{k} 010$. The other cases can be obtained similarly.

For the pair $u=0(10)^{k} 100$ and $v=1(01)^{k} 001$ as we consider the shortest paths we will not change the $(n-1)$ st position since it is 0 for each vertex. Therefore we need to consider the permutations σ of $[n] \backslash\{n-1\}$ satisfying $\sigma_{i}>\sigma_{i+1}$ for any odd index i with $1 \leq i \leq n-3, \sigma_{i}>\sigma_{i-1}$ for any odd index i with $1<i \leq n-3$ and $\sigma_{n}>\sigma_{n-2}$, since in \mathcal{L}_{n} we have $b_{n-2} \cdot b_{n}=0$. By setting $\tau_{i}=\sigma_{i}$ for $i=1, \ldots, n-2$ and $\tau_{n-1}=\sigma_{n}$ we observe that τ is an alternating permutation of $[n-1]$.

Now consider the pair $u=0(10)^{k} 001$ and $v=1(01)^{k} 010$. In the shortest paths under consideration, we will not change the $(n-2)$ nd position since it is 0 for each vertex. Therefore we need to consider the permutations σ of $[n] \backslash\{n-2\}$ satisfying $\sigma_{i}>\sigma_{i+1}$ for any odd index i with $1 \leq i<n-3, \sigma_{i}>\sigma_{i-1}$ for any odd index i with $1<i \leq n-3$ and $\sigma_{n-1}>\sigma_{n}$. By setting $\tau_{i}=\sigma_{i}$ for $i=1, \ldots, n-3$ we observe that τ is an alternating permutation of $[n-3]$ and we have $\binom{n-1}{2}$ different choices for σ_{n-1}, σ_{n} which gives the desired result.

Acknowledgement

The work of the second author is supported by BAP-SUK-2021-19737 of Hacettepe University. This work is partially supported by TÜBİTAK under Grant No. 120F125.

References

[1] D. André, Développement de sec x and tg x, C. R. Math. Acad. Sci. Paris 88, 965-979, 1879.
[2] I. Bezáková, A. Searns, On counting oracles for path problems, Proc. of the 29th International Symposium on Algorithms and Computation (ISAAC 2018) (2018), Article 56.
[3] I. Bezáková, A.J. Friedlander, Computing and sampling minimum (s, t)-cuts in weighted planar graphs in polynomial time Theor. Comput. Sci. 417, 2-11, 2012.
[4] J. Canny, J.H. Reif, New lower bound techniques for robot motion planning problems, Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci. (1987), 49-60.
[5] E. Cheng, J.W. Grossman, L. Lipták, K. Qiu, Z. Shen, Distance formula and shortest paths for the (n, k)-star graphs, Inform. Sci. 180 (9), 1671-1680, 2010.
[6] E. Cheng, J. W. Grossman, K. Qiu, Z. Shen, The number of shortest paths in the arrangement graph, Inform. Sci. 240, 191-204, 2013.
[7] E. Cheng, K. Qiu, Z. Shen, The number of shortest paths in the (n, k)-star graphs, W. Wu, O. Daescu (Eds.), Proc. 4th Int. Conf. Combinatorial Optimization and Applications, COCOA'2010 Part I, LNCS, vol. 6508, Springer, Kailua-Kona, HI (2010), 222-236.
[8] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik. 1, 269-271, 1959.
[9] Ö. Eğecioğlu, E. Saygı, Z. Saygı, Alternate Lucas Cubes, Internat. J. Found. Comput. Sci. 32, 871-899, 2021.
[10] F. García, J. Solano, I. Stojmenovic, M. Stojmenovic, Higher dimensional hexagonal networks, J. Parallel Distrib. Comput. 63 (11), 1164-1172, 2003.
[11] Y. Gong, Q.-P. Gu, An efficient oracle for counting shortest paths in planar graphs, Theor. Comput. Sci. 921, 75-85, 2022.
[12] W.-J. Hsu, Fibonacci cubes-a new interconnection technology, IEEE Trans. Parallel Distrib. Syst. 4, 3-12, 1993.
[13] J. Irving, A. Rattan, Factorizations of permutations into star transpositions, Discrete Math. 309 (6), 1435-1442, 2009.
[14] G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Mathématiques et sciences humaines 53, 5-30, 1976.
[15] E. Munarini, C.P. Cippo and N. Zagaglia Salvi, On the Lucas cubes, Fibonacci Quart. 39, 12-21, 2001.
[16] OEIS Foundation Inc. (2022), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A000111
[17] L. Schwiebert, There is no optimal routing policy for the torus, Inform. Process. Lett. 83 (6), 331-336, 2002.
[18] R. P. Stanley, A Survey of Alternating Permutations, Contem. Math. 531, 165-196, 2010.

[^0]: *Department of Computer Science, University of California Santa Barbara, Santa Barbara, California 93106, USA. email: omer@cs.ucsb.edu
 ${ }^{\dagger}$ Department of Mathematics and Science Education, Hacettepe University, 06800, Ankara, Turkey. email: esaygi@hacettepe.edu.tr
 ${ }^{\ddagger}$ Department of Mathematics, TOBB University of Economics and Technology, 06560, Ankara, Turkey. email: zsaygi@etu.edu.tr

